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On the counting function of Stanley sequences

By LI-XIA DAI (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract. For a finite sequence A = {a1 < a2 < · · · < at} of nonnegative integers

which contains no 3-term arithmetic progression, the Stanley sequence S generated

by A is defined as follows: for k ≥ t, ak+1 is the least integer a > ak such that

{a1, a2, . . . , ak, a} contains no 3-term arithmetic progression. Recently, Moy proved

that lim inf S(x)/
√
x ≥

√
2, which solves a problem posed by Erdős et al., where S(x)

is the counting function of S. In this note we show that lim supS(x)/
√
x ≥ 1.77.

1. Introduction

Let N0 denote the set of nonnegative integers. For a finite set A = {a1 <
a2 < · · · < at} ⊂ N0 which contains no 3-term arithmetic progression, we denote

by S = {a1, a2, . . . } the sequence defined by the following recursion: if k ≥ t and

a1, . . . , ak have been defined, let ak+1 be the smallest integer a > ak such that

{a1, . . . , ak} ∪ {a} contains no 3-term arithmetic progression. This sequence is

called the Stanley sequence generated by A. Stanley sequence were considered, for

instance, in [1]–[5].

Recently Moy [3] proved that for any ε > 0 and x ≥ x0(ε,A),

S(x) ≥ (
√

2− ε)
√
x.
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This solved a problem posed by Erdős et al. [1]. That means

lim inf
x→∞

S(x)√
x
≥
√

2.

In this note we study

lim sup
x→∞

S(x)√
x
.

We have the following results:

Theorem 1. For a given finite set A ⊂ N0 containing no 3-term arithmetic

progression, let S be the Stanley sequence generated by A and S(x) be its counting

function. Then

lim sup
x→∞

S(x)√
x
≥ 1/

√
τ > 1.77,

where τ is the maximum value of

t

2
√

2
log
(√

2t2 − 1 +
√

2t2
)

+
1

2
t2
(
1−

√
2t2 − 1

)
on [1/

√
2, 1].

We also pose the following problems.

Problem 1. Is there any finite set A ⊂ N0 containing no 3-term arithmetic

progression such that

lim sup
x→∞

S(x)√
x
< +∞?

Problem 2. Is there any finite set A ⊂ N0 containing no 3-term arithmetic

progression such that

lim inf
x→∞

S(x)√
x
< +∞?

2. Proof of the theorem

As in [3], define

H(S, n) = |{(ai, aj) : i < j, n = 2aj − ai}|.

Lemma 1 ([3, Lemma 2.3]). We have∑
0≤n≤x

H(S, n) ≥ x− S(x)−maxA.
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Proof of Theorem 1. Let

α = lim inf
x→∞

S(x)√
x
, β = lim sup

x→∞

S(x)√
x
, t =

α

β
.

We assume that β < 2 as otherwise the assertion is immediate, and notice that

then, in view of Moy’s result, t >
√

2/2, whence 0 < 2t2 − 1 ≤ 1 which will be

used later.

Fix ε ∈ (0, 1) and find a positive integer x0 such that for any x ≥ x0 we have

(α− ε)
√
x < S(x) < (β + ε)

√
x.

For the rest of the proof we assume that x runs over a strictly increasing sequence

of positive integers such that

S(x) = (α+ o(1))
√
x.

The crucial observation (originating from Moy’s paper) is that every suffici-

ently large integer is either in S or the largest term of a three-term arithmetic

progression having its two smallest terms in S. Hence, the number of such prog-

ressions with the largest term not exceeding x is at least x+ o(x). Noticing that

the smallest term of such a progression s and its second smallest term t satisfy

2t− s ≤ x, we conclude that

x+ o(x) ≤
∑
s,t∈S

s<t≤(x+s)/2

1 =
∑
s∈S
s≤x

(
S

(
x+ s

2

)
− S(s)

)

=
∑
s∈S
s≤x

S

(
x+ s

2

)
− 1

2
S(x)(S(x)− 1)

=
∑
s∈S
s≤x

S

(
x+ s

2

)
− 1

2
α2x+ o(x). (1)

To estimate the sum in the right-hand side we use partial summation:

∑
s∈S
s≤x

S

(
x+ s

2

)
=
∑
s≤x

S

(
x+ s

2

)
(S(s)− S(s− 1))

= S(x)2 −
∑
s≤x−1

(
S

(
x+ s+ 1

2

)
− S

(
x+ s

2

))
S(s)
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≤ S(x)2 − (α− ε)
∑

x0≤s≤x

(
S

(
x+ s+ 1

2

)
− S

(
x+ s

2

))√
s

≤ S(x)2 − (α− ε)S(x)
√
x+ (α− ε)S((x+ x0)/2)

√
x0 − 1

+ (α− ε)
∑

x0≤s≤x

S

(
x+ s

2

)
(
√
s−
√
s− 1)

= (α− ε)
∑

x0≤s≤x

S

(
x+ s

2

)
(
√
s−
√
s− 1) +O(εx). (2)

Now we split the last sum into two parts s > γx and x0 ≤ s ≤ γx, where γ will

be chosen later to obtain the optimal splitting point. The part of the last sum

corresponding to s > γx can be estimated by∑
γx<s≤x

S(x)
(√
s−
√
s− 1

)
= S(x)

(√
x−

√
[γx]

)
= α

(
1−√γ

)
x+ o(x). (3)

For the remaining part of the sum, we have∑
x0≤s≤γx

S

(
x+ s

2

)(√
s−
√
s− 1

)
≤ β + ε√

2

∑
x0≤s≤γx

√
x+ s

(
1

2
√
s

+O

(
1

s

))

≤ β + ε

2
√

2

∑
1≤s≤γx

√
1 +

x

s
+ o(x) ≤ β + ε

2
√

2

∫ γx

1

√
1 +

x

t
dt+ o(x)

≤ β + ε

2
√

2
x

∫ γ

0

√
1 +

1

t
dt+ o(x)

≤ β + ε

2
√

2

(√
γ(γ + 1) + log

(√
γ +

√
γ + 1

))
x+ o(x). (4)

From (1)–(4) we get

(α−ε)
(
α
(
1−√γ

)
+
β + ε

2
√

2

(√
γ(γ + 1) + log

(√
γ +

√
γ + 1

)))
−1

2
α2+O(ε) ≥ 1,

and furthermore, since ε can be chosen arbitrarily small,(
1

2
−√γ

)
α2 +

αβ

2
√

2

(√
γ(γ + 1) + log

(√
γ +

√
γ + 1

))
≥ 1.

Dividing through by β2, we derive that

β−2 ≤
(

1

2
−√γ

)
t2 +

t

2
√

2

(√
γ(γ + 1) + log

(√
γ +

√
γ + 1

))
.
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For a fixed t ∈ (
√

2/2, 1], the right-hand side takes its minimal value at γ = 2t2−1.

So we choose γ = 2t2 − 1. Then

β−2 ≤ t

2
√

2
log
(√

2t2 − 1 +
√

2t2
)

+
1

2
t2
(
1−

√
2t2 − 1

)
.

This establishes the estimate β ≥ 1/
√
τ , and numerical investigation shows that

τ < 0.318214, implying 1/
√
τ > 1.77.

This completes the proof of Theorem 1. �
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