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Lagrangian submanifolds in complex space forms satisfying
an improved equality involving δ(2, 2)

By BANG-YEN CHEN (East Lansing), ALICIA PRIETO-MARTÍN (Sevilla)
and XIANFENG WANG (Tianjin)

Abstract. It was proved in [8], [9] that every Lagrangian submanifold M of a

complex space form M̃5(4c) of constant holomorphic sectional curvature 4c satisfies the

following optimal inequality:

δ(2, 2) ≤ 25

4
H2 + 8c, (A)

where H2 is the squared mean curvature and δ(2, 2) is a δ-invariant on M introduced by

the first author. This optimal inequality improves a special case of an earlier inequality

obtained in [B.-Y. Chen, Japan. J. Math. 26 (2000), 105–127].

The main purpose of this paper is to classify Lagrangian submanifolds of M̃5(4c)

satisfying the equality case of the improved inequality (A).

1. Introduction

Let M̃n be a Kähler n-manifold with the complex structure J , a Kähler

metric g and the Kähler 2-form ω. An isometric immersion ψ : M → M̃n of a

Riemannian n-manifold M into M̃n is called Lagrangian if ψ∗ω = 0.

Mathematics Subject Classification: Primary: 53C40; Secondary 53D12.
Key words and phrases: Lagrangian submanifold, improved inequality, δ-invariants, ideal sub-

manifolds, H-umbilical Lagrangian submanifold.
A portion of this work was done while the second author was visiting Michigan State University
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Let M̃n(4c) denote a Kähler n-manifold with constant holomorphic sectional

curvature 4c, called a complex space form. A complete simply-connected complex

space form M̃n(4c) is holomorphically isometric to the complex Euclidean n-plane

Cn, the complex projective n-space CPn(4c), or a complex hyperbolic n-space

CHn(4c) according to c = 0, c > 0 or c < 0, respectively.

B.-Y. Chen introduced in 1990s new Riemannian invariants δ(n1, . . . , nk).

For any n-dimensional submanifold M in a real space form Rm(c) of constant

curvature c, he proved the following sharp general inequality (see [5], [7] for de-

tails):

δ(n1, . . . , nk)≤ n2(n+ k−1−
∑
nj)

2(n+ k −
∑
nj)

H2+
1

2

(
n(n− 1)−

k∑
j=1

nj(nj− 1)
)
c. (1.1)

For Lagrangian submanifolds in a complex space form M̃n(4c), we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a com-

plex space form M̃n(4c) of constant holomorphic sectional curvature 4c. Then

inequality (1.1) holds for each k-tuple (n1, . . . , nk) ∈ S(n).

The following result from [6] extends a result in [10] on δ(2).

Theorem B. Every Lagrangian submanifold of a complex space form M̃n(4c)

is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8], [9] to the following inequality.

Theorem C. LetM be an n-dimensional Lagrangian submanifold of M̃n(4c).

Then, for an (n1, . . . , nk) ∈ S(n) with
∑k
i=1 ni < n, we have

δ(n1, . . . , nk) ≤
n2
{(
n−

∑k
i=1 ni + 3k − 1

)
− 6

∑k
i=1(2 + ni)

−1}
2
{(
n−

∑k
i=1 ni + 3k + 2

)
− 6

∑k
i=1(2 + ni)−1

} H2

+
1

2

{
n(n− 1)−

k∑
i=1

ni(ni − 1)
}
c. (1.2)

The equality sign holds at a point p ∈M if and only if there is an orthonormal

basis {e1, . . . , en} at p such that the second fundamental form h satisfies

h(eαi , eβi) =
∑
γi

hγiαiβiJeγi +
3δαiβi
2 + ni

λJeN+1,

ni∑
αi=1

hγiαiαi = 0,

h(eαi , eαj ) = 0, i 6= j; h(eαi , eN+1) =
3λ

2 + ni
Jeαi , h(eαi , eu) = 0,
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h(eN+1, eN+1) = 3λJeN+1, h(eN+1, eu) = λJeu, N = n1 + · · ·+ nk,

h(eu, ev) = λδuvJeN+1, i, j = 1, . . . , k; u, v = N + 2, . . . , n. (1.3)

For simplicity, we call a Lagrangian submanifold of a complex space form

δ(n1, . . . , nk)-ideal (resp., improved δ(n1, . . . , nk)-ideal) if it satisfies the equality

case of (1.1) (resp., the equality case of (1.2)) identically.

For k = 2 and n1 = n2 = 2, Theorem C reduces to the following.

Theorem D. Let M be a Lagrangian submanifold in a complex space form

M̃5(4c) of constant holomorphic sectional curvature 4c. Then we have

δ(2, 2) ≤ 25

4
H2 + 8c. (1.4)

If the equality sign of (1.4) holds identically, then with respect some suitable

orthonormal frame {e1, . . . , e5} the second fundamental form h satisfies

h(e1, e1) = αJe1 + βJe2 + µJe5, h(e1, e2) = βJe1 − αJe2,

h(e2, e2) = −αJe1 − βJe2 + µJe5,

h(e3, e3) = γJe3 + δJe4 + µJe5, h(e3, e4) = δJe3 − γJe4,

h(e4, e4) = −γJe3 − δJe4 + µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆; h(ei, ej) = 0, otherwise, (1.5)

for some functions α, β, γ, δ, µ, where ∆ = {1, 2, 3, 4}.

The classification of δ(2, 2)-ideal Lagrangian submanifolds in complex space

forms M̃5(4c) is done in [13]. In this paper we classify improved δ(2, 2)-ideal

Lagrangian submanifolds in M̃5(4c). The main results of this paper are stated as

Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let M̃n(4c) denote a complete simply-connected Kähler

n-manifold with constant holomorphic sectional curvature 4c. Then M̃n(4c) is

holomorphically isometric to the complex Euclidean n-plane Cn, the complex pro-

jective n-space CPn(4c), or a complex hyperbolic n-space CHn(−4c) according

to c = 0, c > 0 or c < 0.
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Let M be a Lagrangian submanifold of M̃n(4c). We denote the Levi–Civita

connections of M and M̃n(4c) by ∇ and ∇̃, respectively. The formulas of Gauss

and Weingarten are given respectively by (cf. [7])

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +DXξ, (2.1)

for tangent vector fields X and Y and normal vector fields ξ, where h is the second

fundamental form, A is the shape operator and D is the normal connection.

The second fundamental form and the shape operator are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉.

The mean curvature vector
−→
H of M is defined by

−→
H = 1

n trace h and the squared

mean curvature is given by H2 =
〈−→
H,
−→
H
〉
.

For Lagrangian submanifolds, we have (cf. [7], [12])

DXJY = J∇XY, (2.2)

AJXY = −Jh(X,Y ) = AJYX. (2.3)

Formula (2.3) implies that 〈h(X,Y ), JZ〉 is totally symmetric.

The equations of Gauss and Codazzi are given respectively by

〈R(X,Y )Z,W 〉 = 〈Ah(Y,Z)X,W 〉 − 〈Ah(X,Z)Y,W 〉
+ c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉), (2.4)

(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.5)

where R is the curvature tensor of M and ∇h is defined by

(∇Xh)(Y,Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.6)

For an orthonormal basis {e1, . . . , en} of TpM , we put

hijk = 〈h(ej , ek), Jei〉, i, j, k = 1, . . . , n.

It follows from (2.3) that hijk = hjik = hkij .
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2.2. δ-invariants. Let M be a Riemannian n-manifold. Denote by K(π) the

sectional curvature of a plane section π ⊂ TpM , p ∈ M . For any orthonormal

basis e1, . . . , en of TpM , the scalar curvature τ at p is τ(p) =
∑
i<j K(ei ∧ ej).

Let L be a r-subspace of TpM with r ≥ 2 and {e1, . . . , er} an orthonormal

basis of L. The scalar curvature τ(L) of L is defined by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (2.7)

For given integers n ≥ 3, k ≥ 1, we denote by S(n, k) the finite set consisting

of k-tuples (n1, . . . , nk) of integers satisfying 2 ≤ n1, . . . , nk < n and
∑k
j=1 i ≤ n.

Put S(n) = ∪k≥1S(n, k). For each k-tuple (n1, . . . , nk) ∈ S(n), the first

author introduced in 1990s the Riemannian invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, p ∈M, (2.8)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that

dimLj = nj , j = 1, . . . , k (cf. [7] for details).

2.3. Horizontal lift of Lagrangian submanifolds. The following link be-

tween Legendrian submanifolds and Lagrangian submanifolds is due to [16] (see

also [7, pp. 247–248]).

Case (i): CPn(4). Consider Hopf’s fibration π : S2n+1 → CPn(4). For a given

point u ∈ S2n+1(1), the horizontal space at u is the orthogonal complement of

ıu, ı =
√
−1, with respect to the metric on S2n+1 induced from the metric on

Cn+1. Let ι : N → CPn(4) be a Lagrangian isometric immersion. Then there is

a covering map τ : N̂ → N and a horizontal immersion ι̂ : N̂ → S2n+1 such that

ι ◦ τ = π ◦ ι̂. Thus each Lagrangian immersion can be lifted locally (or globally

if N is simply-connected) to a Legendrian immersion of the same Riemannian

manifold. In particular, a minimal Lagrangian submanifold of CPn(4) is lifted to

a minimal Legendrian submanifold of the Sasakian S2n+1(1).

Conversely, suppose that f : N̂ → S2n+1 is a Legendrian isometric immer-

sion. Then ι = π ◦ f : N → CPn(4) is again a Lagrangian isometric immersion.

Under this correspondence the second fundamental forms hf and hι of f and ι

satisfy π∗h
f = hι. Moreover, hf is horizontal with respect to π.

Case (ii): CHn(−4). We consider the complex number space Cn+1
1 equipped

with the pseudo-Euclidean metric: g0 = −dz1dz̄1 +
∑n+1
j=2 dzjdz̄j .

Consider H2n+1
1 (−1) = {z ∈ C2n+1

1 : 〈z, z〉 = −1} with the canonical

Sasakian structure, where 〈 , 〉 is the induced inner product.
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Put T ′z = {u ∈ Cn+1 : 〈u, z〉 = 0}, H1
1 = {λ ∈ C : λλ̄ = 1}. Then there is an

H1
1 -action on H2n+1

1 (−1), z 7→ λz and at each point z ∈ H2n+1
1 (−1), the vector

ξ = −ız is tangent to the flow of the action. Since the metric g0 is Hermitian,

we have 〈ξ, ξ〉 = −1. The quotient space H2n+1
1 (−1)/ ∼, under the identification

induced from the action, is the complex hyperbolic space CHn(−4) with constant

holomorphic sectional curvature −4 whose complex structure J is induced from

the complex structure J on Cn+1
1 via Hopf’s fibration π : H2n+1

1 (−1)→ CHn(4c).

Just like case (i), suppose that ι : N → CHn(−4) is a Lagrangian immersion,

then there is an isometric covering map τ : N̂ → N and a Legendrian immersion

f : N̂ → H2n+1
1 (−1) such that ι ◦ τ = π ◦ f . Thus every Lagrangian immer-

sion into CHn(−4) an be lifted locally (or globally if N is simply-connected)

to a Legendrian immersion into H2n+1
1 (−1). In particular, Lagrangian mini-

mal submanifolds of CHn(−4) are lifted to Legendrian minimal submanifolds of

H2n+1
1 (−1). Conversely, if f : N̂ → H2n+1

1 (−1) is a Legendrian immersion, then

ι = π ◦f : N → CHn(−4) is a Lagrangian immersion. Under this correspondence

the second fundamental forms hf and hι are related by π∗h
f = hι. Also, hf is

horizontal with respect to π.

Let h be the second fundamental form of M in S2n+1(1) (or in H2n+1
1 (−1)).

Since S2n+1(1) and H2n+1
1 (−1) are totally umbilical with one as its mean curva-

ture in Cn+1 and in Cn+1
1 , respectively, we have

∇̂XY = ∇XY + h(X,Y )− εL, (2.9)

where ε = 1 if the ambient space is Cn+1; and ε = −1 if it is Cn+1
1 .

3. H-umbilical Lagrangian submanifolds and complex extensors

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kähler

n-manifold is called H-umbilical if its second fundamental form satisfies

h(ej , ej) = µJen, h(ej , en) = µJej , j = 1, . . . , n− 1,

h(en, en) = ϕJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1, (3.1)

for some functions µ, ϕ with respect to an orthonormal frame {e1, . . . , en}. If the

ratio of ϕ : µ is a constant r, the H-umbilical submanifold is said to be of ratio r.
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IfG : Nn−1 → En is a hypersurface of a Euclidean n-space En and γ : I → C∗

is a unit speed curve in C∗ = C − {0}, then we may extend G : Nn−1 → En to

an immersion I × Nn−1 → Cn by γ ⊗ G : I × Nn−1 → C ⊗ En = Cn, where

(γ ⊗G)(s, p) = F (s)⊗G(p) for s ∈ I, p ∈ Nn−1. This extension of G via tensor

product ⊗ is called the complex extensor of G via the generating curve γ.

H-umbilical Lagrangian submanifolds in complex space forms were classified

in a series of papers by the first author (cf. [2], [3], [4]). In particular, the following

two results were proved in [2].

Theorem E. Let ι : Sn−1 ⊂ En be the unit hypersphere in En centered at

the origin. Then every complex extensor of ι via a unit speed curve γ : I → C∗

is an H-umbilical Lagrangian submanifold of Cn unless γ is contained in a line

through the origin (which gives a totally geodesic Lagrangian submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of Cn with

n ≥ 3. Then M is either a flat space or congruent to an open part of a complex

extensor of ι : Sn−1 ⊂ En via a curve γ : I → C∗.

3.2. Legendre curves. A unit speed curve z : I → S3(1) ⊂ C2 (resp., z : I →
H3

1 (−1) ⊂ C2
1) is called Legendre if 〈z′, iz〉 = 0. It was proved in [3] that a unit

speed curve z in S3(1) (resp., in H3
1 (−1)) is Legendre if and only if it satisfies

z′′ = iλz′ − z (resp., z′′ = iλz′ + z) (3.2)

for a real-valued function λ. It is known in [3] that λ is the curvature function of

z in S3(1) (resp., in H3
1 (−1)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a general

method to construct H-umbilical Lagrangian submanifolds with any given ratio

in CPn(4) via curves in S2
(
1
2

)
(resp., in CHn(−4) via curves in H2(− 1

2 )).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian

submanifolds of ratio r in CPn(4) and in CHn(−4).

Proof. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r 6= 2,

H-umbilical Lagrangian submanifolds of ratio r can be constructed as follows:

Case (a): CPn(4). Let S2
(
1
2

)
=
{
x ∈ E3; 〈x,x〉 = 1

4

}
. The Hopf fibration

π from S3(1) onto S2
(
1
2

)
≡ CP 1(4) is given by (cf. [1])

π(z1, z2) =

(
z1z̄2,

1

2
(|z1|2 − |z2|2)

)
, (z1, z2) ∈ S3(1) ⊂ C2. (3.3)
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For a Legendre curve z in S3(1), the projection γz = π ◦ z is a curve in S2
(
1
2

)
.

Conversely, each curve γ in S2
(
1
2

)
gives rise to a horizontal lift γ̃ in S3(1) via π

which is unique up to a factor eiθ, θ ∈ R. Notice that each horizontal lift of γ is

a Legendre curve in S3(1). Moreover, since the Hopf fibration is a Riemannian

submersion, each unit speed Legendre curve z in S3(1) is projected to a unit speed

curve γz in S2
(
1
2

)
with the same curvature.

It was known in [3, Lemma 7.2] that, for a given H-umbilical Lagrangian

submanifold of ratio r 6= 2 in M̃n(4c), the function µ in (3.1) satisfies

µµ′′ −
(
r − 3

r − 2

)
µ′2 + (r − 2)µ2((r − 1)µ2 + c) = 0. (3.4)

If µ is a non-trivial solution of (3.4) with c = 1, then there is a unit speed

curve γ in S2
(
1
2

)
whose curvature equals to rµ. Let z be a horizontal lift of γ in

S3(1). Then z is a unit speed Legendre curve satisfying z′′(x) = irµz′(x)− z(x)

(cf. [3, Theorem 4.1] or [1, Lemma 3.1]).

Consider the map ψ : M5 → S11(1) ⊂ C6 defined by

ψ(x, y1, . . . , y5) = (z1(x), z2(x)y1, . . . , . . . , z2(x)y5),

5∑
j=1

y2j = 1. (3.5)

It follows from [3, Theorem 4.1 and Lemma 7.2] that π ◦ ψ is a H-umbilical

Lagrangian submanifold of ratio r in CPn(4) such that

h(ej , ej) = µJe5, h(ej , en) = Jej ,

h(en, en) = rµJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1, (3.6)

with respect to suitable orthonormal frame {e1, . . . , e5}.

Case (b): CHn(−4). For a non-trivial solution of (3.4) with c = −1, we

can construct an H-umbilical Lagrangian submanifold of CHn(−4) via the Hopf

fibration π : H3
1 (−1)→ CH1(−4) ≡ H2

(
− 1

2

)
in a similar way as case (a), where

π(z1, z2) =

(
z1z̄2,

1

2
(|z1|2 + |z2|2)

)
, (z1, z2) ∈ H3

1 (−1) ⊂ C2
1, (3.7)

and H2
(
− 1

2

)
=
{

(x1, x2, x3) ∈ E3
1 : x21 − x22 − x23 = 1

4 , x1 ≥
1
2

}
is the model of

the real projective plane of curvature −4. �
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3.4. Classification of H-umbilical submanifolds of ratio 4. The equation

of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of ratio r 6= 4

in complex space forms contain no open subsets of constant sectional curvature.

Hence we conclude from [3, Theorems 4.1 and 7.1] and §3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in

CP 5(4) is congruent to an open portion of π ◦ ψ, where π : S11(1) → CP 5(4) is

Hopf’s fibration, ψ : M → S11(1) ⊂ C6 is given by

ψ(t, y1, . . . , y5) = (z1(t), z2(t)y), {y ∈ E5 : 〈y,y〉 = 1}, (3.8)

and z = (z1, z2) : I → S3(1) ⊂ C2 is a unit speed Legendre curve satisfying

z′′ = 4iµz′ − z, and µ is a nonzero solution of 2µµ′′ − µ′2 + 4µ2(3µ2 + 1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH5(−4) satisfying

(3.1). We may assume that µ is defined on an open interval I 3 0. Since H-

umbilical submanifolds of ratio 4 in CH5(−4) contain no open subsets of constant

curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the following

classification of H-umbilical submanifolds of ratio 4 in CH5(−4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in

CH5(−4) is congruent to an open part of π ◦ ψ, where π : H11
1 (−1)→ CH5(−4)

is Hopf’s fibration and ψ : M → H11
1 (−1) ⊂ C6

1 is either one of

ψ(t, y1, . . . , y4) = (z1(t), z2(t)y), {y ∈ E5 : 〈y,y〉 = 1}, (3.9)

ψ(t, y1, . . . , y4) = (z1(t)y, z2(t)), {y ∈ E5
1 : 〈y,y〉 = −1}, (3.10)

where z is a unit speed Legendre curve in H3
1 (−1) satisfying z′′ = 4iµz′ + z and

µ is a non-trivial solution of 2µµ′′ − µ′2 + 4µ2(3µ2 − 1) = 0; or ψ is

ψ(t, u1, . . . , u4) =
√
µei

∫ t
0
µ(t)dt

(
1 +

1

2

4∑
j=1

u2j − it+
1

2µ
− 1

2µ(0)
,

(
iµ(0)− µ′(0)

2µ(0)

)(
1

2

4∑
j=1

u2j − it+
1

2µ
− 1

2µ(0)

)
, u1, . . . , u4

)
, (3.11)

where z = (z1, z2) : I → H3
1 (−1) ⊂ C2

1 is a unit speed Legendre curve and µ is a

non-trivial solution of µ′2 = 4µ2(1− µ2).
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Example. It is easy to verify that µ = sech 2t is a non-trivial solution of

µ′2 = 4µ2(1− µ2). Using µ = sech 2t, (3.11) reduces to

ψ(t, u1, . . . , u4) =
ei tan

−1(tanh t)

√
cosh 2t

(
1

2
− it+

1

2

4∑
j=1

u2j +
cosh 2t

2
,

t− i

2
+

i

2

4∑
j=1

u2j +
i cosh 2t

2
, u1, . . . , u4

)
. (3.12)

It is direct to verify that (3.12) satisfies 〈ψ,ψ〉 = −1 and the composition π ◦ ψ
gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in CH5(−4).

4. Some lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

of M̃5(4c). Then with respect to some orthonormal frame {e1, . . . , e5} we have

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5, h(e3, e3) = bJe3 + µJe5,

h(e3, e4) = −bJe4, h(e4, e4) = −bJe3 + µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(e5, e5) = 4µJe5,

h(ei, ej) = 0, otherwise. (4.1)

Proof. Under the hypothesis, we have (1.5) with respect to an orthonormal

frame {e1, . . . , e5}. Thus, after applying [6, Lemma 1] to V = Span{e1, e2} and

V = Span{e3, e4}, we obtain (4.1). �

Let us put

∇Xei =

5∑
j=1

øji (X)ej , i = 1, . . . , 5, X ∈ TM5. (4.2)

Then øji = −øij , i, j = 1, . . . , 5.

If µ = 0, then M is a minimal Lagrangian submanifold according (4.1). Such

submanifolds in complex space forms M̃5(4c) have been classified in [13].

If a = b = 0 and µ 6= 0, then M is an H-umbilical Lagrangian submanifold

with ratio 4. Therefore, from now on we assume that a, µ 6= 0.
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Lemma 4.2. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have

∇e1e1 =
e2a

3a
e2 − νe5, ∇e1e2 = −e2a

3a
e1, ∇e2e1 = −e1a

3a
e2,

∇e2e2 =
e1a

3a
e1 − νe5, ∇e3e3 =

e4b

3b
e4 − νe5, ∇e3e4 = −e4b

3b
e3,

∇e4e3 = −e3b
3b
e4, ∇e4e4 =

e3b

3b
e3 − νe5, ∇eie5 = νei, i ∈ ∆,

∇ekej = 0, otherwise, (4.3)

with ν = 1
2e5(lnµ) = −e5(ln a) = −e5(ln b), where ∆ = {1, 2, 3, 4}. Moreover, we

have
ejµ = 0, j ∈ ∆, e1b = e2b = e3a = e4a = 0. (4.4)

Proof. This lemma is obtained from Codazzi’s equations via Lemma 4.1

and (4.2) and long computations. �

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) T0 is a totally geodesic distribution, i.e. T0 is integrable whose leaves are

totally geodesic submanifolds;

(b) T0 ⊕ T1 and T0 ⊕ T2 are totally geodesic distributions;

(c) T1 and T2 are spherical distributions, i.e. T1, T2 are integrable distributions

whose leaves are totally umbilical submanifolds with parallel mean curvature

vector,

where T0 = Span{e5}, T1 = Span{e1, e2} and T2 = Span{e3, e4}.

Proof. Since the distribution T0 is of rank one, it is integrable. Moreover,

since ∇e5e5 = 0 by Lemma 4.2, the integral curves of e5 are geodesics in M . Thus

we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that [e1, e2] ∈ T1 and [e3, e4] ∈ T2
follow from (4.3). Thus T1, T2 are integrable. Also, it follows from (4.3) that the

second fundamental form h1 of a leaf L1 of T1 in M is given by

h1(X,Y ) = −νg1(X1, Y1)e5, X1, Y1 ∈ TL1, (4.5)

where g1 is the metric of L1. From (4.3) we obtain ∇eie5 = νei, i = 1, 2. Thus

D1
e1e5 = D1

e2e5 = 0, where D1 is the normal connection of L1 in M . It follows

from Gauss’ equation and Lemma 4.1 that the curvature tensor R satisfies

〈R(e1, e2)e1, ej〉 = 0, j = 3, 4, 5. (4.6)

Thus (4.6) and Lemma 4.2 imply that 0 ≡ R(e1, e2)e1 ≡ (e2ν)e5 (mod T1). Hence

e2ν = 0. Similarly, by considering R(e2, e1)e2, we also have e1α = 0. After
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combining these with D1e5 = 0, we conclude that L1 has parallel mean curvature

vector in M . Hence T1 is a spherical distribution. Similarly, T2 is also a spherical

distribution. Consequently, we obtain statement (c). �

Lemma 4.4. Under the hypothesis of Lemma 4.2, M is locally a warped

product I×ρ1(t)M2
1×ρ2(t)M2

2 , where t is function such that e5 = ∂t (i.e., e5 = ∂
∂t ),

ρ1 and ρ2 are two positive functions in t and M2
1 ,M

2
2 are Riemannian 2-manifolds.

Proof. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see

also [7, Theorem 4.4, p. 90]). �

Lemma 3.3 and (4.4) imply that µ depends only on t. Thus µ = µ(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have c = −ν2−µ2 < 0.

Thus µ satisfies µ′(t)2 = −4µ2(t)(c+ µ2(t)).

Proof. Under the hypothesis, it follows from Gauss’ equation and Lem-

ma 4.1 that 〈R(e1, e3)e3, e1〉 = c + µ2. On the other hand, the definition of

curvature tensor and Lemma 4.2 imply that 〈R(e1, e3)e3, e1〉 = −ν2. Thus c =

−ν2 − µ2 < 0. By combining this with the definition of ν, we obtain the lemma.

�

5. More lemmas

Next, we consider the case a, µ 6= 0 and b = 0.

Lemma 5.1. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, µ 6= 0 and b = 0. Then we have

∇e1e1 =
e2a

3a
e2 +

e3a

a
e3 +

e4a

3a
e4 − νe5,

∇e1e2 = −e2a
3a

e1 − 3ø21(e3)e3 − 3ø21(e4)e4,

∇e1e3 = −e3a
a
e1 + 3ø21(e3)e2 + ø43(e1)e4,

∇e1e4 = −e4a
a
e1 + 3ø21(e4)e2 − ø43(e1)e3,

∇e2e1 = −e1a
3a

e2 + 3ø21(e3)e3 + ø41(e2)e4,

∇e2e2 =
e1a

3a
e1 +

e3a

a
e3 +

e4a

a
e4 − νe5,
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∇e2e3 = −3ø21(e3)e1 −
e3a

a
e2 + ø43(e2)e4,

∇e2e4 = −ø41(e2)e1 −
e4a

a
e2 − ø43(e2)e3,

∇e3e1 = ø21(e3)e2, ∇e3e2 = −ø21(e3)e1,

∇e3e3 = ø43(e3)e4 − νe5, ∇e3e4 = −ø43(e3)e3,

∇e4e1 = ø21(e4)e2, ∇e4e2 = −ø21(e4)e1,

∇e4e3 = ø43(e4)e4, ∇e4e4 = −ø43(e4)e3 − νe5,

∇e5e3 = ø43(e5)e4, ∇e5e4 = −ø43(e5)e5,

∇eie5 = νei, i ∈ ∆, ∇ekej = 0, otherwise. (5.1)

with ν = 1
2e5(lnµ) = −e5(ln a). Moreover, we have

ejµ = 0, j ∈ ∆ = {1, 2, 3, 4}. (5.2)

Proof. Follows from Codazzi’s equations via Lemma 4.1 and (4.2). �

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have

(i) T0 is a totally geodesic distribution;

(ii) T3 is a spherical distribution,

where T0 = Span{e5} and T3 = Span{e1, e2, e3, e4}.

Proof. Clearly, T0 is integrable. Moreover, since ∇e5e5 = 0 by Lemma 5.1,

integral curves of e5 are geodesics in M5. Thus statement (i) follows. To prove

statement (ii), we observe that the integrability of T3 follows from (5.1). Also,

(5.1) implies that the second fundamental form ĥ of a leaf L of T3 in M5 is given

by ĥ(X,Y ) = −νĝ(X,Y )e5 for X,Y ∈ TL, where ĝ is the metric of L. Since

[ej , e5]µ = 0 by (5.1) and ejµ = 0, for j ∈ ∆, we find eie5µ − e5eiµ = 2e1ν = 0.

Therefore T3 is a spherical distribution. �

Lemma 5.3. Under the hypothesis of Lemma 5.1, M is locally a warped

product I ×ρ(t) N4, where t is function such that e5 = ∂
∂t and ρ is a positive

function in t and N4 is a Riemannian 4-manifold.

Proof. Follows from Lemma 5.2 and Hiepko’s theorem. �

It follows from (5.2) and the definition of ν that µ = µ(t) and ν = ν(t).
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Lemma 5.4. Under the hypothesis of Lemma 5.1, we have

dν

dt
= −3µ2 − ν2 − c, dµ

dt
= 2µν. (5.3)

Proof. From Gauss’ equation and (5.1) we find 〈R(e1, e5)e5, e1〉 = 3µ2 + c.

On the other hand, (5.1) of Lemma 5.1 yields 〈R(e1, e5)e5, e1〉 = −e5ν−ν2. Thus

we find the first equation of (5.3). The second one follows immediately from the

definition of ν given in Lemma 5.1. �

6. Improved δ(2, 2)-ideal Lagrangian submanifolds of C5

Theorem 6.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then it is one of the following Lagrangian submanifolds:

(a) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(b) an H-umbilical Lagrangian submanifold of ratio 4;

(c) a Lagrangian submanifold defined by

L(µ, u2, . . . , un) =
e

4
3 i tan−1

√
µ3/(c2−µ3)√

c2µ−1 − µ2 + iµ
φ(u2, . . . , un), (6.1)

where c is a positive real number and φ(u2, . . . , un) is a horizontal lift of a

non-totally geodesic δ(2)-ideal Lagrangian minimal immersion in CP 4(4).

Proof. Assume that M is an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then there exists an orthonormal frame {e1, . . . , e5} such that (4.1) holds.

If µ = 0, then M is a minimal δ(2, 2)-ideal Lagrangian submanifold. Thus, we

obtain case (a). If µ 6= 0 and a = b = 0, we obtain case (b).

Now, let us assume a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by Lem-

mas 5.1 we have (5.1) and ejµ = 0, j ∈ ∆. Further, by Lemma 5.3, M is locally

a warped product I ×ρ(t) N4 with e5 = ∂t. Moreover, 4.1 shows that the second

fundamental form satisfies

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5,

h(ei, e5) = µJei, i ∈ ∆,
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h(e5, e5) = 4µJe5, h(ei, ej) = 0, otherwise. (6.2)

From Lemma 5.4 we have the following differential system:

dν

dt
= −3µ2 − ν2, dµ

dt
= 2µν. (6.3)

Let ϕ(t) be a function satisfying dϕ
dt = −4µ. Consider the map

φ = eiϕe5. (6.4)

Then 〈φ, φ〉 = 1. It follows from ∇e5e5 = 0, dϕ
dt = −4µ and (6.2) that ∇̃e5φ = 0,

where ∇̃ is the Levi–Civita connection of C5. Thus φ is independent of t.

Let L denote the Lagrangian immersion of M in C5. Then (6.4) yields

e5 = Lt = e−iϕφ(u1, . . . , u4), (6.5)

where u1, . . . , u4 are local coordinates of N4. For each j ∈ ∆, we obtain from

∇eje5 = νej of Lemma 5.1 and the first equation of (6.3) that

φ∗(ej) = ∇̃ejφ = eiϕ∇̃eje5 = eiϕ(ν + iµ)ej . (6.6)

Thus

∇̃ej (φ∗(ei)) = eiϕ(ν + iµ)∇̃ejei. (6.7)

In view of ∇eje5 = νej and (6.2), we may put

∇̃eiej =

( 4∑
k=1

Γkij + ihkij

)
ek − (ν − iµ)δije5, i, j ∈ ∆, (6.8)

for some functions Γkij . Now, it follows from (6.4), (6.6), (6.7), and (6.8) that

∇̃ej (φ∗(ei)) =

n∑
γ=2

(
Γkij + ihkij

)
φ∗(ek)− (µ2 + ν2)δijφ

=

n∑
γ=2

(Γkij + ihkij)φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ. (6.9)

Since M is a Lagrangian submanifold in C5, (6.4) and (6.6) show that iφ

is perpendicular to each tangent space of M . Hence φ is a horizontal immersion

in the unit hypersphere S9(1) ⊂ C5. Moreover, it follows from (6.9) that the

second fundamental form of φ is the original second fundamental form of M



208 Bang-Yen Chen, Alicia Prieto-Mart́ın and Xianfeng Wang

respect to to the second factor N4 of the warped product I ×ρ(t) N4. Hence, φ

is a minimal horizontal immersion in S9(1). Therefore, φ is a horizontal lift of a

minimal Lagrangian immersion in CP 4(4). Now, it follows from (6.2) that φ is a

horizontal lift of a δ(2)-ideal minimal Lagrangian submanifold of CP 4(4).

By direct computation we find

∇̃eα
(
L− e5

ν + iµ

)
= 0, α = 1, . . . , 5. (6.10)

Thus, by (6.4), up to translations the Lagrangian immersion L is

L =
e−iϕ

ν + iµ
φ(u1, . . . , u4), (6.11)

where φ is a horizontal minimal immersion in S9(1) and ν, ϕ, µ satisfy

dν

dt
= −3µ2 − ν2, dϕ

dt
= −4µ,

dµ

dt
= 2µν. (6.12)

From (6.12) we find
dν

dµ
+

ν

2µ
= −3µ

2ν
. (6.13)

After solving (6.13) we get ν = ±
√
c2µ−1 − µ2 for some real number c > 0.

Replacing e5 by −e5 if necessary, we have

ν =
√
c2µ−1 − µ2. (6.14)

It follows from (6.12) an (6.14) that ϕ′(µ) = −2/
√
c2µ−1 − µ2. By solving the

last equation we find ϕ = − 4
3 i tan−1

√
µ3/(c2 − µ3) + c0 for some constant c0.

Therefore, we have the theorem after applying a suitable translation in µ. �

Remark 6.2. Minimal δ(2, 2)-ideal Lagrangian submanifolds in complex space

forms C5, CP 5 and CH5 are classified in [13]. Also δ(2)-ideal minimal Lagrangian

submanifolds in CP 4 and CH4 have been classified recently in [14].

Let γ(t) be a unit speed curve in C∗. We put

γ(t) = r(t)eiθ(t), γ′(t) = eiζ(t). (6.15)

The following result gives H-umbilical submanifolds of C5 with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C5 of

ratio 4, then M is an open part of a complex extensor γ⊗ι of the unit hypersphere

ι : S4(1) ⊂ E5 via a generating curve γ : I → C∗ whose curvature satisfies κ = 4θ′.
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Proof. If M is an H-umbilical Lagrangian submanifold of C5 with ratio 4,

then the second fundamental form satisfies

h(ej , ej) = µJe5, h(ej , e5) = µJej , j ∈ ∆,

h(e5, e5) = 4µJe5, h(ej , ek) = 0, 1 ≤ j 6= k ≤ 4,

for a nonzero function µ. Thus Gauss’ equation yields K(e1∧e5) = 3µ2. Hence M

is non-flat. Therefore, according to Theorem F, M is an open part of a complex

extensor of ι : Sn−1(1) ⊂ En via a generating curve γ : I → C∗. It follows from [2]

that the functions ϕ and µ in (4.1) are related with the two angle functions ζ and θ

by ϕ = ζ ′(t) = κ and µ = θ′(t). Thus whenever γ is a unit speed curve satisfying

κ = 4θ′, the complex extensor γ⊗ ι is an H-umbilical Lagrangian submanifold of

ratio 4. Conversely, every H-umbilical Lagrangian submanifold of ratio 4 in Cn

can be obtained in such way. �

7. Improved δ(2, 2)-ideal Lagrangian submanifolds of CP 5

Theorem 7.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CP 5(4). Then it is one of the following Lagrangian submanifolds:

(1) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(µ, u2, . . . , u4) =
1

c

(√
µeiθφ, e3iθ

(√
c2 − µ3 − µ− iµ

3
2

))
, (7.1)

where c is a positive real number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift of

a non-totally geodesic δ(2)-ideal Lagrangian minimal immersion in CP 4(4),

and θ(µ) satisfies
dθ

dµ
=

1

2
√
c2µ−1 − µ2 − 1

. (7.2)

Proof. Under the hypothesis there is an orthonormal frame {e1, . . . , e5}
such that (4.1) holds. If µ = 0, then M is a δ(2, 2)-ideal Lagrangian minimal

submanifold. Thus we obtain case (1). If µ 6= 0 and a, b = 0, then M is an

H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by Lem-

mas 5.1 we obtain (5.1) and (5.2). Also, in this case M is locally a warped product

I ×ρ(t) N4 with e5 = ∂t according to Lemma 5.3. From Lemma 4.1, we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
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h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise. (7.3)

By Lemma 5.4 we have the following ODE system:

dν

dt
= −1− ν2 − 3µ2,

dµ

dt
= 2µν. (7.4)

Let θ(t) be a function on M satisfying

θ′(t) = µ. (7.5)

Let L denote the horizontal lift in S11(1) ⊂ C6 of the Lagrangian immersion

of M in CP 5(4) via Hopf ’s fibration. Consider the maps:

ξ =
e−3iθ(e5 − (ν + iµ)L)√

1 + µ2 + ν2
, φ =

e−iθ(L+ (ν − iµ)e5)√
1 + µ2 + ν2

. (7.6)

Then 〈ξ, ξ〉 = 〈φ, φ〉 = 1. From ∇eje5 = νej , j ∈ ∆, and (7.4), we find ∇̃ejξ = 0.

Moreover, it follows from Lemma 5.1 and (7.3) that ∇̃e5e5 = 4iµe5−L. Thus we

also have ∇̃e5ξ = 0. Hence ξ is a constant unit vector in C6. Similarly, we also

have ∇̃e5φ = 0. So φ is independent of t. Therefore, by combining (7.6) we find

L =
eiθφ− e3iθ(ν − iµ)ξ√

1 + µ2 + ν2
. (7.7)

Since φ is orthogonal to ξ, iξ, after choosing ξ = (0, . . . , 0, 1) ∈ C6 we obtain

L =
1√

1 + µ2 + ν2
(eiθφ, e3iθ(ν − iµ)) (7.8)

It follows from (7.4) and (7.5) that

dν

dµ
= −1 + ν2 + 3µ2

2µν
,

dθ

dµ
=

1

2ν
. (7.9)

Solving the first differential equation in (7.9) gives

ν = ±
√
c2µ−1 − µ2 − 1, c ∈ R+. (7.10)
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By replacing e5 by −e5 if necessary, we have ν =
√
c2µ−1 − µ2 − 1. Consequently,

L =
1

c

(√
µeiθφ, e3iθ

(√
c2 − µ3 − µ− iµ

3
2

))
, (7.11)

It follows from (5.1), (7.3) and the second formula in (7.6) that

∇̂ejφ =
ce−iθ

√
µ
ej , j ∈ ∆. (7.12)

Thus after applying (6.11) and (7.12) we derive that

∇̂eβ ∇̂eαφ =

n∑
γ=2

(Γkij + ihkij)φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ, i, j ∈ ∆. (7.13)

Hence φ is a horizontal immersion in S9(1). Moreover, it follows from (7.13)

that the second fundamental form of φ is a scalar multiple of the original second

fundamental form of M restricted to the second factor of the warped product

I ×ρ N . Consequently, φ is a minimal horizontal immersion in S9(1) of a non-

totally geodesic δ(2)-ideal Lagrangian minimal submanifold of CP 4(4).

The converse is easy to verify. �

8. Improved δ(2, 2)-ideal Lagrangian submanifolds of CH5

Theorem 8.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CH5(−4). Then M is one of the following Lagrangian submanifolds:

(i) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(√
µeiθφ(u2, . . . , u4), e−iθ

(√
µ− µ3 − c2 − iµ

3
2

))
, (8.1)

where c is a positive number, φ : N4 → H9
1 (−1) ⊂ C5

1 is a horizontal lift of a

non-totally geodesic δ(2)-ideal minimal Lagrangian immersion in CH4(−4),

and θ(t) satisfies dθ
dµ = 1

2

√
1− µ2 − c2µ−1;

(iv) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(
e−iθ

(√
µ− µ3 + c2 − iµ

3
2

)
,
√
µeiθφ(u2, . . . , u4)

)
, (8.2)

where c is a positive number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift of

a non-totally geodesic δ(2)-ideal minimal Lagrangian immersion in CP 4(4),

and θ(t) satisfies dθ
dµ = 1

2

√
1− µ2 + c2µ−1;
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(v) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
, (8.3)

where ψ(u1, . . . , u4) is a non-totally geodesic δ(2)-ideal Lagrangian minimal

immersion in C4 and up to a constant w(u1, . . . , u4) is the unique solution

of the PDE system: wuj = 2〈ψuj , iψ〉, j = 1, 2, 3, 4;

(vi) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ1, ψ2, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
, (8.4)

where ψ = (ψ1, ψ2) is the direct product immersion of two non-totally ge-

odesic Lagrangian minimal immersions ψα : N2
α → C2, α = 1, 2, and

up to a constant w(u1, . . . , u4) is the unique solution of the PDE system:

wuj = 2〈ψuj , iψ〉, j = 1, 2, 3, 4.

Proof. Under the hypothesis there exists an orthonormal frame {e1, . . . , e5}
such that (4.1) holds.

Case (1) µ = 0. In this case, we obtain case (i) of the theorem.

Case (2): µ 6= 0 and a, b = 0. In this case M is an H-umbilical Lagrangian

submanifold with ratio 4, which gives case (ii).

Case (3): µ 6= 0 and at least one of a, b is nonzero. Without loss of generality,

we may assume a 6= 0 and µ > 0. We divide this into two cases.

Case (3.a): a, µ 6= 0 and b = 0. By Lemmas 5.1 we obtain (5.1) and (5.2).

Also, M is locally a warped product I ×ρ(t)N4 with e5 = ∂t according to Lemma

5.3. From Lemma 4.1 we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise. (8.5)
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Let L be a horizontal immersion of M in H11
1 (−1) ⊂ C6

1 of the Lagrangian

immersion of M in CH5(−4) via Hopf ’s fibration and θ(t) a function satisfying

dθ

dt
= µ. (8.6)

From Lemma 5.4 we obtain the following ODE system:

dν

dt
= 1− 3µ2 − ν2, dµ

dt
= 2µν. (8.7)

It follows from (8.6) and (8.7) that

dν

dµ
=

1− 3µ2 − ν2

2µν
,

dθ

dµ
=

1

2ν
. (8.8)

Solving the first differential equation in (8.8) gives ν = ±
√

1− µ2 − kµ−1 for

some real number k. By replacing e5 by −e5 if necessary, we find

ν =
√

1− µ2 − kµ−1, dθ

dµ
=

1

2
√

1− µ2 − kµ−1
. (8.9)

It follows from (8.7) that d
dt (1 − µ

2 − ν2) = −2ν(1 − µ2 − ν2). Since this

equation for y(t) = 1−µ2−ν2 = kµ−1 has a unique solution for each given initial

condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): µ2 + ν2 < 1. In this case, (8.9) implies k > 0. Thus we may

put k = c2, c > 0. Consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L)√

1− µ2 − ν2
, φ =

e−iθ((ν − iµ)e5 − L)√
1− µ2 − ν2

. (8.10)

Then 〈η, η〉 = 1 and 〈φ, φ〉 = −1. From ∇eje5 = νej , j ∈ ∆, and (8.5), we obtain

∇̃ejξ = 0, where ∇̃ is the Levi–Civita connection of C6
1. Lemma 5.1 and (8.5)

give ∇̃e5e5 = 4iµe5 + L. Thus we find ∇̃e5ξ = 0. So η is a constant unit vector.

Also, we find ∇̃e5φ = 0. Hence φ is independent of t. From (8.10) we get

L = −e
iθφ+ e−iθ(ν − iµ)η√

1− µ2 − ν2
. (8.11)

Since φ is orthogonal to η, iη and η is a constant unit space-like vector, we

conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by applying

the same method of the proof of Theorem 7.1, we conclude that φ is a horizontal
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immersion in H9
1 (−1) whose second fundamental form is a scalar multiple of

the original second fundamental form restricted to the second factor of I ×ρ
N . Consequently, φ is a minimal horizontal immersion in H9

1 (−1) of a non-

totally geodesic δ(2)-ideal Lagrangian minimal submanifold of CH4(−4). This

gives case (iii).

Case (3.a.2): µ2 + ν2 > 1. In this case (8.8) implies k < 0. Thus we may put

k = −c2, c > 0. Now, we consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L)√

µ2 + ν2 − 1
, φ =

e−iθ((ν − iµ)e5 − L)√
µ2 + ν2 − 1

(8.12)

instead. Then 〈φ, φ〉 = −〈η, η〉 = 1. By applying similar arguments as case

(3.a.1), we know that η is a constant time-like vector and φ is independent of t

and orthogonal to η, iη. Moreover, we may prove that φ is a minimal Legendre

immersion in S9(1). Therefore we have case (iv) after choosing η = (1, 0, . . . , 0).

Case (3.a.3): µ2 + ν2 = 1. In this case system (8.7) gives dν
dt = 2(ν2− 1) and

µ = ±
√

1− ν2. Solving these and applying a suitable translations in t, we find

µ = sech 2t, ν = − tanh 2t. (8.13)

It follows from ∇e5e5 = 0, (8.5) and (8.13) that the horizontal lift L of the

Lagrangian immersion of M in CH5(−4) ⊂ C6
1 satisfies

Ltt − 4i(sech 2t)Lt − L = 0. (8.14)

Solving this second order differential equation gives

L =
φ(u1, . . . , u4) +B(u1, . . . , u4)(2t+ i cosh 2t)

cosh t− i sinh t
, (8.15)

where φ(u1, . . . , u4) and B(u1, . . . , u4) are C6
1-valued functions.

On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that

Ltuj = (i sech 2t− tanh 2t)Luj , j ∈ ∆. (8.16)

Substituting (8.15) into (8.16) shows that B is a constant vector ζ. Thus

L(t, u1, . . . , u4) =
φ(u1, . . . , u4)

cosh t− i sinh t
+

(2t+ i cosh 2t)

cosh t− i sinh t
ζ, (8.17)

Since 〈L,L〉 = −1, (8.17) implies

− cosh 2t = 〈φ, φ〉+ 〈φ, (4t+ 2i cosh 2t)ζ〉+ (4t2 + cosh2(2t))〈ζ, ζ〉. (8.18)
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Since φt = 0, by differentiating (8.18) with respect t we find

− sinh 2t = 2t〈φ, ζ〉+ 2 sinh 2t〈φ, iζ〉+ (4t+ sinh 4t)〈ζ, ζ〉. (8.19)

We find from (8.19) at t = 0 that 〈φ, ζ〉 = 0. Thus (8.19) gives

0 = sinh 2t(1 + 〈φ, iζ〉) + (4t+ sinh 4t)〈ζ, ζ〉. (8.20)

Differentiating (8.20) gives 〈φ, iζ〉 = − 1
2−2〈ζ, ζ〉. Thus (8.17) yields 〈φ, iζ〉 = − 1

2

and 〈ζ, ζ〉 = 0. Now, we find from (8.18) that 〈φ, φ〉 = 0. Consequently we have

〈φ, φ〉 = 〈ζ, ζ〉 = 〈φ, ζ〉 = 0, 〈φ, iζ〉 = −1

2
. (8.21)

Since ζ is a constant light-like vector, we may put

ζ = (1, 0, . . . , 0, 1), φ = (a1 + ib1, . . . , a6 + ib6). (8.22)

It follows from (8.21) and (8.22) that a6 = a1 and b6 = b1 + 1
2 . Therefore

φ =

(
a1 + ib1, a2 + ib2, . . . , a1 + i

(
b1 +

1

2

))
. (8.23)

Now, by using 〈φ, φ〉 = 0 and (8.23), we find ψ = (a2 + ib2, . . . , a5 + ib5) and

b1 = − 1
4 − 〈ψ,ψ〉. Combining these with (8.23) yields

φ =

(
w − i〈ψ,ψ〉 − i

4
, ψ, w − i〈ψ,ψ〉+

i

4

)
(8.24)

with w = a1. It follows from (8.22) and (8.24) that 〈φuj , ζ〉 = 〈φuj , iζ〉 = 0. Thus,

by applying 〈Luj , iL〉 = 0, j ∈ ∆, we find from (8.17) that 〈φuj , iφ〉 = 0.

On the other hand, (8.24) implies that

〈φuj , iφ〉 = −1

2
wuj + 〈ψuj , iψ〉 (8.25)

with wuj = ∂w
∂uj

. Therefore w satisfies the PDE system: wuj = 2〈ψuj , iψ〉.
Now, we derive from (8.17), (8.22) and (8.23) that

L =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
. (8.26)
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It follows from (8.26) that

Luj =
1

cosh t− i sinh t

(
wuj − i〈ψ,ψ〉uj , ψuj , wuj − i〈ψ,ψ〉uj

)
. (8.27)

Thus we find 〈ψuj , ψuk〉 = cosh 2t〈Luj , Luk〉 which implies that ψ is an immersion

in C4. Also, we find from (8.27) and 〈Luj , iLuk〉 = 0 that 〈ψuj , iψuk〉 = 0. Thus

ψ is a Lagrangian immersion. Now, by applying an argument similar to the last

part of the proof of [11, Theorem 6.1], we conclude that

ψujuk =

4∑
i=1

(Γijk + ihijk)φui , j, k ∈ ∆.

Therefore, according to (8.5), ψ is a δ(2)-ideal minimal Lagrangian immersion

in C4. Consequently, we obtain case (v) of the theorem.

Case (3.b): a, b, µ 6= 0. We obtain case (vi) of the theorem by applying the

same argument as case (3.a.3). �
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