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Two dimensional (α, β)-metrics with reversible geodesics

By IOANA M. MASCA (Brasov), SORIN V. SABAU (Sapporo)
and HIDEO SHIMADA (Sapporo)

Abstract. We study the necessary and sufficient conditions for a Finsler surface

with (α, β)-metrics to be with reversible geodesics. We show that such a Finsler struc-

ture is with reversible geodesics if and only if it is a Randers change of an absolute

homogeneous Finsler metric by a closed one-form.

1. Introduction

It is well-known that in general the geodesics of a Finsler space (M,F ) are

not reversible, i.e. for a geodesic γ : [0, 1] → M , the reverse curve γ̄ : [0, 1] → M ,

γ̄(t) := γ(1− t) is not necessarily a geodesic. This peculiarity distinguishes Fins-

lerian structures from the Riemannian ones. Of course, if (M,F ) is a Riemannian

or an absolute homogeneous Finsler space, then geodesics are reversible by defi-

nition.

We have studied in the past the problem of finding necessary and sufficient

conditions for a Finsler space with (α, β)-metric to be with reversible geodesics

(see [MSS], compare with [Cr]). The method used there was inspired by the study

of projectively related Finsler spaces with (α, β)-metrics ([BM], [S1], compare also

[Ai]). However, the method does not work well in the 2-dimensional case. Indeed,

we were not able to give a necessary and sufficient condition for a Finsler surface

with (α, β)-metric to be with reversible geodesics.
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In the present paper, we approach this open problem in a completely different

way by using the method of moving frames. This time, we succeeded to charac-

terize Finsler surface with (α, β)-metrics, other than Riemannian and absolute

homogeneous, to be with reversible geodesics in the following main theorem (see

Section 2 for notations).

Theorem 1.1. Let (M,F ) be a Finsler surface with (α, β)-metric which is

not projectively equivalent to the Riemannian metric a. Then F is with reversible

geodesics if and only if F is a Randers change F = F0 + εβ of an absolute

homogeneous Finsler metric F0 with (α, β)-metric, ε 6= 0, by a closed one form β.

Here is the content of our paper. In Section 2 we recall the basic notions

and notations of Finsler surfaces and describe the (α, β)-metrics. In Section 3 we

consider moving frames on a Finsler surface and obtain the characterization of

metrics with reversible geodesics in terms of a differential relation with respect

to a Riemannian moving frame (Proposition 3.1). In Sections 4, 5 we compute

this differential relation in terms of α and β using isothermal coordinates (The-

orem 4.2), and give some properties of the functions E and F . Finally, in the last

section, we study the integrability of PDE (6.6) and prove our main Theorem 1.1.

Our results gives an answer to one of the questions in [Ca] referring to the

use of moving frames technique in other cases than the Randers metric. It also

suggest a method to study the projective relatedness of (α, β)-metrics in the 2-

dimensional case left unsolved by Bácsó and Matsumoto in [BM]. It is true

that formally our findings are similar to Aikou’s in [Ai], but the present paper

is not a consequence of his result but links it with other types of formalism (see

the Remark in the end of the paper).

2. Finsler surfaces

Let us recall that a Finsler surface is a pair (M,F ), where M is a real

smooth 2-dimensional manifold and F : TM −→ [0,∞) a Finsler norm, i.e. a

positive, smooth function on T̃M = TM \ {0}, with the homogeneity proprety

F (x, λy) = λ·F (x, y), for all λ > 0 and all (x, y) ∈ T̃M and whose Hessian matrix

gij =
1
2

∂2F 2

∂yi∂yj is positive-definite at each point u = (x, y) ∈ T̃M .

Equivalently, a Finsler structure on the surface M can be regarded as a

smooth hypersurface Σ3 ⊂ TM for which the canonical projection π : Σ −→ TM

is a surjective submersion having the property that for each x ∈ M , the π-fiber
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Σx = π−1(x) is a smooth, closed, strongly convex curve in TxM enclosing the

origin.

Here, strongly convex means that Σx is strictly convex and it has contact

of precisely order two with its tangent line in each point. Traditionally, the

curve Σx ⊂ TM is called the indicatrix of the Finsler structure F and it has the

property that it is not centrally symmetric about the origin of TxM . If it is, then

the Finsler structure (M,F ) is called absolutely homogeneous, in other words,

F (x, y) = F (x,−y), for all (x, y) ∈ TM .

The simplest case of Finsler surface is a Riemannian surface and in this case

its indicatrix is a centrally symmetric circle on an ellipse in TxM , as well known.

We are going to construct a canonical moving frame on Σ (see for example

[Br1997], [Br2002]).

Let Σ1 be the unit tangent bundle of a Riemannian metric, say a, on M

(it is customary to denote α :=
√
a(y, y), where (x, y) ∈ TM). For any Finsler

structure Σ on M , there exists a smooth, positive function r : Σ1 −→ R+ such

that

Σ ≡ Σr =

{
1

r(u)
· u : u ∈ Σ1

}
.

This notations will be used throughly.

In order to assure the strong convexity on Σ, an additional differential con-

dition on r must be given. Conversely, any positive function p : Σ1 −→ R+

satisfying a certain differential condition defines a Finsler structure on the sur-

face M in this way. In other words, one can say that a Finsler structures on a

surface M dependes on a function of 3 variables, namely the function r on Σ1.

Obviously Σp is in fact the indicatrix bundle of (M,F ) and the curve Σp

∣∣
x
={

1
p(u) · u : u ∈ Σ1

∣∣
x

} ≡ {y ∈ TxM : F (x, y) = 1} corresponds to the indicatrix

curve described above.

The function ρ : Σp −→ Σ1, ρ
(

1
p(u) · u) = u, ∀u ∈ Σ1 is the “inverse”

function which takes the Finsler structure (M,F ) back to the original Riemannian

structure (M,a).

The functions F and p are essentially the same, namely, if one parametrizes

the Riemannian indicatrix Σ1

∣∣
x
by the usual Euclidean angle t, then

p(x1, x2, t) = F (x1, x2, cos t, sin t),

where
(
y1(t), y2(t)

)
= (cos t, sin t).

Recall that a Finsler space with (α, β)-metric (M,F ) is given by a Finslerian

norm F = F (x, y) : TM −→ [0,∞), where F is a positive one-homogeneous

function of the two arguments α and β. Hereafter we consider only (α, β)-metrics
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obtained by means of a positive definite Riemannian metric (M,a) on M and a

linear 1-form β(x, y) = bi(x)y
i, such that b2 := a(b, b) < 1.

Following Shen ([S2]), we can always write F as

F = α · φ
(
β

α

)
, (2.1)

where φ : I = [−r, r] −→ [0,∞) is a C∞ function and the interval I can be chosen

large enough such that r ≥
∣∣β
α

∣∣, for all x ∈ M and y ∈ TxM .

We also recall

Lemma 2.1 ([S2]). The function F = α · φ(s), s = β
α is a Finsler metric for

any α =
√
aijyiyj and any β = biy

i with ‖βx‖α < b0 if and only if φ = φ(s) is a

positive C∞ function on (−b0, b0) satisfying the following condition:

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0. (2.2)

Remark 2.1. (1) Lemma 2.1 implies that

φ(s)− sφ′(s) > 0, |s| < b0 (2.3)

(2) In general, due to the presence of the 1-form β, the function F is not absolute

homogeneous.

Classical examples of (α, β)- metrics are: the Randers metrics, namely F =

α+ β, or Matsumoto metrics, i.e. F = α2

α−β .

For simplicity, we will use in the following the notations:

φ′(s) =
∂φ(t)

∂t

∣∣∣∣
t=s

, φ′(−s) =
∂φ(t)

∂t

∣∣∣∣
t=−s

. (2.4)

In other words, we have

[
φ(−s)

]′
=

dφ(−s)

ds
= −φ′(−s),

[
φ(−s)

]′′
=

d2φ(−s)

d2s
= φ′′(−s). (2.5)

It can be easily seen that if (M,F ) is a Finsler metric, then its reverse metric

F̄ (x, y) := F (x,−y) must be a Finsler metric as well.

Let us remark that Lemma 2.1 implies

Lemma 2.2. If F = α · φ(β
α

)
is an (α, β) Finsler metric, then φ cannot be

an odd function.
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Proof. Let us assume that F is Finsler and the corresponding φ is odd, i.e.

φ(−s) = −φ(s), for all s ∈ (−b0, b0), then it follows

[
φ(−s)

]′
=

[− φ(s)
]′
= −φ′(s),

[
φ(−s)

]′′
=

[− φ(s)
]′′

= −φ′′(s). (2.6)

On the other hand, using the derivation rule of composed functions, we get

[
φ(−s)

]′
= −φ′(−s),

[
φ(−s)

]′′
=

[− φ(s)
]′′

= φ′′(−s).

and therefore, for odd functions, we obtain φ′(−s) = φ′(s), φ′′(−s) = −φ′′(s).
Substituting these formulas in (2.2), we have

−φ(−s) + sφ′(−s)− (b2 − s2)φ′′(−s) > 0, |s| ≤ b < b0,

but these formula contradicts (2.2) written by putting −s instead of s, i.e. it is

impossible for φ to be an odd function. ¤

3. Moving frames on Finsler surfaces

The 3-manifold Σ1 can be regarded as the orthonormal frame bundle over M

with respect to a and therefore it has a canonical coframing {α1, α2, α3}, where
α1, α2 are the tautological 1-forms and α3 is the Levi–Civita connection form.

The canonical coframing {α1, α2, α3} satisfies the structure equations

dα1 = α2 ∧ α3, dα2 = α3 ∧ α1, dα3 = kα1 ∧ α2, (3.1)

where the function k : M −→ R is the Gauss curvature of the Riemannian

structure (M,a).

It is well known that for a Finsler structure (M,F ) with indicatrix bundle

Σ ⊂ TM a canonical coframing {ω1, ω2, ω3} can be as well constructed. The

corresponding structure equations are

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3, dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3, (3.2)

where the functions I, J,K : Σ −→ R are called the Cartan, Landsberg and

flag curvatures, respectively (see [Br1997], [Br2002], [SSS]). We point out that,

unlikely the Riemannian case, all these curvatures live on Σ and not on the base

manifold M .
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Regarding now the Finslerian indicatrix bundle Σ ≡ Σp as a deformation

of the Riemannian unit tangent bundle Σ1 by ρ : Σp −→ Σ1, where p : Σ1 −→
R+ gives the Finslerian norm, it is quite obvious that the cotangent map ρ∗ :

T ∗Σ1 −→ T ∗Σp, will allow to obtain the Finsler coframing {ω1, ω2, ω3} from the

Riemannian one {α1, α2, α3}. Indeed, some computations show

ω1 = ρ∗
(√

p(p+ p33)α
1
)
, ω2 = ρ∗(pα2 + p3α

1),

ω3 = ρ∗
(
(p+ p33)α

3 + (p32 − p1)α
2

√
p(p+ p33)

+
Ppα

1

√
p3(p+ p33)3

)
, (3.3)

where

Pp =
1

2
(p3p32p33 − p3p33p1 + pp333p32 − pp1p333 + 2pp32p3 − 2pp1p3

− 3pp2p33 − p2p332 − 2p2p2 − p2p
2
33 − pp332p33). (3.4)

It can be seen that the strongly convexity of Σr is equivalent to the differen-

tiable condition (see [Br1997], [Ca])

p33 + p > 0,

where the subscript indicate the directional derivatives with respect to the Rie-

mannian coframing {α1, α2, α3}, i.e. for any differentiable function f : Σ1 −→ R

we denote df = f1 · α1 + f2 · α2 + f3 · α3.

It is known that the geodesics of the Riemannian structure (M,a) are the

projections to M of the integral lines of the differential system {α1 = 0, α3 = 0}
defined on Σ1.

Similarly, for a Finsler structure (M,F ) with indicatrix bundle Σ and cano-

nical coframing {ω1, ω2, ω3}, the Finslerian geodesics are the projections to M of

the integral lines of the exterior differential system {ω1 = 0, ω3 = 0} on Σ.

Let us consider now another Finsler structure F on the same surface M . This

implies that there exists another smooth positive function, say r : Σ1 −→ R+,

such that Σr =
{

1
r(u) ·u : u ∈ Σ1

}
is the indicatrix bundle of (M,F ). The inverse

function ρ̄ : Σr −→ Σ1,

ρ̄

(
1

r(u)
· u

)
= u, ∀u ∈ Σ1 (3.5)

allows to recover the original Riemannian structure (M,a).
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Obviously, ρ̄ is invertible in the sense that we can always define

ρ̄−1 : Σ1 −→ Σr, ρ̄−1 =
1

r(u)
· u, ∀u ∈ Σ1. (3.6)

This means that the following diagram is commutative

Σp
µ

//

ρ
ÃÃ
AA

AA
AA

A
Σr

ρ̄
~~}}
}}
}}
}}

Σ1

where µ := ρ̄−1 ◦ ρ, and therefore, the

{ωi} {ω i}µ∗
oo

{αi}
ρ∗

bbEEEEEEEE ρ̄∗

<<yyyyyyyy

where {ω̄1, ω̄2, ω̄3} is the associated canonical coframe of (M,F ) defined in the

same way as above. We also have

ω1 = ρ∗
(√

r(r + r33)α
1
)
, ω2 = ρ∗(rα2 + r3α

1),

ω3 = ρ∗
(
(r + r33)α

3 + (r32 − r1)α
2

√
r(r + r33)

+
Prα

1

√
r3(r + r33)3

)
, (3.7)

where

Pr =
1

2
(r3r32r33 − r3r33r1 + rr333r32 − rr1r333 + 2rr32r3 − 2rr1r3

− 3rr2r33 − r2r332 − 2r2r2 − r2r
2
33 − rr332r33).

Similar formulas can be written by means of µ in order to construct the

relation between the coframings {ω1, ω2, ω3} and {ω̄1, ω̄2, ω̄3}, but we do not

need to do this.

With this setting, one can see that the Finsler structures F and F̄ are pro-

jectively equivalent if and only span{ω1, ω3} = µ∗(span{ω̄1, ω̄3}). Since both

Σp, Σr are topologically diffeomorphic to projective sphere SM := T̃M/∼ and

µ : Σp −→ Σr is diffeomorphism, we identify here the 3-manifolds Σp and Σr,
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where the equivalence relation ∼ is defined by (x, y) ∼ (x, z) if and only if y, z

are positive multiples of each other.

In terms of the Riemannian canonical coframing {α1, α2, α3} the above con-

dition become span{α1,M2 · α2 +M3 · α3} = span{α1,M2 · α2 +M3 · α3} = 0,

where we denote for simplicity




M2 =
p32 − p1√
p(p+ p33)

M3 =

√
p+ p33

p

,





M2 =
r32 − r1√
r(r + r33)

M3 =

√
r + r33

r
.

(3.8)

It can be seen easily now that the projective equivalence condition reduce to

M3

M2
=

M3

M2

,⇐⇒ p+ p33
p32 − p1

=
r + r33
r32 − r1

, (3.9)

provided M2 6= 0 and M2 6= 0. We observe that the geometrical meaning of

M2 = 0 is that (M,F ) and (M,α) are projectively related, i.e. the Finslerian

geodesic of (M,F ) and Riemannian geodesic of (M,α) coincide. In this case,

obviously (M,F ), (M,F ) and (M,α) are all projectively equivalent. We consider

this case to be trivial and exclude it from our analysis. Therefore, we always

assume in the following that the Finslerian structures (M,F ) and (M,F ) are not

projectively equivalent to (M,α), i.e. M2 6= 0 and M2 6= 0.

In order to obtain the condition for (M,F ) to be with reversible geodesics,

we impose the condition that F (x, y) = F (x,−y), for all (x, y) ∈ TM , where

F (x, y) is the reverse Finsler structure associated to F on M . In this case, with

the notations above, we obtain:

Proposition 3.1. Let (M,F ) be a Finsler surface and (M,F ) be the associ-

ated reverse Finsler structure on M . We assume that both Finslerian structures

F and F are not Riemannian projectively equivalent. Then, (M,F ) is with re-

versible geodesics if and only if

p+ p33
p32 − p1

=
r + r33
r32 − r1

(3.10)

with the notations above.

4. The reversible geodesics condition

We start with the Riemannian surface (M,a) and let us consider the isother-

mal coordinates x = (x1, x2) onM , namely, in these local coordinates aij = e2νδij ,
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where ν is a smooth function on M and δij the Kronecker operator. This allows

to write the canonical Riemannian coframing {α1, α2, α3} as

α1 = −eν(x1,x2) sin t dx1 + eν(x1,x2) cos t dx2,

α2 = eν(x1,x2) cos t dx1 + eν(x1,x2) sin t dx2,

α3 = −∂ν(x1, x2)

∂x2
dx1 +

∂ν(x1, x2)

∂x1
dx2 + dt, (4.1)

where t ∈ [0, 2π) is the fiber coordinate. The unit circle Σ1

∣∣
x
∈ TxM of (M,a) is

therefore parametrized as

y1 = e−ν(x1,x2) · cos t, y2 = e−ν(x1,x2) · sin t, t ∈ [0, 2π). (4.2)

One can easily remark that for a vector (y1, y2), the opposite vector is given

by −y = (−y1,−y2) =
(
e−ν(x1,x2) · cos(t+π), e−ν(x1,x2) · sin(t+π)

)
. Therefore, if

we denote by p and r the Finslerian norms corresponding to F (x, y) and F (x, y) =

F (x,−y) considered as positive real valued function on Σ1 as explained before,

then we get

Lemma 4.1. The relation between p and r is given by

r(x1, x2, t) = p(x1, x2, t+ π). (4.3)

Straightforward computations give immediately the relations between the

directional derivatives of p and r with respect to the Riemannian coframing

{α1, α2, α3} and the partial derivatives with respect to the natural coordinates

(x1, x2, t). Since these computations are quite long and annoying we decided to

put them in a preliminary version of this paper [MSS2] available on arxiv.org.

Let us remark that in the natural coordinates (x1, x2, t) on Σ1 we have

α :=
√
a(y, y) = 1,

β := b1(x
1, x2)y1 + b2(x

1, x2)y2

= e−ν(x1,x2)
[
b1(x

1, x2) · cos t+ b2(x
1, x2) · sin t] (4.4)

where ν, b1, b2 : M −→ R are smooth functions.

Hence, on the hypersurface Σ1 ↪→ TM , we can put s = β and therefore

p(x1, x2, t) = φ(s)|s=β = φ(b1(x
1, x2)e−ν(x1,x2) cos t
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+ b2(x
1, x2)e−ν(x1,x2) sin t),

p(x1, x2, π + t) = r(x1, x2, t) = φ(−s)|s=β

= φ
(
b1(x

1, x2)e−ν(x1,x2) cos(π + t)

+ b2(x
1, x2)e−ν(x1,x2) sin(π + t)

)
. (4.5)

Remark 4.1. It is useful to see that for β′
t = e−ν(x1,x2)

( − b1(x
1, x2) sin t +

b2(x
1, x2) cos t

)
we have (β′

t)
2 = b2 − β2, where b2 = e−2ν(x1,x2)(b21 + b22) is the

Riemannian length of the vector (b1, b2).

Straightforward computations (that can be found in [MSS2]) lead us to

Theorem 4.2. The necessary and sufficient condition for the Finsler struc-

tures F (x, y) and F (x, y) = F (x,−y) to be projectively equivalent is
√
b2 − s2 · E(s) ·M+ F(s) · e−ν(x1,x2) curl21 = 0, (4.6)

where

E(s) := s
(
φ′(s)φ′′(−s) + φ′(−s)φ′′(s)

)
+
(
φ(−s)φ′′(s)− φ(s)φ′′(−s)

)
, (4.7)

F(s) := (b2 − s2)
(
φ′(s)φ′′(−s) + φ′(−s)φ′′(s)

)
+
(
φ(−s)φ′(s) + φ(s)φ′(−s)

)

(4.8)

and

M := e−ν(x1,x2) ·
(
∂b1(x

1, x2)

∂x1
cos2 t+ sin t cos t

(
∂b1(x

1, x2)

∂x2
+

∂b2(x
1, x2)

∂x1

)

+
∂b2(x

1, x2)

∂x2
sin2 t

)
+ β′

t

(
∂ν(x1, x2)

∂x2
cos t− ∂ν(x1, x2)

∂x1
sin t

)

− β

(
∂ν(x1, x2)

∂x1
cos t+

∂ν(x1, x2)

∂x2
sin t

)
,

curl21 :=
∂b2(x

1, x2)

∂x1
− ∂b1(x

1, x2)

∂x2
. (4.9)

Remark 4.2. Using the above formulas for β and β′
t, one can see that M can

be expressed as

M = K1 +K2 · cos 2t+K3 · sin 2t, (4.10)

where

K1 :=
1

2

(
∂b1
∂x1

+
∂b2
∂x2

)
, K2 :=

1

2

(
∂b1
∂x1

− ∂b2
∂x2

)
−
(

∂ν

∂x1
b1 − ∂ν

∂x2
b2

)
,

K3 :=
1

2

(
∂b2
∂x1

+
∂b1
∂x2

)
−
(

∂ν

∂x2
b1 +

∂ν

∂x1
b2

)
.
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5. Basic lemmas

In the present section, we are going to give some results to be used later.

Lemma 5.1. The following relations are equivalent

(1) E = 0,

(2) φ(s) = k1 · φ(−s) + k2 · s, k1, k2 non vanishing constants,

(3) F (α, β) = F0(α, β) + εβ, where F0 is an absolute homogeneous (α, β)-metric

and ε is a non vanishing constant.

Proof. The equivalence of 1 and 2 follows directly from Lemma 3.4 in [MSS].

Indeed, one can easily see that E = 0 is equivalent to the equation T − T = 0

in [MSS] and therefore 2 follows.

We prove now the equivalence of 2 and 3. First of all, we remark that k1 can

take only the value 1. Indeed, by putting −s instead of s in relation 2, it follows

φ(−s) = k1 · φ(s)− k2 · s (5.1)

and by adding these formulas, it results

φ(s) + φ(−s) = k1 ·
[
φ(s) + φ(−s)

]
, (5.2)

i.e. [
φ(s) + φ(−s)

]
(k1 − 1) = 0 (5.3)

and we have two cases here. The first case is φ(s) = −φ(−s), i.e. φ is an odd

function, but this is not good due to Lemma 2.2. Therefore, the only possible

case is k1 = 1 and the formula in 2 actually reads

φ(s) = φ(−s) + k2 · s, (5.4)

where k2 6= 0, because otherwise we would obtain only absolute homogeneous

metrics. We will show now that (5.4) is, in fact, equivalent to the relation 3.

Let us recall that the vector space of all real-valued functions is the direct

sum of the subspaces of even and odd functions. In other words, any function

φ(s) can be uniquely written as the sum of an even function φeven and an odd

function φodd, namely

φ(s) = φeven(s) + φodd(s), (5.5)

where

φeven(s) =
1

2

[
φ(s) + φ(−s)

]
, φodd(s) =

1

2

[
φ(s)− φ(−s)

]
. (5.6)
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Using now (5.4) it follows

φodd(s) =
1

2

[
φ(s)− φ(−s)

]
=

k2
2

· s, φ(s) = φeven(s) +
k2
2

· s, (5.7)

i.e. the corresponding F (α, β) is of the form in 3. ¤

We are going to discuss next the equation F(s) = 0, where F(s) is given

in (4.8).

A straightforward computation shows that, for φ′(s) 6= 0, this is equivalent to

(b2 − s2) · φ̄′′(s)− sφ̄′(s) + φ̄(s)

φ̄′(s)
=

(b2 − s2) · φ′′(s)− sφ′(s) + φ(s)

φ′(s)
, (5.8)

where we put φ̄(s) := φ(−s). Since both φ and φ̄ must be Finsler metrics, from

Lemma 2.1 it results that the numerators in both hand sides of (5.8) must be

positive and from here it results φ′(s) · φ̄′(s) > 0, in other words, φ and φ̄ must

have the same monotonicity.

Let us remark that every even function φ is solution of F = 0. Of course,

any odd function is also solution, but we can exclude these functions due to

Lemma 2.2.

Let us suppose that an arbitrary φ, i.e. it is not even, nor odd, is solution

of F = 0. Then, φ(s) and φ̄(s) must have the same monotonicity. We will show

that this is not possible.

Indeed, recall that the composition of two functions with same monotonicity

gives an increasing function and the composition of two functions with different

monotony gives an decreasing function (this can be easily be seen from the deri-

vation rule of composed functions).

If we write φ̄(s) = (φ ◦ ψ)(s), where ψ(s) := −s, then we have two cases

(1) If φ is an increasing function, then, since ψ is decreasing, their composition

φ̄(s) is decreasing, i.e. φ(s) and φ̄(s) have different monotonicities, but this

is a contradiction.

(2) If φ is decreasing, it follows that φ̄(s) is increasing, but this also implies that

φ(s) and φ̄(s) have different monotonicities and this is not good again.

We can conclude that the equation F = 0 has no Finslerian solution, except the

absolute homogeneous Finsler metrics, provided φ′(s) 6= 0 for all s ∈ (−b0, b0).

Let us consider now the case φ′(s) = 0.

If φ′(s) = 0 for all s ∈ [−b0, b0], then φ is linear in s and this is not good

because we do not get a genuine Finsler metric.
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Therefore, the only possible case is that there exists some s0 ∈ [−b0, b0] such

that φ′(s0) = 0, i.e. s0 is a singular point of φ. In order to study the metric at

the singular point s0, we need to consider the 2nd order derivative φ′′(s0).
Let us assume that s0 is degenerate, i.e. φ′′(s0) = 0. Then, by Taylor’s

expansion, φ must be of the form φ(s) = a + c · s3+ higher order terms, for

s0 − ε < s < s0 + ε. Consequently, by neglecting the higher order terms, we

obtain φ′(s) = 3cs2 and φ̄′(s) = −3cs2, for ε → 0. Thus we get φ′(s) · φ̄′(s) < 0,

but this is a contradiction.

Therefore, all singular points s0 must be non-degenerate, i.e. φ : [−b0, b0] −→
R+ is a Morse function. From Morse theory, we know that the set of singular

points of φ must be finite and contains only isolated points. Then, by means of

Morse lemma, it follows that φ must be of the form φ(s) = a+bs2+ higher orders

terms, for s0 − ε < s < s0 + ε.

In general, one can see that for arbitrary s, the function

φ(s) = a0 + a2 · s2 + a4 · s4 + · · ·+ a2k · s2k

is solution for F = 0, but this is an even function, i.e. F must be absolute

homogeneous, and from the previous analysis it follows that there are no other

solutions of the equation F = 0.

Remark 5.1. We point out that for a singular point s0 of φ, there exists a

small enough positive constant ε such that there is no other singular point in the

ε-neighborhood (s0 − ε, s0 + ε). Indeed, if the singular points would accumulate,

then φ must be constant on the ε-neighborhood and it is not good for us because

violates the conditions in Lemma 2.1.

Therefore, we can conclude

Proposition 5.2. The equation F = 0 has no other Finsler solutions except

the absolute homogeneous case.

We also have

Lemma 5.3. The function E(s) is an odd function and F(s) is an even one.

Proof. Indeed, if one puts −s instead of s in the definitions of E(s) and

F(s), then the conclusion follows immediately. Here, we take into account the

formulas (2.4) and (2.5). ¤
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6. (α, β)-metrics with reversible geodesics

Let us consider the necessary and sufficient condition (4.6) given in The-

orem 4.2 for an (α, β)-metric to be with reversible geodesics.

If we put −s instead of s and taking into account Lemma 5.3 it follows

√
b2 − s2 · E(−s) · M+ F(−s) · e−ν(x1,x2) curl21 = 0 (6.1)

−
√
b2 − s2 · E(s) ·M+ F(s) · e−ν(x1,x2) curl21 = 0, (6.2)

and therefore, from relations (4.6) and (6.2) it follows the following system




E(s) ·M = 0,

F(s) · curl21 = 0.
(6.3)

Since, due to Proposition 5.2, the condition F(s) = 0 is not convenient,

it follows that geodesic reversibility condition (4.6) is equivalent to one of the

following two cases

E(s) = 0, curl21 = 0, (6.4)

or

M = 0, curl21 = 0. (6.5)

The first case was already discussed in Lemma 5.1.

We will discuss next the case M = 0.

Let us assume M=0, for all t∈[0, 2π), i.e. M=K1+K2 ·cos 2t+K3 ·sin 2t=0.

Evaluating this formula for t = 0, t = π
2 and π

4 , we get K1 = K2 = K3 = 0, and

taking into account the condition curl21 = 0, we obtain





∂b2
∂x1

− ∂b1
∂x2

= 0

∂b1
∂x1

+
∂b2
∂x2

= 0

1

2

( ∂b1
∂x1

− ∂b2
∂x2

)
−
( ∂ν

∂x1
b1 − ∂ν

∂x2
b2

)
= 0

1

2

( ∂b2
∂x1

+
∂b1
∂x2

)
−
( ∂ν

∂x2
b1 +

∂ν

∂x1
b2

)
= 0.

(6.6)

This is a 1st order PDE with 2 unknown functions b1, b2, defined on M , where ν

is a given function.

One can easily remark that the first two equations of the system are in fact

the divergence and the curl of the vector (b1, b2) and these are equivalent to
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Cauchy–Riemann conditions of differentiability for the function b : C→ C, given
by b(x1, x2) = (b1(x

1, x2), b2(x
1, x2)). In other words, any differentiable complex

function of one complex variable on M satisfies the first two equations of the

system (6.6).

A straightforward computation shows that this PDE system is integrable if

and only if
∂2ν

∂x1∂x1
+

∂2ν

∂x2∂x2
= 0, (6.7)

provided b1 and b2 do not vanish in the same time.

We remark that the same conclusion follows from the Cartan–Kähler theory

applied to the system (6.6).

On the other hand, we recall that in the isothermal coordinates x1, x2, the

Gauss curvature k of the Riemannian metric e2νδij is given by

k = −e−2ν

(
∂2ν

∂x1∂x1
+

∂2ν

∂x2∂x2

)
. (6.8)

Therefore we can conclude that the PDE system (6.6) is integrable if and only

if the Riemannian metric a is flat. But this means that the function ν(x1, x2)

must be constant and thus the system (6.6) has only the constant solution, i.e.

the functions b1, b2 are constant.

In conclusion, condition (4.6) in Theorem 4.2 implies that only two cases

are possible: the case (6.4) that is detailed in Lemma 5.1, and the case (6.5)

that leads to b1, b2, ν constants, but this last case contradicts our assumption in

Proposition 3.1, so it should be eliminated.

Conversely, it is trivial to check that F given in Lemma 5.1 is with reversible

geodesics and this proves Theorem 1.1.

Remark 6.1. If (M,a) is a flat Riemannian space and β = bi · yi a linear

1-form on TM , such that b1, b2 are constants, then it can be seen directly (see for

example (2.18) in [MSS]) that any (α, β) metric F = F (α, β) constructed with

these α and β is with reversible geodesics and projectively equivalent (M,a). In

fact, F is a Minkowski metric on M .

We point out that this property is true in arbitrary dimension.

Remark 6.2. T. Aikou defines in [Ai] the notion of “strictly projectively

equivalence” of two Finsler structures F and F̄ on M by the relation

dωF = dωF̄ , (6.9)

where ωF := ∂F
∂yi dx

i, and shows that this relation is equivalent to F = F̄ + β,

with β closed one form on M .
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On the other hand, we recall that, regardless dimension, our definition of

projectively equivalence is

Γ̄ = Γ + λC, (6.10)

where Γ is the geodesic spray of F , C is the Liouville vector field C := yi ∂
∂yi , and

λ a scalar function on TM (see [Cr] and [MSS] for details).

One can easily see that (6.9) implies (6.10), but without other arguments,

there is no obvious reason for the inverse implication to be true.

In fact, our results in the present paper and [MSS] are not a consequence

of [Ai], but we prove exactly the fact that the inverse statement is indeed true and

therefore our notion of “projectively equivalence” and Aikou’s notion of “strictly

projectively equivalence” are in fact equivalent.
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