Title: On the counting function of Stanley sequences
Author(s): Li-Xia Dai and Yong-Gao Chen
For a finite sequence $A=\left\{a_{1}<a_{2}<\cdots<a_{t}\right\}$ of nonnegative integers which contains no 3 -term arithmetic progression, the Stanley sequence S generated by A is defined as follows: for $k \geq t, a_{k+1}$ is the least integer $a>a_{k}$ such that $\left\{a_{1}, a_{2}, \ldots, a_{k}, a\right\}$ contains no 3 -term arithmetic progression. Recently, Moy proved that $\lim \inf S(x) / \sqrt{x} \geq \sqrt{2}$, which solves a problem posed by Erdős et al., where $S(x)$ is the counting function of S. In this note we show that $\lim \sup S(x) / \sqrt{x} \geq 1.77$.

Address:

Li-Xia Dai

School of Mathematical Sciences
and Institute of Mathematics
Nanjing Normal University
Nanjing 210046
P.R. CHINA

Address:

Yong-Gao Chen
School of Mathematical Sciences
and Institute of Mathematics
Nanjing Normal University
Nanjing 210046
P.R. CHINA

