On the counting function of Stanley sequences

By LI-XIA DAI (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract

For a finite sequence $A=\left\{a_{1}<a_{2}<\cdots<a_{t}\right\}$ of nonnegative integers which contains no 3 -term arithmetic progression, the Stanley sequence S generated by A is defined as follows: for $k \geq t, a_{k+1}$ is the least integer $a>a_{k}$ such that $\left\{a_{1}, a_{2}, \ldots, a_{k}, a\right\}$ contains no 3-term arithmetic progression. Recently, Moy proved that $\lim \inf S(x) / \sqrt{x} \geq \sqrt{2}$, which solves a problem posed by Erdős et al., where $S(x)$ is the counting function of S. In this note we show that $\lim \sup S(x) / \sqrt{x} \geq 1.77$.

1. Introduction

Let \mathbb{N}_{0} denote the set of nonnegative integers. For a finite set $A=\left\{a_{1}<\right.$ $\left.a_{2}<\cdots<a_{t}\right\} \subset \mathbb{N}_{0}$ which contains no 3-term arithmetic progression, we denote by $S=\left\{a_{1}, a_{2}, \ldots\right\}$ the sequence defined by the following recursion: if $k \geq t$ and a_{1}, \ldots, a_{k} have been defined, let a_{k+1} be the smallest integer $a>a_{k}$ such that $\left\{a_{1}, \ldots, a_{k}\right\} \cup\{a\}$ contains no 3 -term arithmetic progression. This sequence is called the Stanley sequence generated by A. Stanley sequence were considered, for instance, in [1]-[5].

Recently Moy [3] proved that for any $\varepsilon>0$ and $x \geq x_{0}(\varepsilon, A)$,

$$
S(x) \geq(\sqrt{2}-\varepsilon) \sqrt{x}
$$

[^0]This solved a problem posed by Erdős et al. [1]. That means

$$
\liminf _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}} \geq \sqrt{2}
$$

In this note we study

$$
\limsup _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}}
$$

We have the following results:
Theorem 1. For a given finite set $A \subset \mathbb{N}_{0}$ containing no 3-term arithmetic progression, let S be the Stanley sequence generated by A and $S(x)$ be its counting function. Then

$$
\limsup _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}} \geq 1 / \sqrt{\tau}>1.77
$$

where τ is the maximum value of

$$
\frac{t}{2 \sqrt{2}} \log \left(\sqrt{2 t^{2}-1}+\sqrt{2 t^{2}}\right)+\frac{1}{2} t^{2}\left(1-\sqrt{2 t^{2}-1}\right)
$$

on $[1 / \sqrt{2}, 1]$.
We also pose the following problems.
Problem 1. Is there any finite set $A \subset \mathbb{N}_{0}$ containing no 3-term arithmetic progression such that

$$
\limsup _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}}<+\infty ?
$$

Problem 2. Is there any finite set $A \subset \mathbb{N}_{0}$ containing no 3-term arithmetic progression such that

$$
\liminf _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}}<+\infty ?
$$

2. Proof of the theorem

As in [3], define

$$
H(S, n)=\left|\left\{\left(a_{i}, a_{j}\right): i<j, n=2 a_{j}-a_{i}\right\}\right|
$$

Lemma 1 ([3, Lemma 2.3]). We have

$$
\sum_{0 \leq n \leq x} H(S, n) \geq x-S(x)-\max A
$$

Proof of Theorem 1. Let

$$
\alpha=\liminf _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}}, \quad \beta=\limsup _{x \rightarrow \infty} \frac{S(x)}{\sqrt{x}}, \quad t=\frac{\alpha}{\beta} .
$$

We assume that $\beta<2$ as otherwise the assertion is immediate, and notice that then, in view of Moy's result, $t>\sqrt{2} / 2$, whence $0<2 t^{2}-1 \leq 1$ which will be used later.

Fix $\varepsilon \in(0,1)$ and find a positive integer x_{0} such that for any $x \geq x_{0}$ we have

$$
(\alpha-\varepsilon) \sqrt{x}<S(x)<(\beta+\varepsilon) \sqrt{x}
$$

For the rest of the proof we assume that x runs over a strictly increasing sequence of positive integers such that

$$
S(x)=(\alpha+o(1)) \sqrt{x}
$$

The crucial observation (originating from Moy's paper) is that every sufficiently large integer is either in S or the largest term of a three-term arithmetic progression having its two smallest terms in S. Hence, the number of such progressions with the largest term not exceeding x is at least $x+o(x)$. Noticing that the smallest term of such a progression s and its second smallest term t satisfy $2 t-s \leq x$, we conclude that

$$
\begin{align*}
x+o(x) \leq \sum_{\substack{s, t \in S \\
s<t \leq(x+s) / 2}} 1 & =\sum_{\substack{s \in S \\
s \leq x}}\left(S\left(\frac{x+s}{2}\right)-S(s)\right) \\
& =\sum_{\substack{s \in S \\
s \leq x}} S\left(\frac{x+s}{2}\right)-\frac{1}{2} S(x)(S(x)-1) \\
& =\sum_{\substack{s \in S \\
s \leq x}} S\left(\frac{x+s}{2}\right)-\frac{1}{2} \alpha^{2} x+o(x) \tag{1}
\end{align*}
$$

To estimate the sum in the right-hand side we use partial summation:

$$
\begin{aligned}
\sum_{\substack{s \in S \\
s \leq x}} S\left(\frac{x+s}{2}\right) & =\sum_{s \leq x} S\left(\frac{x+s}{2}\right)(S(s)-S(s-1)) \\
& =S(x)^{2}-\sum_{s \leq x-1}\left(S\left(\frac{x+s+1}{2}\right)-S\left(\frac{x+s}{2}\right)\right) S(s)
\end{aligned}
$$

$$
\begin{align*}
& \leq S(x)^{2}-(\alpha-\varepsilon) \sum_{x_{0} \leq s \leq x}\left(S\left(\frac{x+s+1}{2}\right)-S\left(\frac{x+s}{2}\right)\right) \sqrt{s} \\
& \leq S(x)^{2}-(\alpha-\varepsilon) S(x) \sqrt{x}+(\alpha-\varepsilon) S\left(\left(x+x_{0}\right) / 2\right) \sqrt{x_{0}-1} \\
& \quad+(\alpha-\varepsilon) \sum_{x_{0} \leq s \leq x} S\left(\frac{x+s}{2}\right)(\sqrt{s}-\sqrt{s-1}) \\
&=(\alpha-\varepsilon) \sum_{x_{0} \leq s \leq x} S\left(\frac{x+s}{2}\right)(\sqrt{s}-\sqrt{s-1})+O(\varepsilon x) \tag{2}
\end{align*}
$$

Now we split the last sum into two parts $s>\gamma x$ and $x_{0} \leq s \leq \gamma x$, where γ will be chosen later to obtain the optimal splitting point. The part of the last sum corresponding to $s>\gamma x$ can be estimated by

$$
\begin{equation*}
\sum_{\gamma x<s \leq x} S(x)(\sqrt{s}-\sqrt{s-1})=S(x)(\sqrt{x}-\sqrt{[\gamma x]})=\alpha(1-\sqrt{\gamma}) x+o(x) \tag{3}
\end{equation*}
$$

For the remaining part of the sum, we have

$$
\begin{align*}
& \sum_{x_{0} \leq s \leq \gamma x} S\left(\frac{x+s}{2}\right)(\sqrt{s}-\sqrt{s-1}) \leq \frac{\beta+\varepsilon}{\sqrt{2}} \sum_{x_{0} \leq s \leq \gamma x} \sqrt{x+s}\left(\frac{1}{2 \sqrt{s}}+O\left(\frac{1}{s}\right)\right) \\
& \quad \leq \frac{\beta+\varepsilon}{2 \sqrt{2}} \sum_{1 \leq s \leq \gamma x} \sqrt{1+\frac{x}{s}}+o(x) \leq \frac{\beta+\varepsilon}{2 \sqrt{2}} \int_{1}^{\gamma x} \sqrt{1+\frac{x}{t}} d t+o(x) \\
& \quad \leq \frac{\beta+\varepsilon}{2 \sqrt{2}} x \int_{0}^{\gamma} \sqrt{1+\frac{1}{t}} d t+o(x) \\
& \quad \leq \frac{\beta+\varepsilon}{2 \sqrt{2}}(\sqrt{\gamma(\gamma+1)}+\log (\sqrt{\gamma}+\sqrt{\gamma+1})) x+o(x) . \tag{4}
\end{align*}
$$

From (1)-(4) we get
$(\alpha-\varepsilon)\left(\alpha(1-\sqrt{\gamma})+\frac{\beta+\varepsilon}{2 \sqrt{2}}(\sqrt{\gamma(\gamma+1)}+\log (\sqrt{\gamma}+\sqrt{\gamma+1}))\right)-\frac{1}{2} \alpha^{2}+O(\varepsilon) \geq 1$,
and furthermore, since ε can be chosen arbitrarily small,

$$
\left(\frac{1}{2}-\sqrt{\gamma}\right) \alpha^{2}+\frac{\alpha \beta}{2 \sqrt{2}}(\sqrt{\gamma(\gamma+1)}+\log (\sqrt{\gamma}+\sqrt{\gamma+1})) \geq 1
$$

Dividing through by β^{2}, we derive that

$$
\beta^{-2} \leq\left(\frac{1}{2}-\sqrt{\gamma}\right) t^{2}+\frac{t}{2 \sqrt{2}}(\sqrt{\gamma(\gamma+1)}+\log (\sqrt{\gamma}+\sqrt{\gamma+1}))
$$

For a fixed $t \in(\sqrt{2} / 2,1]$, the right-hand side takes its minimal value at $\gamma=2 t^{2}-1$. So we choose $\gamma=2 t^{2}-1$. Then

$$
\beta^{-2} \leq \frac{t}{2 \sqrt{2}} \log \left(\sqrt{2 t^{2}-1}+\sqrt{2 t^{2}}\right)+\frac{1}{2} t^{2}\left(1-\sqrt{2 t^{2}-1}\right)
$$

This establishes the estimate $\beta \geq 1 / \sqrt{\tau}$, and numerical investigation shows that $\tau<0.318214$, implying $1 / \sqrt{\tau}>1.77$.

This completes the proof of Theorem 1.
Acknowledgements. We are grateful to the referees for their comments which lead an improvement to our result of the first manuscript.

References

[1] P. Erdős, V. Lev, G. Rauzy, C. SÁndor and A. Sárközy, Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Math. 200 (1999), 119-135.
[2] J. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp. 33 (1979), 1353-1359.
[3] R. A. Moy, On the growth of the counting function of Stanley sequences, Discrete Math. 311 (2011), 560-562.
[4] A. M. Odlyzko and R. P. Stanley, Some curious sequences constructed with the greedy algorithm, Bell Laboratories Internal Memorandum, 1978.
[5] S. Savchev and F. Chen, A note on maximal progression-free sets, Discrete Math. 306 (2006), 2131-2133.

LI-XIA DAI
SCHOOL OF MATHEMATICAL SCIENCES
AND INSTITUTE OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210046
P.R. CHINA

E-mail: lilidainjnu@163.com
YONG-GAO CHEN
SCHOOL OF MATHEMATICAL SCIENCES
AND INSTITUTE OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210046
P.R. CHINA

E-mail: ygchen@njnu.edu.cn

[^0]: Mathematics Subject Classification: 11B25, 11B13.
 Key words and phrases: Greedy algorithm; Stanley sequences;Progression-free sets.
 Supported by National Natural Science Foundation of China, (Grant Nos. 10801075 and 11071121) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No.08KJB11007).

