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On the Diophantine equation f(x)f(y) = f(z2)

By YONG ZHANG (Hangzhou) and TIANXIN CAI (Hangzhou)

Abstract. Let f ∈ Q[X], deg(f) ≥ 2, in this paper we extend the Diophantine

equation f(x)f(y) = f(z)2 for f(X) = X2 − tX from t = 2k to t = 2k + 1, then we

mainly consider the Diophantine equation f(x)f(y) = f(z2), and prove that there are

infinitely many nontrivial positive integer solutions for some special cases.

1. Introduction

Let f ∈ Q[X], deg(f) ≥ 2, the Diophantine equation

f(x)f(y) = f(z)2 (1)

has been studied by several authors.

In 1963, Schinzel and Sierpinski [5] investigated (1) for f(X) =X2− 1,

they showed that there are infinitely many solutions in integers. In 1967, Szymi-

czek [6] got the same result for f(X) = X2 − k2. In 2007, Bennett [1] showed

that (1) has no nontrivial integer solution for f(X) = Xk − 1, k ≥ 4.

In 2006, Katayama [3] studied (1) for f(X) = X2 + 1, he showed that there

are infinitely many solutions in integers. In 2008, Ulas [8] got the same result

for f(X) = X2 + k, k = ±(a2 − 2b2). Some related information on this problem

can be found in [2]: D23 Some quartic equations.

Note that if we take X = Y −k for f(X) = X2−k2, then f(Y −k) = Y 2−2kY ,

i.e., (1) has infinitely many nontrivial integer solutions for f(X) = X2 − 2kX.

In this paper, firstly, we extend 2k to 2k+1, and have the following theorem.
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Theorem 1. For f(X) = X2 − (2k + 1)X, k ∈ Z, (1) has infinitely many

nontrivial integer solutions.

Corollary. For f(X) = X2 − kX, k ∈ Z, (1) has infinitely many nontrivial

integer solutions.

Secondly, we consider an analogous Diophantine equation

f(x)f(y) = f(z2). (2)

The motivation of studying (2) is that the same degree of the left and right hand,

it seems that (2) is more difficult than (1). The transformation

z =
x− y

2

is powerful to solve (1) for some special cases, from some numerical calculations,

we find that there exists analogous transformation to solve (2) for some special

cases.

When deg(f) = 2, i.e., f(X) is a quadratic, we consider the reducible and

irreducible cases, respectively, and get the following theorems.

Theorem 2. For f(X) = X2 − k2X, k ∈ Z+, (2) has infinitely many nont-

rivial positive integer solutions.

Theorem 3. For f(X) = X2 + X + 1, (2) has infinitely many nontrivial

positive integer solutions.

When deg(f) = 3, i.e., f(X) is a cubic, we just get the following result, and

it is related to the other paper of the authors [9], which leads to the initial mind

to consider (2). For the general case of cubic, there is few results just now, maybe

there are some other special cases could be solved for (2).

Theorem 4. For f(X) = X3−X, (2) has infinitely many nontrivial positive

integer solutions.

In Section 2, we shall prove the theorems from 1 to 4. Section 3 is devoted

to considering the rational solutions of (2) and we have the following theorem.

Theorem 5. For f(X) = X2 − kX, k ∈ Z − {0}, (2) has infinitely many

nontrivial positive rational solutions.

In the last section, we raise some related questions for (2).
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2. Proofs of the theorems

Noting that the transformation

z =
x− y

2

is not suitable to solve (1) for f(X) = X2 − (2k + 1)X, by numerical calculation,

we find that the transformation

z =
x + y

2

is working, but it leads to negative integers for x.

Proof of Theorem 1. For f(X) = X2 − (2k + 1)X, let

z =
x + y

2
,

by using Maple, we have

f(x)f(y)− f(z)2

= − (x− y)2

16

(
x2 + 6xy + y2 − (8k + 4)x− (8k + 4)y + (4k + 2)2

)
= 0.

Let x2 + 6xy + y2 − (8k + 4)x− (8k + 4)y + (4k + 2)2 = 0, then(
x + 3y − (4k + 2)

)2 − 2
(
2y − (2k + 1)

)2
= 2(2k + 1)2.

Taking X = x + 3y − (4k + 2), Y = 2y − (2k + 1), we get

X2 − 2Y 2 = 2(2k + 1)2.

An infinity of positive integer solutions are given by

Xn + Yn

√
2 =

(
2(2k + 1) + 2(k + 1)

√
2
)(

3 + 2
√

2
)n

, n ≥ 0,

leading to Xn = 3Xn−1 + 4Yn−1, Yn = 2Xn−1 + 3Yn−1. Then{
Xn = 6Xn−1 −Xn−2, X0 = 2(2k + 1), X1 = 10(2k + 1);

Yn = 6Yn−1 − Yn−2, Y0 = 2k + 1, Y1 = 7(2k + 1).

It is easy to prove that

Xn

2k + 1
≡ 0 (mod 2),

Yn

2k + 1
≡ 1 (mod 2),
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then yn ∈ Z, xn ∈ Z. Hence, we have{
xn = 6xn−1 − xn−2 − 8(2k + 1), x0 = 2k + 1, x1 = 0;

yn = 6yn−1 − yn−2 − 2(2k + 1), y0 = 2k + 1, y1 = 4(2k + 1).

Then

zn =
xn + yn

2
= 6zn−1 − zn−2 − 5(2k + 1), z0 = 2k + 1, z1 = 2(2k + 1).

Therefore, we have infinitely many nontrivial integer solutions (xn, yn, zn) for (1).

�

For example, when k = 0, we have f(X) = X2 −X, then
xn = 6xn−1 − xn−2 − 8, x0 = 1, x1 = 0;

yn = 6yn−1 − yn−2 − 2, y0 = 1, y1 = 4;

zn =
xn + yn

2
= 6zn−1 − zn−2 − 5, z0 = 1, z1 = 2.

Solving (2) seems difficult for the general case, fortunately, we find that for

f(X) = X2 − k2X, k ∈ Z+, (2) has infinitely many nontrivial positive integer

solutions, which mainly due to the transformation

z = k
y − x

2
⇐⇒ y = x +

2z

k
,

which is similar to the transformation

z =
x− y

2

for (1). Perhaps, the transformation is essential, since from the viewpoint of geo-

metry, (1) and (2) denote surfaces in the 3-dimensional space, the transformation

z = x−y
2 and z = k y−x

2 denote planes, the solutions of (1) and (2) mean that

there are infinitely many nontrivial positive integer points (x, y, z) on the planes

z = x−y
2 and z = k y−x

2 . However, it is difficult to finding more cases with this

transformation. In the following, we give the proof of theorem 2.

Proof of Theorem 2. For f(X) = X2 − k2X, let

y = x +
2z

k
,

by using Maple, we have
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f(x)f(y)− f(z2)

=
(kx2 − k3x + 2xz − k2z + kz2)(kx2 − k3x + 2xz − k2z − kz2)

k2
= 0.

Let kx2 − k3x + 2xz − k2z − kz2 = 0, then

(2kx + 2z − k3)2 − (k2 + 1)(2z)2 = k6.

Taking X = 2kx + 2z − k3, Y = 2z, we have

X2 − (k2 + 1)Y 2 = k6.

Since k2 + 1 is not a square, so we have infinitely integer solutions for this Pell

equation. An infinity of positive integer solutions are given by

Xn + Yn

√
k2 + 1

=
(
k(k2 + 2) + 2k

√
k2 + 1

)(
2k2 + 1 + 2k

√
k2 + 1

)n
, n ≥ 0,

leading to

Xn = (2k2 + 1)Xn−1 + 2k(k2 + 1)Yn−1, Yn = 2kXn−1 + (2k2 + 1)Yn−1.

Then
Xn = 2(2k2 + 1)Xn−1 −Xn−2, X0 = k(k2 + 2),

X1 = k(2k4 + 4k3 + 5k2 + 4k + 2);

Yn = 2(2k2 + 1)Yn−1 − Yn−2, Y0 = 2k,

Y1 = 2k(k + 1)(k2 + k + 1).

It is easy to prove that

Xn ≡ 0 (mod k), Yn ≡ 0 (mod 2k),

then xn ∈ Z, zn ∈ Z. Hence, we have{
xn = 2(2k2 + 1)xn−1 − xn−2 − 2k4, x0 = k2, x1 = k2(k2 + k + 1);

zn = 2(2k2 + 1)zn−1 − zn−2, z0 = k, z1 = k(k + 1)(k2 + k + 1).

Then

yn = xn +
2zn
k

= 2(2k2 + 1)yn−1 − yn−2 − 2k4,

y0 = k2 + 2, y1 = (k2 + k + 1)(k2 + 2k + 2).

Therefore, we have infinitely many nontrivial positive integer solutions (xn, yn, zn)

for (2) when f(X) = X2 − k2X. �
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For example, when k = 1, we have f(X) = X2 −X, then
xn = 6xn−1 − xn−2 − 2, x0 = 1, x1 = 3;

zn = 6zn−1 − zn−2, z0 = 1, z1 = 6;

yn = xn + 2zn = 6yn−1 − yn−2 − 2, y0 = 3, y1 = 15.

Remark 2.1. For f(X) ∈ Q[X] we give another example of (2), i.e.,

f(X) =
X(X − 1)

2
=

(
X

2

)
,

let

y = x + 3z ⇐⇒ z =
y − x

3
,

this transformation is similar to the transformation for (1), then

f(x)f(y)− f(z2) =
(x2 − x + 4xz − 2z + 2z2)(x2 − x + 2xz − z − z2)

4
= 0.

It’s easy to show that x2 − x + 4xz − 2z + 2z2 = 0 has infinitely many nontrivial

positive integer solutions, then (2) has infinitely many nontrivial positive integer

solutions for f(X) =
(
X
2

)
.

Motivated by this, we consider a generalized case for f(X) ∈ Q[X], let

f(X) =
X2 − k2X

l
, k, l ∈ Z+,

when l = 1, it is the case of theorem 2. Let y = kz + k2 or y = kz, we have

f(x)f(y)− f(z2) =
z(z + k)(k2x2 − xk4 + lkz − lz2)

l2
= 0,

or

f(x)f(y)− f(z2) =
z(z − k)(k2x2 − xk4 − lkz − lz2)

l2
= 0.

Consider k2x2−xk4 + lkz− lz2 = 0 or k2x2−xk4− lkz− lz2 = 0, when l is not a

square, we can get infinitely many nontrivial positive integer solutions of (2) for

suitable l with k ∈ Z+.

We have considered some cases for the reducible case, in the following we

study the irreducible case, by the help of the computer we just get the case for

f(X) = X2 + X + 1, and the transformation is the same as for (1).
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Proof of Theorem 3. For f(X) = X2 + X + 1, let

y = x + 2z ⇐⇒ z =
y − x

2
,

by using Maple, we have

f(x)f(y)− f(z2) = (x + z)(x + z + 1)(x2 + 2xz + x + z + 2− z2) = 0.

Let x2 + 2xz + x + z + 2− z2 = 0, then

(2x + 2z + 1)2 − 2(2z)2 = −7.

Take X = 2x + 2z + 1, Z = 2z, we have

X2 − 2Z2 = −7.

An infinity of positive integer solutions are given by

Xn + Zn

√
2 =

(
1 + 2

√
2
)(

3 + 2
√

2
)n

, n ≥ 0,

leading to Xn = 3Xn−1 + 4Zn−1, Zn = 2Xn−1 + 3Zn−1. Then{
Xn = 6Xn−1 −Xn−2, X0 = 1, X1 = 11;

Zn = 6Zn−1 − Zn−2, Z0 = 2, Z1 = 8.

It is easy to prove that Xn ≡ 1 (mod 2), Zn ≡ 0 (mod 2), then xn ∈ Z, zn ∈ Z.

Hence, we have {
xn = 6xn−1 − xn−2, x0 = −1, x1 = 1;

zn = 6zn−1 − zn−2 − 2, z0 = 1, z1 = 4.

Then

yn = xn + 2zn = 6yn−1 − yn−2 − 4, y0 = 1, y1 = 9.

Therefore, we have infinitely many nontrivial positive integer solutions (xn, yn, zn)

for (2). �

Remark 2.2. We search the integer solutions for (2) by computer for some

simple cases when f(X) is irreducible, such as X2 + 1, X2−X + 1, X2− 4X + 1,

and just find a few solutions, but for X2 − 3X + 1 we can get infinitely many

trivial positive integer solutions, which is not interest. Maybe, (2) has infinitely

many nontrivial positive integer solutions for some irreducible polynomials with

parametric solutions, but it’s too complicated to find them.
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For the quadratic, the results for (2) is not rich, and for the cubic we just

have the theorem for f(X) = X3 −X. In fact, this result is a particular case of

the authors’ other paper, which is the initial mind which related to this problem.

Proof of Theorem 4. For f(X) = X3 −X, let

y = x + z ⇐⇒ z = y − x,

this is also a similar transformation, by using Maple, we get

f(x)f(y)−f(z2) = (x2−z2+xz−1)(x4+2x3z−x2+2x2z2−xz+xz3−z2+z4) = 0.

We only consider x2 − z2 + xz − 1 = 0, then

(2x + z)2 − 5z2 = 4.

Let X = 2x + z, Z = z, we have

X2 − 5Z2 = 4.

An infinity of positive integer solutions are given by

Xn + Yn

√
5 =

(
3 +
√

5
)(

9 + 4
√

5
)n

, n ≥ 0,

leading to Xn = 9Xn−1 + 20Zn−1, Zn = 4Xn−1 + 9Zn−1. Then{
Xn = 18Xn−1 −Xn−2, X0 = 3, X1 = 47;

Zn = 18Zn−1 − Zn−2, Z0 = 1, Z1 = 21.

It ia easy to prove that Xn ≡ 1 (mod 2), Zn ≡ 1 (mod 2), xn ∈ Z. Hence, we

have {
xn = 18xn−1 − xn−2, x0 = 1, x1 = 13;

zn = 18zn−1 − zn−2 − 2, z0 = 1, z1 = 21.

Then

yn = xn + zn = 18yn−1 − yn−2 − 2, y0 = 2, y1 = 34.

Therefore, we have infinitely many nontrivial positive integer solutions (xn, yn, zn)

for (2). �

In fact, the Pell equation X2 − 5Z2 = 4 is related to the Fibonacci numbers

and Lucas numbers. We have the fundamental identity (c.f. [4] p. 61)

L2
n = 5F 2

n + 4(−1)n.
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Let n = 2k, we have L2
2k − 5F 2

2k = 4, then

2xk + zk = L2k, zk = F2k.

Hence {
xk = (L2k − F2k)/2 = F2k−1,

yk = F2k−1 + F2k = F2k+1.

Remark 2.3. For f(X) = Xk − 1, k ≥ 3, it’s easy to see that (2) has no

nontrivial integer solutions, since Bennett [1] showed that: The equation (xk−1)

(yk − 1) = zk − 1 has only the integer solutions (x, y, z, k) = (−1, 4,−5, 3) and

(4,−1,−5, 3) with |z| ≥ 2 and k ≥ 3. However, we don’t find an example which

has infinitely many nontrivial positive integer solutions for (2) with deg(f) ≥ 4.

3. Rational solutions for (2)

In 2007, Ulas [7] consider (1) for the solutions in Q(t), where t is a parameter.

Similarly, we can study (2) for the solutions in Q(t), but we don’t get the similar

results as in [7], and just get some results for the reducible case when f(X) is a

quadratic. In this section, we give the proof of Theorem 5.

Proof of Theorem 5. For f(X) = X2 − kX, k ∈ Z − {0}, form (2) we

have

x(x− k)y(y − k) = z2(z2 − k),

let

z2 = xy, z2 − k = (x− k)(y − k),

leading to x + y = k + 1, then

z2 + x2 − (k + 1)x = 0.

Taking z = tx, we get

x =
k + 1

t2 + 1
,

leading to

y =
t2(k + 1)

t2 + 1
, z =

t(k + 1)

t2 + 1
.

Hence, we have infinitely many nontrivial positive rational solutions

(x, y, z) =

(
k + 1

t2 + 1
,
t2(k + 1)

t2 + 1
,
t(k + 1)

t2 + 1

)
for (2) where t is a parameter. �
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Remark 3.1. In fact, we can get the same result for f(X) = (X−a)(X−b) for

suitable a and b. But for the irreducible case with deg(f) = 2 and the polynomials

with deg(f) ≥ 3 except f(X) = X3 − X, we can’t say anything. We hope that

there are some special cases which have infinitely many nontrivial positive rational

solutions for (2).

4. Some related questions

The results presented in the previous sections are very limited, maybe the

method is powerful but not suitable for as many as cases, it seems this problem

related to geometry, and some methods of geometry is needed. In the end, we

raise some questions for f(x)f(y) = f(z2).

Question 4.1. Does there exist infinitely many irreducible quadratic f(X) ∈
Q[X] such that (2) has infinitely many nontrivial positive integer or rational

solutions?

Question 4.2. Does there exist infinitely many f(X) ∈ Q[X] with deg(f) = 3

such that (2) has infinitely many nontrivial positive integer or rational solutions?

Question 4.3. Does there exist a polynomial f(X) ∈ Q[X] with deg(f) ≥ 4

such that (2) has infinitely many nontrivial positive integer or rational solutions?
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