On homogeneous submanifolds of negatively curved Riemannian manifolds

By REZA MIRZAIE (Qazvin)

Abstract

We give a description of the orbits of some isometric actions on Riemannian manifolds of negative curvature.

1. Introduction

The authors of [4] gave a description of homogeneous submanifolds of the Hyperbolic space $H^{n}(c), c<0$. Among other results they proved: If G is a connected subgroup of the isometries of $H^{n}(c)$ and the fixed point set of the action of G on M is empty, then either there is a geodesic orbit or all orbits are included in horospheres centered at the same point at infinity (so there is a class $[\gamma]$ of asymptotic geodesics such that $G[\gamma]=[\gamma]$). A similar result is true if G is a connected and solvable subgroup of the isometries of a simply connected Riemannian manifold M of negative curvature. We use this result as a tool to study topological properties of some cohomogeneity two Riemannian manifolds of negative curvature. We recall that if G is a closed and connected subgroup of the isometries of a Riemannian manifold M, the number $\operatorname{dim} M-\max _{x \in M} \operatorname{dim} G(x)$ is called the cohomogeneity of the action of G on M. When the cohomogeneity is small, we expect close geometrical and topological relations between M, G and G-orbits of M. If M has negative curvature and the cohomogeneity is zero (M is a homogeneous G-manifold), S. Kobayashi proved that M must be simply connected [10].

Mathematics Subject Classification: 53C30, 57S25.
Key words and phrases: Riemannian manifold, Lie group, isometry.

If M is negatively curved and the cohomogeneity is one, it is proved that either M is simply connected or the fundamental group of M is isomorphic to Z^{p} for some positive integer p. In the later case, if $p>1$ then each orbit is diffeomorphic to $R^{n-1-p} \times T^{p}, n=\operatorname{dim} M$, and M is diffeomorphic to $R^{n-p} \times T^{p}$. If $p=1$ then there is an orbit diffeomorphic to S^{1} and the other orbits are covered by $S^{n-2} \times R$ [15].

There is no complete classification result on cohomogeneity two Riemanniam manifolds of negative curvature. But there are some results under conditions on G and curvature of M. Let $\operatorname{Fix}(G, M)=\{x \in M: G(x)=x\}$. If $\operatorname{Fix}(G, M) \neq \emptyset$ and M is negatively curved and of cohomogeneity two under the action of G, then M is diffeomorphic to $S^{1} \times R^{n+1}$ or $B^{2} \times R^{n}\left(B^{2}\right.$ is the mobius band), and the principal orbits are diffeomorphic to $S^{n}[12]$. Also we have studied cohomogeneity two Riemannian manifolds of constant negative curvature [13]. In Theorem 3.3 of the present paper, we study cohomogeneity two Riemannian G-manifolds of negative curvature under the conditions that the singular orbits (if there is any) are the fixed points of G and G is non-semisimple.

2. Preliminaries

First we mention some definitions and facts which we will use in the proofs. If M is a Riemannian manifold, we denote by $\operatorname{Iso}(M)$ the Lie group of all isometries of M. If $\delta \in \operatorname{Iso}(M)$, the squared displacement function $d_{\delta}^{2}: M \rightarrow M$ is defined by

$$
d_{\delta}^{2}(x)=d(x, \delta x)
$$

Fact 2.1 (See [1]). If M is a simply connected Riemannian manifold of negative curvature and $\delta \in \operatorname{Iso}(M)$, then one of the followings is true:
(1) d_{δ}^{2} has no minimum point.
(2) Minimum point set of d_{δ}^{2} is equal to the fixed point set of δ.
(3) Minimum point set of d_{δ}^{2} is the image of a geodesic γ translated by δ (i.e., there is a positive number t_{0} such that for all $\left.t, \delta(\gamma(t))=\gamma\left(t+t_{0}\right)\right)$.

Isometries (1), (2), and (3) are called parabolic, elliptic, and axial, respectively.

We recall (see [8]) that infinity $M(\infty)$ of a simply connected Riemannian manifold M of non-positive curvature is the classes of asymptotic geodesics. For each geodesic γ we denote by $[\gamma]$ the asymptotic class of geodesics containing γ. If $x \in M$ then there is a unique (up to parametrization) geodesic γ_{x} in the
class $[\gamma]$ containing x, and there is a unique hypersurface S_{x} containing x and perpendicular to all elements of $[\gamma] . S_{x}$ is called a horosphere related to $[\gamma]$.

Fact 2.2. Let M be a simply connected Riemannian manifold of negative curvature.
a) If g is an axial isometry of M then the geodesic γ with the property $g(\gamma)=\gamma$ is unique.
b) If g is a parabolic isometry of M then there is a unique class of asymptotic geodesics $[\gamma]$ such that $g[\gamma]=[\gamma]$.
Proof. (a) is a direct consequence of Proposition 4.2(3) in [1].
(b) By Lemma 6.1 in $[7], g$ has a fixed point in $M(\infty)$, so there is a class $[\gamma]$ of asymptotic geodesics such that $g[\gamma]=[\gamma]$, and by Proposition 6.4 in $[7],[\gamma]$ is unique (because if not, g must be elliptic or axial).

Fact 2.3. Let G be a connected and solvable Lie subgroup of isometries of a simply connected and negatively curved Riemannian manifold M. Then one of the followings is true:
(1) $\operatorname{Fix}(G, M) \neq \emptyset$.
(2) There is a unique G-invariant geodesic.
(3) There is a unique class of asymptotic geodesics $[\gamma]$ such that $G[\gamma]=[\gamma]$.

Proof. For the proof of existence, see Theorem 5 in [3]. Uniqueness in (2), (3) comes from Fact 2.2.

Corollary 2.4. If M is a simply connected Riemannian manifold of negative curvature and G is a closed and connected subgroup of $\operatorname{Iso}(M)$ such that $\operatorname{Fix}(G, M)=\emptyset$, then there is at most one totally geodesic G-orbit in M.

Proof. The proof of this corollary is as like as the proof of Lemma 3.1 of [4] which we rewrite it for facility. Denote by $\bar{\nabla}$ and ∇ the Riemannian connections of M and submanifolds of M. Suppose that $G\left(q^{\prime}\right), G(q)$ are distinct totally geodesic orbits of M. Consider a point $p \in G\left(q^{\prime}\right)$ such that $d\left(q, G\left(q^{\prime}\right)\right)=d(q, p)$. Let γ be a minimizing geodesic such that $\gamma(0)=p, \gamma(1)=q$. Then, $\gamma^{\prime}(0)$ is perpendicular to $G\left(q^{\prime}\right)(=G(p))$ at the point p. If N is a G-orbit and $a \in N$, then the tangent space $T_{a} N$ is generated by

$$
\{Y(a): Y \text { is a vector field in the Lie algebra of } G\}
$$

Consider a vector field Y in the Lie algebra of G and put $g(t)=\left\langle Y(\gamma(t)), \gamma^{\prime}(t)\right\rangle$. Then

$$
g^{\prime}(t)=\frac{d}{d t}\left\langle Y(\gamma(t)), \gamma^{\prime}(t)\right\rangle=\left\langle\bar{\nabla}_{\gamma^{\prime}(t)} Y, \gamma^{\prime}(t)\right\rangle
$$

Since Y is a Killing vector field (see [14], p. 255) then $g^{\prime}(t)=0$. Since $\gamma^{\prime}(0)$ is perpendicular to $G(p)$ then $g(0)=0$, so for each $t \in I, g(t)=0$. Then for each $t \in I, \gamma^{\prime}(t)$ is perpendicular to $G(\gamma(t))$. Since $G(q) \neq q$, there is a vector field X in the Lie algebra of G such that $X(q) \neq 0$. Put

$$
f(t)=-\left\langle S_{\gamma^{\prime}(t)}(X(\gamma(t)), X(\gamma(t))\rangle\right.
$$

Where $S_{\gamma^{\prime}(t)}$ is the shape operator of $G(\gamma(t)) . G(p)$ and $G(q)$ are totally geodesic, then

$$
\begin{equation*}
f(0)=f(1)=0 \tag{*}
\end{equation*}
$$

The vector field $X(\gamma(t))$ is a Jaccobi vector field along γ (see [14], p. 252, Lemma 26). Thus

$$
X^{\prime \prime}+R\left(\gamma^{\prime}, X\right) \gamma^{\prime}=0
$$

and X is a Killing vector field, so

$$
-\left\langle\bar{\nabla}_{X} X, \gamma^{\prime}(t)\right\rangle=\left\langle\bar{\nabla}_{\gamma^{\prime}} X, X\right\rangle
$$

Then we have:

$$
\begin{gathered}
f(t)=-\left\langle\bar{\nabla}_{X} X-\nabla_{X} X, \gamma^{\prime}(t)\right\rangle=-\left\langle\bar{\nabla}_{X} X, \gamma^{\prime}(t)\right\rangle=\left\langle\bar{\nabla}_{\gamma^{\prime}} X, X\right\rangle \\
\Rightarrow f^{\prime}(t)=\frac{d}{d t}\left\langle\bar{\nabla}_{\gamma^{\prime}} X, X\right\rangle=\left\langle X^{\prime \prime}, X\right\rangle+\left\langle\bar{\nabla}_{\gamma^{\prime}(t)} X, \bar{\nabla}_{\gamma^{\prime}(t)} X\right\rangle \\
=-\left\langle R\left(\gamma^{\prime}(t), X\right) \gamma^{\prime}(t), X\right\rangle+\left\langle\bar{\nabla}_{\gamma^{\prime}} X, \bar{\nabla}_{\gamma^{\prime}} X\right\rangle
\end{gathered}
$$

Since M is negatively curved then $f^{\prime}(t)>0$, which is a contradiction by $(*)$.
Remark 2.5. If M is a Riemannian manifold and G is a connected subgroup of Iso (M), and if \widetilde{M} is the universal Riemannian covering manifold of M with the covering map $\kappa: \widetilde{M} \rightarrow M$, then there is a connected covering \widetilde{G} of G with the covering map $\pi: \widetilde{G} \rightarrow G$, such that \widetilde{G} acts isometrically on \widetilde{M} and
(1) Each deck transformation δ of the covering $\kappa: \widetilde{M} \rightarrow M$ maps \widetilde{G}-orbits on to \widetilde{G}-orbits.
(2) If $x \in M$ and $\widetilde{x} \in \widetilde{M}$ then $\kappa(\widetilde{G}(\widetilde{x}))=G(x)$.
(3) $\operatorname{Fix}(\widetilde{G}, \widetilde{M})=\kappa^{-1}(\operatorname{Fix}(G, M))$.
(4) If G is non-semisimple then \widetilde{G} is no-semisimple.
(5) The deck transformation group, which we denote it by Δ, centralizes \widetilde{G} (i.e., for each $\delta \in \Delta$ and $\widetilde{g} \in \widetilde{G}, \delta \widetilde{g}=\widetilde{g} \delta)$.

Proof. \widetilde{G} can be defined in a similar way in [2] pages 63,64 . (1), (2), (3) and (4) are simple consequences of the definition of \widetilde{G}. The proof of (5) can be made as a similar way in the proof of Theorem 9.1 in [2].

Remark 2.6. Let \widetilde{M} be a complete and simply connected Riemannian manifold of strictly negative curvature (curvature is $\leq c<0$, for a constant number c) and let S be a horosphere in \widetilde{M} related to asymptotic class of geodesics $[\gamma]$. The function $f: \widetilde{M} \rightarrow R, f(p)=\lim _{t \rightarrow \infty} d(p, \gamma(t))-t$, is called a Bussmann function.
(a) For each point $p \in \widetilde{M}$ there is a point $\eta_{S}(p)$ in S, which is the unique point of S nearest p, and the following map is a homeomorphism:

$$
\phi: \widetilde{M} \rightarrow S \times R, \quad \phi(p)=\left(\eta_{S}(p), f(p)\right) .
$$

(b) If g is an isometry of \widetilde{M} such that $g[\gamma]=[\gamma]$ (g leaves invariant the horosphere foliation related to $[\gamma])$ then $g S=S$ or g is axial and the axes of g belongs to $[\gamma]$.

Proof. For (a) see [7], p. 57, 58, Propositions 3.2 and 3.4. Proof of (b) is as like as the proof of Lemma 3 in [3].

Lemma 2.7 (See [13]). Let M be a Riemannian manifold of negative curvature, $n=\operatorname{dim} M \geq 3$, and \widetilde{M} be its universal covering. If there is a geodesic γ on \widetilde{M} and an element δ in the center of the deck transformation group Δ, such that $\delta \gamma=\gamma$, then M is diffeomorphic to one of the following spaces

$$
S^{1} \times R^{n-1}, \quad B^{2} \times R^{n-2}
$$

where, B^{2} is the mobius band.

3. Results

In the present section we study topological properties of some cohomogeneity two Riemannian manifolds of negative curvature. We refer to [2] and [11] for definitions and details about singular and principal orbits of the actions of Lie groups on manifolds.

Theorem 3.1 (See [13]). Let M^{n+2} be a complete negatively curved and non-simply connected Riemannian manifold which is of cohomogeneity two under the action of a closed and connected Lie subgroup of isometries. If $\operatorname{Fix}(G, M) \neq \emptyset$ then
(a) M is diffeomorphic to $S^{1} \times R^{n+1}$ or $B^{2} \times R^{n}$ (B^{2} is the mobius band).
(b) $\operatorname{Fix}(G, M)$ is diffeomorphic to S^{1}.
(c) Each principal orbit is diffeomorphic to S^{n}.

Remark 3.2. By Theorem 3.7 (a) in [15], if M is a non-simply connected and complete Riemannian manifold which is of cohomogeneity one under the action of a connected and closed subgroup of isometries, and if there is not any singular orbit, then there are positive integers p, s such that M is diffeomorphic to $R^{p} \times R^{s+1}$ and each orbit is diffeomorphic to $R^{p} \times R^{s}, p+s=\operatorname{dim} M-1$.

Theorem 3.3. Let M^{n+2} be a complete Riemannian manifold of strictly negative curvature and let G be a closed, connected and non-semisimple subgroup of isometries of M^{n+2}. If M is a cohomogeneity two G-manifold such that the singular orbits (if there is any) are fixed points of G. Then one of the following is true:
(1) M is simply connected (diffeomorphic to R^{n+2}).
(2) M is diffeomorphic to $S^{1} \times R^{n+1}$ or $B^{2} \times R^{n}$ (B^{2} is the mobius band). Each principal orbit is diffeomorphic to S^{n}. Union of singular orbits $(\operatorname{Fix}(G, M))$ is diffeomorphic to S^{1}.
(3) M is diffeomorphic to $S^{1} \times R^{2}$ or $B^{2} \times R$. All orbits are diffeomorphic to S^{1}.
(4) $\pi_{1}(M)=Z^{p}$ for some positive integer p, and all orbits are diffeomorphic to $R^{n-p} \times T^{p}$.
(5) M is a parabolic manifold homeomorphic to $M_{1} \times R$. Where, M_{1} is a cohomogeneity one G-manifold and there is a horosphere S in the universal Riemannian covering of M such that M_{1} is diffeomorphic to $\frac{S}{\pi_{1}(M)}$.

Proof. Following Remark 2.5 , let \widetilde{M} be the universal Riemannian covering manifold of M with the deck transformation group Δ and let \widetilde{G} be the corresponding connected covering of G which acts isometrically and by cohomogeneity two on \widetilde{M}. If $\operatorname{Fix}(\widetilde{G}, \widetilde{M}) \neq \emptyset$ then $\operatorname{Fix}(G, M) \neq \emptyset$, so by Theorem 3.1, we get the parts (1) or (2) of the theorem. Now, we suppose that

$$
\begin{equation*}
\operatorname{Fix}(\widetilde{G}, \widetilde{M})=\emptyset \tag{*}
\end{equation*}
$$

By assumptions of the theorem, if there is a singualr orbit, it must be a fixed point, so by $(*)$ all \widetilde{G}-orbits in \widetilde{M} must be n-dimensional. Since G is non-semisimple, \widetilde{G} is non-semisimple. Let H be a solvable normal subgroup of \widetilde{G} and put $N=$ $\operatorname{Fix}(H, \widetilde{M})$. We consider following two cases separately:
(a) $N=\emptyset$
(b) $N \neq \emptyset$
(a): By Fact 2.3, one of the following is true:
(a-i) There is a unique geodesic γ such that $H(\gamma)=\gamma$.
(a-ii) There is a unique class of asymptotic geodesics $[\gamma]$ such that $H[\gamma]=[\gamma]$.
(a-i): From normality of H in \widetilde{G} and uniqueness of γ, we get that $\widetilde{G}(\gamma)=\gamma$. Since $\operatorname{Fix}(\widetilde{G}, \widetilde{M})=\emptyset$ then γ is a \widetilde{G}-orbit in \widetilde{M}. But all orbits are n-dimensional and the orbit γ is of dimension one. Thus all orbits are of dimension one and $n=1$. Each $\delta \in \Delta$ maps \widetilde{G}-orbits onto \widetilde{G}-orbits. So $\delta(\gamma)$ is a \widetilde{G}-orbit. Since by Corollary 2.4, γ is the unique geodesic orbit, then $\delta(\gamma)=\gamma$. Thus $\Delta \gamma=\gamma$ and $\pi_{1}(M)=Z$ (see [6], Theorem 3.4 pa. 261). Now, by Lemma 2.7, M is diffeomorphic to $S^{1} \times R^{2}$ or $B^{2} \times R$. Since all G-orbits of M are regular (and diffeomorphic to each other) and the G-orbit $\frac{\gamma}{\Delta}$ is diffeomorphic to $\frac{\gamma}{Z}=\frac{R}{Z}=S^{1}$, all G-orbits are diffeomorphic to S^{1}. This is the part (3) of the theorem.
(a-ii) As like as (a-i), we get from normality of H in \widetilde{M} and uniqueness of $[\gamma]$ that $\widetilde{G}[\gamma]=[\gamma]$. First, suppose that there is an axial element $\delta \in \Delta$ and let λ be the unique geodesic such that $\delta \lambda=\lambda$. If $g \in \widetilde{G}, \delta(g \lambda)=g \delta \lambda=g \lambda$. Then, we get from uniqueness of λ that $g \lambda=\lambda$. So, λ is a \widetilde{G}-orbit and we get part (3) of the theorem in the same way as (a-i). Now, suppose that all elements of Δ are non-axial. Since elements of Δ and \widetilde{G} are commutative we get that $\Delta[\gamma]=[\gamma]$. Non-identity elements of Δ are fixed point free, so they are parabolic and M is a parabolic manifold. By Remark 2.6 , for each $\delta \in \Delta$ and each horosphere S related to the asymptotic class $[\gamma], \delta S=S$. Fix a horosphere S related to $[\gamma]$. Put $M_{1}=\frac{S}{\Delta}$ and let η_{S} and f be the maps defined in Remark 2.6. The homeomorphism $\phi: \widetilde{M} \rightarrow S \times R$ mentioned in Remark 2.6, induces a homeomorphism $\phi_{1}: \frac{\widetilde{M}}{\Delta}=$ $M \rightarrow \frac{S}{\Delta} \times R=M_{1} \times R$, such that $\phi_{1}(x)=\left(\kappa \eta_{S}(\widetilde{x}), f(\widetilde{x})\right), \widetilde{x} \in \kappa^{-1}(x)$. Now, we show that for each $g \in \widetilde{G}, g S=S$. If $g S \neq S$ then we get from Remark 2.6, that g is axial isometry and there is a unique geodesic λ in $[\gamma]$ such that g translates it. Since the members of Δ and g are commutative, we get from uniqueness of λ that for each $\delta \in \Delta, \delta \lambda=\lambda$. But intersection of λ and S is a one point set. So, we get from $\delta S=S$ that δ has a fixed point, which is a contradiction for non-identity δ. Therefore, $g S=S$. This means that all \widetilde{G}-orbits of \widetilde{M} are included in horospheres. Thus, S is a cohomogeneity one \widetilde{G}-manifold and $\frac{S}{\Delta}$ is a cohomogeneity one G-manifold. This is part (5) of the theorem.
(b): N is a nontrivial totally geodesic submanifold of \widetilde{M}. If $g \in \widetilde{G}, h \in H$ and $x \in N$ then

$$
g^{-1} h g(x)=x \Rightarrow h g(x)=g(x) \Rightarrow g(x) \in N
$$

Thus $\widetilde{G}(N)=N$. All orbits are of dimension n. So if $x \in N$ then

$$
n=\operatorname{dim} \widetilde{G}(x) \leq \operatorname{dim} N<\operatorname{dim} \widetilde{M}=n+2 \Rightarrow \operatorname{dim} N=n \text { or } n+1
$$

Now, consider two cases $\operatorname{dim} N=n$ and $\operatorname{dim} N=n+1$ separately.
($b-j$) $\operatorname{dim} N=n$.
In this case, N is a \widetilde{G}-orbit. If $n=1$, in a similar way in (a-i) we get part (3) of the theorem. Suppose $n \geq 2$ and put $N_{1}=\kappa(N)$. By Corollary 2.4, N is the unique totally geodesic \widetilde{G}-orbit in \widetilde{M}. Thus, for each $\delta \in \Delta, \delta(N)=N$, so $N_{1}=\frac{N}{\Delta}$. But N_{1} is a totally geodesic G-orbit in M, so it must be simply connected (since by Kobayashi's theorem in [10] homogeneous manifolds of negative curvature are simply connected). Therefore, Δ is trivial and M is simply connected. This is the part (1) of the theorem.
($b-j j$) $\operatorname{dim} N=n+1$
Since all orbits are of dimension n, N is a negatively curved cohomogeneity one \widetilde{G}-manifold. Consider following two cases:
(b-ij-1): There is a $\delta \in \Delta$ and $x \in \widetilde{M}$ such that $\delta \widetilde{G}(x) \neq \widetilde{G}(x)$.
(b-jj-2): For each $\delta \in \Delta$ and $x \in \widetilde{M}, \delta \widetilde{G}(x)=\widetilde{G}(x)$.
($b-j j-1$) From the fact that δ maps orbits on to orbits, we get that $\delta \widetilde{G}(x)=\widetilde{G}(y)$, $y \in \widetilde{M}$ (i.e., $\widetilde{G}(x) \cap \widetilde{G}(y)=\emptyset$). By Proposition 4.2 in [15], the minimum point set of the following function is at most the image of a geodesic

$$
f_{\delta}: \widetilde{M} \rightarrow R, \quad f_{\delta}(x)=d^{2}(x, \delta(x))
$$

So we can find a geodesic γ such that the image of γ is not the minimum point set of f_{δ} and $\gamma(0) \in G(x), \gamma(1) \in G(y)$. Put $g(t)=f_{\delta}(\gamma(t))$. Since the elements of Δ and \widetilde{G} are commutative, f_{δ} is constant along orbits (because $f_{\delta}(g x)=$ $\left.d^{2}(g x, \delta g x)=d^{2}(g x, g \delta x)=d^{2}(x, \delta x)=f_{\delta}(x)\right)$. Since $\delta(\gamma(0)) \in G(\gamma(1))$, then $f_{\delta}(\delta \gamma(0))=f_{\delta}(\gamma(1))$. Thus

$$
\begin{aligned}
g(0) & =f_{\delta}(\gamma(0))=d^{2}(\gamma(0), \delta(\gamma(0))) \\
& =d^{2}\left(\delta(\gamma(0)), \delta^{2}(\gamma(0))\right)=f_{\delta}(\delta \gamma(0))=f_{\delta}(\gamma(1))=g(1)
\end{aligned}
$$

Since g is strictly convex (see [1]), it has a unique minimum point $t_{0} \in(0,1)$. Therefore, $\widetilde{G}\left(\gamma\left(t_{0}\right)\right)$ is the minimum point set of f_{δ}, which must be a geodesic. Then $\widetilde{G}\left(\gamma\left(t_{0}\right)\right)$ is a (geodesic) one dimensional \widetilde{G}-orbit. Then in a similar way in ($a-i$) we get part (3) of the theorem.
(b-jj-2): Put $N_{1}=\kappa(N)$. Since for each $\delta \in \Delta, \delta(N)=N$ then $\pi_{1}(M)=\pi_{1}\left(N_{1}\right)$. N_{1} is a cohomogeneity one G-manifold of negative curvature, without singular orbits. So, by Remark 3.2, each G-orbit in N_{1} is diffeomorphic to $T^{p} \times R^{s}$, $p+s=\operatorname{dim} N-1=n$, and N_{1} is diffeomorphic to $T^{p} \times R^{s+1}$. These yield to the part (4) of the theorem.

References

[1] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[2] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, London, 1972.
[3] W. ByERs, Isometry group of manifolds of negative curvature, Proc. Am. Math. Soc. 54 (1976), 281-285.
[4] A. J. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space, Math. Z. 237 (2001), 199-209.
[5] A. J. Di Scala and C. Olmos, A geometric proof of the Karpelevich-Mostow theorem, Bull. Lond. Math. Soc. 41 (2009), 634-638.
[6] M. P. DO Carmo, Riemannian Geometry, Birkhäuser, Boston, Basel, Berlin, 1992.
[7] P. Eberlin and B. O'Neil, Visibility manifolds, Pasific J. Math. 46 (1973), 45-109.
[8] P. Eberlin, Geodesic follows in manifolds of nonpositive curvature, www.math.unc.edu/faculty/pbe/ams.
[9] F. I. Karpelevich, Surfaces of transitivity of semisimple group of motions of a symmetric space, Dokl. Akad. Nauk SSSR, n. Ser. 93 (1953), 401-404.
[10] S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Toho. Math. J. 14 (1962), 413-415.
[11] P. W. Michor, Isometric actions of Lie groups and invariants, Lecture course at the University of Vienna, http://www.mat.univie.ac.at/ michor/tgbook.ps.
[12] R. Mirzaie, On negatively curved G-manifolds of low cohomogeneity, Hokkaido Math. J. 38 (2009), 797-803.
[13] R. Mirzaie, On Riemannian manifolds of constant negative curvature, J. Korean Math. Soc. 48 (2011), 23-31.
[14] B. O'Neil, Semi Riemannian geomerty with applications to Relativity, Academic Press, New York, Berkeley, 1983.
[15] F. Podesta and A. Spiro, Some topological propetrties of cohomogeneity one Riemannian manifolds with negative curvature, Ann. Global Anal. Geom. 14 (1996), 69-79.

REZA MIRZAIE
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
IMAM KHOMEINI INTERNATIONAL UNIVERSITY (IKIU)
QAZVIN
IRAN
E-mail: mirzaie@ikiu.ac.ir
(Received February 14, 2011; revised June 4, 2012)

