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Note on the problem of de la Vallée Poussin

By JAN ANDRES (Olomouc)

Abstract. A survey of results related to this problem is given. The extension

to the vector case is examined. The main stimulation comes from the lecture of Á.
Elbert given at the ICNO XII Conference in Cracow 1990 (see also [10]).

1. In reply to the question concerning the lower distance estimate of
the consecutive zeros t1, t2 of the nontrivial oscillatory solutions x(t) of
the equation

x′′ + a(t)x′ + b(t)x = 0,

with continuous bounded coefficients on [t1, t2], namely

A := max
t∈[t1,t2]

|a(t)|, B := max
t∈[t1,t2]

|b(t)|,

Ch. J. de la Vallée Poussin [24] came for h = t2 − t1 > 0 to the
inequality

1 < 2Ah +
1
2
Bh2.

Since that time there have been stated several improvements of this result,
e.g.,

1 <
1
2
Ah +

1
6
Bh2,

by P. Hartman and A. Wintner [11] or, so far the sharpest inequality
of this type,

1 ≤ 2Ah

π2
+

Bh2

π2
,
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by. Z. Opial [17], [18] as well as the generalization to higher-order equa-
tions. For

x(n) +
n∑

k=1

ak(t)x(n−k) = 0,

and x(t1) = · · · = x(tn) = 0 (t1 < t2 < · · · < tn) the two following
estimates were obtained for h = tn− t1 > 0 by A. Yu. Levin [14], [15] (cf.
also the similar result in [26] for the special case of the above equation)

n−1∑

k=1

hk

k!
Ak +

(n− 1)n−1

nnn!
hnAn > 1,

n∑

k=1

hk

2kk[ 12 (k − 1)]!(1
2k)!

Ak > 1,

where
Ak := max

t∈[t1,t2]
|ak(t)| k = 1, . . . , n.

Furthermore, for n = 3 A. Lasota [12] and for n = 4 D. Bobrowski [7]
have established the “Opial-type” inequalities

1 <
1
4
A1h +

A2h
2

π2
+

A3h
3

2π2
,

and

1 <
1
4
A1h +

A2h
2

π2
+

A3h
3

2π2
+

A4h
4

2π2
.

Nevertheless, until the appearance of the recent paper [8] by J.H. E. Cohn,
the problem of the optimal estimate has remained open even for n = 2. In
[8], the sharpest inequality has been found just for n = 2 in the form

h ≥ 2
∫ ∞

0

dt

1 + At + Bt2
.

2. The main purpose of this note consists (beyond making a survey
of results) in performing the appropriate vector extension. Before this we
would like to point out that the result in [8] can be generalized to the
nonlinear equation

x′′ + f(t, x, x′) = 0,
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satisfying |f(t, x, y)| ≤ A|y| + B|x| everywhere, as well as to those for
n = 2, 3, 4 in [7], [12], [18], where, moreover, the equation can even take
the more general form

(0) x(n) + f(t, x, . . . , x(n−1)) = ex(n−1) + g(t, x, . . . , x(n−1)),

where e is an arbitrary real constant.
Let us note that in [10] an analog of [8] has been derived for the

half-linear equation

x′′ + a(t)|x′|sgn x + b(t)x = 0,

by extending Sturmian comparison theorems to such differential equations.
Moreover for n = 3 a nonlinear version of [12] has been already derived in
[6], [25].

Following step by step the approach made in [8], one can readily check
that the first nonlinear generalization is trivial. Nevertheless, the higher-
order analog is not yet known (for some further results in this field see also
[5], [9], [16], [19], [22], [23]).

Another indicated nonlinear generalization for n = 2, 3, 4 can be de-
rived by multiplication of (0) with x(n−2)(t), where x(t) is a solution sat-
isfying the oscillatory conditions prescribed, and integration is from u to
v, where u, v (implied by these conditions) are such that

x(n−2)(u) = x(n−2)(v) = 0 u < v.

Assuming that

|f(t, x, . . . , x(n−1))| ≤ M0|x|+ · · ·+ Mn−1|x(n−1)|,
and g(t, x, . . . , x(n−1))x(n−2) ≥ 0 everywhere, we obtain the relation

∫ v

u

[x(n−1)(t)]2 dt =
∫ v

u

f(t, x, . . . , x(n−1)(t)) x(n−2)(t) dt

−
∫ v

u

g(t, x(t), . . . , x(n−1)(t)) x(n−2)(t) dt

− e

2
{[x(n−2)(v)]2 − [x(n−2)(u)]2}

≤
∫ v

u

[M0|x(t)x(n−2)(t)|+ · · ·+ Mn−1|x(n−1)(t) x(n−2)(t)|] dt.

Using the “Opial-type” approach, i.e., applying the same integral in-
equalities as in [7], [12], [18] to the last part of the above relation, we arrive
at the desired estimates which are exactly the same as those mentioned
already above for linear equations.
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3. Now, consider the vector Jacobi-type equation

(1) X ′′ + A(t)X = 0,

where X = (x1, . . . , xm)T , A(t) = (aij(t))m
1 ∈ C([a, b]), i.e., in components

x′′i +
m∑

j=1

aij(t)xj = 0 i = 1, . . . , m.

To (1) we introduce the notion of conjugate points (see [2]–[4]):

Definition. If there exists a nontrivial solution of (1) such that

(2) X(a) = 0 = X(b),

with b > a and if b is the smallest number larger than a with this property,
then b is called the first conjugate point to a relative to (1).

The following statements have been proved in [2]–[4] (cf. also [21]).

Proposition 1. Let aij(t) ≥ 0 for t ∈ [a, b]; i, j = 1, . . . , m. If b is the
first conjugate point of a (relative to (1)) and if there is a number c ∈ (a, b)
such that A(c) is irreducible (i.e., if there do not exist nonempty subsets I
and J of {1, . . . ,m} such that I∩J = ∅, I∪J = {1, . . . ,m} and aij(c) = 0
if i ∈ I, j ∈ J), then there exists a solution X(t) of (1) such that (2) is
satisfied and

xi(t) > 0 for t ∈ (a, b), i = 1, . . . , m.

Proposition 2. Let aij(t) ≥ 0 for t ∈ [a, b]; i, j = 1, . . . , m. If b is the
first comjugate point of a relative to (1) and if A(t) is symmetric, then
there exists a solution X(t) of (1) such that (2) is satisfied and

xi(t) ≥ 0 for t ∈ [a, b], i = 1, . . . , m.

Moreover observed in [21], each solution X(t) of (1)–(2) can be ex-
pressed by means of the nonnegative Green function G(a, b, t, s) as

X(t) =
∫ b

a

G(a, b, t, s) A(s)X(s) ds,

i.e., in components

xi(t) =
∫ b

a

G(a, b, t, s)
m∑

j=1

aij(s)xj(s) ds i = 1, . . . , m.

Hence, if there is some k ∈ {1, . . . , m} such that

(3) akj(t) ≥ aij(t) ≥ 0 for t ∈ [a, b]; i, j = 1, . . . , m,
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then X(t) above satisfies

(4) xk(t) ≥ xi(t) for t ∈ [a, b], i = 1, . . . , m,

as well as

(5) xk(t) > 0 for t ∈ (a, b),

because otherwise there would be some c ∈ (a, b) with

xk(c) = xi(c) = 0 for all i = 1, . . . , m,

which contradicts the assumption that b(> c) is the first conjugate point
to a relative to (1).

Our main aim here is to show that, under the assumptions of Propo-
sition 1 or Proposition 2 and (3), the solution X(t) of (1)–(2) exists with

(6) h = b− a ≥ π√
Ak

, where Ak := max
t∈[a,b]

m∑

j=1

akj(t).

For this purpose we will appropriately modify the approach employed
for the scalar case in [8]. Thus, denote by αk ∈ (a, b) the first (from left)
focal point, x′k(αk) = 0, and consider on [a, b] the Prüfer-like transforma-
tion

xi(t) = ri(t) sin θi(t), x′i(t) = ri(t) cos θi(t) (i = 1, . . . , m).

Because of (5) we have also

x′k(t) > 0 for t ∈ (a, αk),

and consequently we can assume without any loss of generality that

rk(t) > 0 and 0 ≤ θk(t) ≤ π

2
for t ∈ [a, αk],

where
θk(a) = 0 and θk(αk) =

π

2
.

So, we come to

x′′k = r′k cos θk − rkθ′k sin θk = −
m∑

j=1

akjrj sin θj ,

x′k = r′k sin θk + rkθ′k cos θk = rk cos θk.

Eliminating r′k, we get

rkθ′k = rk cos2 θk + sin θk

m∑

j=1

akjrj sin θj .
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Because of (4) we have also

rk(t) sin θk(t) ≥ ri(t) sin θi(t) for t ∈ [a, b], i = 1, . . . ,m,

so that

rkθ′k ≤ rk(cos2 θk + sin2 θk

m∑

j=1

akj).

Dividing the last inequality by rk(t) (> 0 for t ∈ [a, αk]), we arrive at

θ′k ≤ cos2 θk + Ak sin2 θk,

where Ak is defined in (6).
Therefore,

αk − a ≥
∫ π

2

0

dθk

cos2 θk + Ak sin2 θk

=
∫ ∞

0

dt

1 + Akt2

=
[

1√
Ak

arctg
√

Akt

]∞

0

=
π

2
√

Ak

.

Since we can obtain quite analogously that b− βk ≥ 1
2π
√

Ak, where βk ∈
(a, b) is the last (first from right) focal point, x′k(βk) = 0, we can finally
conclude that b− a ≥ (αk − a) + (b− βk) ≥ π√

Ak
, i.e., (6).

Theorem. Under the assumptions of Proposition 1 or Proposition 2
and (3), there exists a solution of (1) satisfying (2), such that (6) holds.

4. Remark 1. For the scalar equation x′′ + b(t)x = 0, where b(t) > 0,
the same (i.e., h = t2 − t1 ≥ π/

√
B, where B := maxt∈[t1,t2] b(t)) can be

proved for the lower distance estimates of zero points of the derivatives
(focal points), using the transformation x = r(t) cos θ(t), x′ = r(t) sin θ(t).

Remark 2. We believe that the best result for the vector case might be
obtained by means of the abstract Prüfer transformation. The idea of the
generalized concept of Prüfer’s transformation is due to J.H. Barrett;
for details see e.g., the monograph [20], where many appropriate references
can also be found. Unfortunately, we have not yet been able to find it.

Remark 3. As it has been pointed out in [13], the solution of the
homogeneous linear de la Vallée Poussin problem can be directly applied
to the one of the (non)homogeneous (non)linear interpolation problem,
i.e., when the desired solution satisfies the prescribed values in n points.
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Indeed, it is enough to replace the desired inequality for h by the converse
one, i.e., for n = 3, by (cf. above)

1 >
A1h

4
+

A2h
2

π2
+

A3h
3

2π2
.

This is not, however, the best known sufficient condition. Consider, for
example, the equidistant case with

1 >
3
16

A1h +
33

1280
A2h

2 +
2

1280
A3h

3,

dealt with in [1], where the best possibility is also discussed in detail.
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