The equation $S L(n, K)=C^{4} \cup Z$ for $n=2,3,4 ; K=\mathbb{R}, \mathbb{C}$

By JAN AMBROSIEWICZ (Białystok)

Abstract

In the paper it has been proved that $S L(n, K)=C^{4} \cup Z$ for $n=$ $2,3,4 ; K=\mathbb{R}, \mathbb{C} ; \operatorname{PSL}(2, \mathbb{R})=C^{4}$ and $\operatorname{PSL}(n, K)=C^{8}(K=\mathbb{R}, \mathbb{C}) ; n=3,4$, where C denotes noncentral conjugacy class.

In the paper [3, IV] it has been proved that $G=P S L(2, R)=C^{s}$ for some $s \geq 3$, for all conjugacy classes $C \neq\{1\}$ of G.

In this paper we shall prove that $S L(n, K)=C^{4} \cup Z$ for $n=2,3,4$; $K=\mathbb{R}, \mathbb{C}$.

By above results it follows that $P S L(2, \mathbb{R})=C^{4}$ and $P S L(n, K)=C^{8}$ for $n=3,4 ; K=\mathbb{R}, \mathbb{C}$.

The following notations will be used.
C_{V} denotes the conjugacy class of the matrix V, \mathbb{R} - the field of real numbers, \mathbb{C} - the field of complex numbers and Z denotes the center of a group G. The remaing notations are standard.

The following lemmas will be used.
Lemma 1 (see [1]). If $V=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right), W=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)$, $v_{i} \neq v_{j}, w_{i} \neq w_{j}$ for $i \neq j$ and $V, W \in S L(n, K)$, then $S L(n, K)=$ $C_{V} C_{W} \cup Z$.

From Lemma 1 it follows that in the special case $W=V$ and V, V^{-1} are similar, $P S L(n, K)=C_{V}^{2}$ (see [1]).

If all eigenvalues of V are not distinct, the equality $\operatorname{PSL}(n, K)=C_{V}^{2}$ does not necessarily hold. This problem was investigated by a few authors, chiefly by J. L. Brenner (see his papers cited in the book [4] and his reviews: Math. Rev. 1987h, 20001 and Zbl. 561, 20004, 1985).

Lemma 2. If $A \in G L(2, K)(K=\mathbb{R}, \mathbb{C}), A \notin Z$, then there exists $S, T \in S L(2, K)$ such that the eigenvalues λ_{1}, λ_{2} of $A^{S} A^{T}$ are distinct and $\lambda_{i} \neq k$, where k is an arbitrary number $\neq 0$.

Proof. Let $N=A^{P}=P^{-1} A P$ denotes the rational canonical form of A in the group $G L(n, K)$.

Note that if all eigenvalues of $N N^{X}$ are distinct, where $X \in S L(n, K)$, then all eigenvalues of $A^{P U} A^{P X U}$ also are distinct and we can choose the matrix U such that $\operatorname{det}(P U)=\operatorname{det}(P X U)=1$.

Therefore it suffices to prove that there exists $X \in S L(n, K)$ such that all eigenvalues of $N N^{X}$ are distinct.

Any noncentral matrix $A \in G L(2, K)$ is similar to the matrix

$$
N=\left[\begin{array}{ll}
0 & 1 \\
a & b
\end{array}\right]
$$

For N and $X=\left[\begin{array}{cc}0 & 1 \\ -1 & x\end{array}\right]$,

$$
\begin{equation*}
\left|N N^{X}-\lambda E\right|=\lambda^{2}-s \lambda+t \tag{1}
\end{equation*}
$$

where

$$
s=a x^{2}+b(1-a) x-a^{2}-1, \quad t=a^{2} .
$$

It is clear that there are infinitely many $x \in K$ such that $\Delta=s^{2}-4 t>0$ or $\Delta \neq 0$, respectively to the case $K=\mathbb{R}$ or $K=\mathbb{C}$. Hence there are infinitely many matrices X such that all eigenvalues of $N N^{X}$ are distinct.

The second assertion follows from the fact that the equation (1) $=0$ in unkown x has at most two solution for given λ.

Lemma 3. If $A \in G L(3, K)(K=\mathbb{R}, \mathbb{C}), A \notin Z$, then there exists $X \in S L(3, K)$ such that the eigenvalue $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $A A^{X}$ are mutualy distinct and $\lambda_{i} \neq k$, where k is an arbitrary number $\neq 0$.

Proof. Any noncentral matrix $A \in G L(3, K)$ is similar by a matrix of determinant equal to an arbitrary number $\neq 0$ to the one of the following matrices

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \tag{2}\\
0 & 0 & 1 \\
a & b & c
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
a & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

For A_{1} and $X=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & x & x \alpha\end{array}\right](\alpha$-parameter $)$,

$$
\begin{equation*}
\left|A_{1} A_{1}^{X}-\lambda E\right|=-\lambda^{3}+s \lambda^{2}-t \lambda+r, \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& s=-a \alpha^{2} x^{2}+x(c \alpha+a c \alpha+1-a)+b+a b, \\
& t=-a x^{2}+x\left(b+a b-a^{2} \alpha+a \alpha\right)-c-a c, \quad r=a^{2} .
\end{aligned}
$$

It is clear that there are infinitely many $x \in K$ such that for $|x|$ large enough,

$$
D=27 q^{2}+4 p^{3}=-s^{2} t^{2}+4 t^{3}+4 s^{3} r-18 s t r+27 r^{2}<0
$$

or $D \neq 0$, respectively to the case $K=\mathbb{R}$ or $K=\mathbb{C}$. Hence there are infinitely many matrices X such that all eigenvalues of $A_{1} A_{1}^{X}$ are different.

For A_{2} and

$$
\begin{align*}
& X=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \beta x & 1 \\
1 & x & 0
\end{array}\right] \quad(\beta-\text { parameter }) \\
& \left|A_{2} A_{2}^{X}-\lambda E\right|=-\lambda^{3}+s \lambda^{2}-t \lambda+r \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& s=-a \beta x^{2}+(b \beta+a c-\beta c) x+c b, \\
& t=-a c^{2} \beta x^{2}+a c(-\beta+b c+a) x-a b c, \quad r^{2}=a^{2} c^{2}
\end{aligned}
$$

It is clear that there are infinitely many $x \in K$ such that $D<0$ or $D \neq 0$ for $|x|$ large enough, respectively to the case $K=\mathbb{R}$ or $K=\mathbb{C}$. Thus there exist infinitely many matrices X such that all eigenvalues of $A_{2} A_{2}^{X}$ are distinct.

A simple calculation shows that we can choose the parameters α, β such that each equation $(3)=0,(4)=0$ has at most two solutions for given λ. This proves the second assertion of Lemma 3.

Lemma 4. If $A \in S L(4, K)(K=\mathbb{R}, \mathbb{C}) A \notin Z$, then there exists $S, T \in S L(4, K)$ such that all eigenvalues of $A^{S} A^{T}$ are distinct.

Proof. As in the proof of Lemma 2 it suffices to prove that there exists $X \in S L(4, K)$ such that all eigvalues of $N N^{X}$ are distinct, where N denotes the rational canonical form of A in the group $G L(4, K)$.

Any noncentral matrix $A \in S L(4, K)$ is similar to the one of following matrices:

$$
\begin{aligned}
& N_{1}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & a & b & c
\end{array}\right] ; \quad N_{2}=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & d
\end{array}\right], \quad A_{i} \in(2), i=1,2 ; \\
& N_{3}=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right], \quad C_{i}=\left[\begin{array}{cc}
0 & 1 \\
a_{i} & b_{i}
\end{array}\right] . \\
& \text { For } N_{1} \text { and } X=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & y & 0
\end{array}\right], \\
& \quad\left|N_{1} N_{1}^{X}-\lambda E\right|=\left(\lambda^{2}-y \lambda+1\right)\left[\lambda^{2}-(2 b-y) \lambda+1\right] .
\end{aligned}
$$

It is clear that there exists $y \in K$ such that the polynomial (6) has four distinct roots.

From Lemma 3 it follows that for A_{i} there exists $Y \in S L(3, K)$ such all eigenvalues of $A_{i} A_{i}^{Y}$ are distinct which can be chosen different from d^{2}. Hence there exists the matrix

$$
X=\left[\begin{array}{ll}
Y & 0 \\
0 & 1
\end{array}\right]
$$

such that all eigenvalues of $N_{2} N_{2}^{X}$ are distinct.
By Lemma 2 it follows that for $C_{i}(i=1,2)$ there exist $Y, U \in$ $S L(2, K)$ such that the eigenvalues v_{1}, v_{2} and w_{1}, w_{2} of $C_{1} C_{1}^{Y}$ and $C_{2} C_{2}^{U}$, respectively are different and that Y and U can be chosen such that $v_{i} \neq w_{j}$. Hence there exists the matrix

$$
X=\left[\begin{array}{cc}
Y & 0 \\
0 & U
\end{array}\right]
$$

such that all eigenvalues of $N_{3} N_{3}^{X}$ are distinct.
Theorem 1. If C is any noncentral conjugacy class of $S L(2, \mathbb{R})$, then $S L(2, \mathbb{R})=C^{4} \cup Z$.

Proof. In the set $A^{S} A^{T}$, where $A, S, T \in S L(2, \mathbb{R})$, there exists the matrix B with two distinct eigenvalues v, v^{-1}, by Lemma 2.

The matrix B is similar in the group $S L(2, \mathbb{R})$ to the matrix $V=\operatorname{diag}\left(v, v^{-1}\right)$. Hence

$$
C_{V}=C_{B} \subseteq C_{A}^{2} \quad \text { and } \quad C_{V}^{2} \subseteq C_{A}^{4}
$$

By Lemma 1 it follows that $S L(2, \mathbb{R})-Z \subseteq C_{V} C_{V} \subseteq C_{A}^{4}$ for any $A \notin Z$. Hence $S L(2, \mathbb{R}) \subseteq C_{A}^{4} \cup Z$. The inverse inclusion is obvious.

Corollary 1.1. If C is any nonidentity conjugacy class of $\operatorname{PSL}(2, \mathbb{R})$, then $\operatorname{PSL}(2, \mathbb{R})=C^{4}$.

Proof. The matrices $V=\operatorname{diag}\left(v, v^{-1}\right)$ and V^{-1} are similar in the group $P S L(2, \mathbb{R})$, so $Z \subseteq C_{V} C_{V} \subseteq C^{4}$.

Note that $\operatorname{PSL}(2, \mathbb{C})=C^{2}$. It follows by ([2] or Lemma 1) and the fact that the equation $A=V^{X} V^{Y}$ in unknowns $X, Y \in S L(2, \mathbb{C})$, where $V=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $A=\operatorname{diag}\left(a, a^{-1}\right)(a \neq 1)$ or $A=V$, has a solution. The proof given in [4] is wrong (see p. 242, row 2).

Theorem 2. If $K=\mathbb{R}, \mathbb{C}$ and C - noncentral conjugacy class of $S L(3, K)$, then $S L(3, K)=C^{4} \cup Z$.

Proof. In the set $A A^{X}$, where $A, X \in S L(3, K), A \notin Z$, there exists the matrix B with all distinct eigenvalues v_{1}, v_{2}, v_{3}, by Lemma 3 . The matrix B is similar to the diagonal matrix $V=\operatorname{diag}\left(v_{1}, v_{2}, v_{3}\right)$ in $S L(3, K)$ i. e. $V^{T}=B$. Hence

$$
C_{V}=C_{B} \subseteq C_{A}^{2} \quad \text { and } \quad C_{V}^{2} \subseteq C_{A}^{4}
$$

From Lemma 1 it follows that

$$
S L(3, K)-Z \subseteq C_{V}^{2} \subseteq C_{A}^{4}, \quad \text { so } \quad S L(3, K) \subseteq C^{4} \cup Z
$$

Thus $S L(3, K)=C_{A}^{4} \cup Z$ for any $A \notin Z$.
Theorem 3. If C is any noncentral conjugacy class of $S L(4, K)$ and $K=\mathbb{R}, \mathbb{C}$, then $S L(4, K)=C^{4} \cup Z$.

The proof is the same as in Theorem 2 but instead of Lemma 3, Lemma 4 is used.

Corollary 2.1. If C is any noncentral conjugacy class of $P S L(3, K)$, then $\operatorname{PSL}(3, K)=C^{8}$.

Proof. From our proof of Lemma 3 it follows that the matrix E does not necessarily belongs to the set C^{4}. But it is clear that the diagonal matrices $V=\operatorname{diag}\left(1, v, v^{-1}\right)(v \neq \pm 1)$ and V^{-1} belong to the set C^{4}, so $Z \subseteq C_{V} C_{V} \subseteq C^{8}$. Hence $\operatorname{PSL}(3, K)=C^{8}$.

In the same way we can prove the following

Corollary 3.1. If C is any nonidentity conjugacy class of $\operatorname{PSL}(4, K)$, then $\operatorname{PSL}(4, K)=C^{8}$.

Note that our method do not permit to state whether the exponent of C is minimal.

The method of proofs of Lemmas 2-4 suggests the conjecture: if $K=\mathbb{R}, \mathbb{C}$, then $S L(n, K)=C^{4} \cup Z$ for any $n \geq 2$.

Remark. One of reviewers of my paper informed the editor that recently he received a paper (which probably did not apper yet) of Mr. Arieh Lev: "The covering number of the group $P S L_{n}(F)$ " in which it has been proved the following two theorems:

Theorem I. Let G be the group $P S L_{n}(F)$, where $n \geq 3, F$ is a field and $|F| \geq 4$. Denote by $\operatorname{cn}(G)$ the minimal value of k such that $C^{k}=G$ for every nontrivial conjugacy class C of G. Then $\operatorname{cn}(G)=n$.

Theorem II. Let C be a nonscalar $S L_{n}$ - conjugacy class of $G L_{n}(F)$, where $n \geq 3, F$ is a field and $|F| \geq 4$. Let $M=\left\{M \in G L_{n}(F)-\right.$ $\left.Z\left(G L_{n}(F)\right) \mid \operatorname{det} M=(\operatorname{det} C)^{n}\right\}$. Then $\boldsymbol{M} \subseteq C^{n}$. In particular, if $\operatorname{det} C=1$, then $C^{n} \supseteq S L_{n}(F)-Z\left(S L_{n}(F)\right)$.

References

[1] J. Ambrosiewicz, Powers of sets in linear groups, Demonstratio Mathematica 23 (1990), 395-403.
[2] J. Ambrosiewicz, On certain property of the group $S O(3)$ and of the Lorentz's group, Zeszyty Naukowe Filii UW w Białymstoku, Zeszyt 39. Nauki Mat. Przyr. Tom VIII. Dział N, Prace Matematyczne, 1984, pp. 5-11.
[3] J. L. Brenner, Covering theorem for nonabelian simple groups, II, IV, VIII, IX, J. Combinatorial Theory 14 (1973), 264-269.
[4] Z. Arad, M. Herzog, Product of conjugacy classes in groups, Lecture Notes in Mathematics, 1112, Springer - Verlag, Berlin Heidelberg New York Tokyo, 1985.

```
JAN AMBROSIEWICZ
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF BIA£YSTOK
15-351 BIA£YSTOK
UL. WIEJSKA 45 A
POLAND
```

(Received June 1, 1993; revised September 10, 1993)

