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The equation SL(n, K) = C4 ∪ Z for n = 2, 3, 4; K = R,C

By JAN AMBROSIEWICZ (BiaÃlystok)

Abstract. In the paper it has been proved that SL(n, K) = C4 ∪ Z for n =
2, 3, 4; K = R,C; PSL(2,R) = C4 and PSL(n, K) = C8 (K = R,C); n = 3, 4, where
C denotes noncentral conjugacy class.

In the paper [3, IV] it has been proved that G = PSL(2, R) = Cs for
some s ≥ 3, for all conjugacy classes C 6= {1} of G.

In this paper we shall prove that SL(n,K) = C4 ∪ Z for n = 2, 3, 4;
K = R,C.

By above results it follows that PSL(2,R) = C4 and PSL(n,K) = C8

for n = 3, 4; K = R,C.

The following notations will be used.
CV denotes the conjugacy class of the matrix V, R — the field of real
numbers, C — the field of complex numbers and Z denotes the center of
a group G. The remaing notations are standard.

The following lemmas will be used.

Lemma 1 (see [1]). If V = diag(v1, . . . , vn), W = diag(w1, . . . , wn),
vi 6= vj , wi 6= wj for i 6= j and V, W ∈ SL(n,K), then SL(n,K) =
CV CW ∪ Z.

From Lemma 1 it follows that in the special case W = V and V, V −1

are similar, PSL(n, K) = C2
V (see [1]).

If all eigenvalues of V are not distinct, the equality PSL(n,K) = C2
V

does not necessarily hold. This problem was investigated by a few authors,
chiefly by J. L. Brenner (see his papers cited in the book [4] and his
reviews: Math. Rev. 1987h, 20001 and Zbl. 561, 20004, 1985).
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Lemma 2. If A ∈ GL(2,K) (K = R,C), A 6∈ Z, then there exists
S, T ∈ SL(2, K) such that the eigenvalues λ1, λ2 of ASAT are distinct and
λi 6= k, where k is an arbitrary number 6= 0.

Proof. Let N = AP = P−1AP denotes the rational canonical form
of A in the group GL(n,K).

Note that if all eigenvalues of NNX are distinct, where X ∈ SL(n,K),
then all eigenvalues of APUAPXU also are distinct and we can choose the
matrix U such that det(PU) = det(PXU) = 1.

Therefore it suffices to prove that there exists X ∈ SL(n,K) such
that all eigenvalues of NNX are distinct.

Any noncentral matrix A ∈ GL(2,K) is similar to the matrix

N =
[

0 1
a b

]
.

For N and X =
[

0 1
−1 x

]
,

(1)
∣∣NNX − λE

∣∣ = λ2 − sλ + t ,

where
s = ax2 + b(1− a)x− a2 − 1, t = a2 .

It is clear that there are infinitely many x ∈ K such that ∆=s2−4t>0
or ∆ 6= 0, respectively to the case K = R or K = C. Hence there are
infinitely many matrices X such that all eigenvalues of NNX are distinct.

The second assertion follows from the fact that the equation (1) = 0
in unkown x has at most two solution for given λ.

Lemma 3. If A ∈ GL(3,K) (K = R,C), A 6∈ Z, then there exists
X ∈ SL(3,K) such that the eigenvalue λ1, λ2, λ3 of AAX are mutualy
distinct and λi 6= k, where k is an arbitrary number 6= 0.

Proof. Any noncentral matrix A ∈ GL(3, K) is similar by a matrix
of determinant equal to an arbitrary number 6= 0 to the one of the following
matrices

(2) A1 =

[ 0 1 0
0 0 1
a b c

]
, A2 =

[ 0 1 0
a b 0
0 0 c

]
.

For A1 and X =

[ 0 1 0
0 0 1
1 x xα

]
(α–parameter),

(3)
∣∣A1A

X
1 − λE

∣∣ = −λ3 + sλ2 − tλ + r ,



The equation SL(n, K) = C4 ∪ Z for n = 2, 3, 4; K =R,C 155

where

s =− aα2x2 + x(cα + acα + 1− a) + b + ab ,

t =− ax2 + x(b + ab− a2α + aα)− c− ac , r = a2 .

It is clear that there are infinitely many x ∈ K such that for |x| large
enough,

D = 27q2 + 4p3 = −s2t2 + 4t3 + 4s3r − 18str + 27r2 < 0

or D 6= 0, respectively to the case K = R or K = C. Hence there are
infinitely many matrices X such that all eigenvalues of A1A

X
1 are different.

For A2 and

X =

[
0 1 0
0 βx 1
1 x 0

]
(β − parameter) ,

(4)
∣∣A2A

X
2 − λE

∣∣ = −λ3 + sλ2 − tλ + r ,

where

s =− aβx2 + (bβ + ac− βc)x + cb ,

t =− ac2βx2 + ac(−β + bc + a)x− abc , r2 = a2c2 .

It is clear that there are infinitely many x ∈ K such that D < 0 or
D 6= 0 for |x| large enough, respectively to the case K = R or K = C.
Thus there exist infinitely many matrices X such that all eigenvalues of
A2A

X
2 are distinct.
A simple calculation shows that we can choose the parameters α, β

such that each equation (3) = 0, (4) = 0 has at most two solutions for
given λ. This proves the second assertion of Lemma 3.

Lemma 4. If A ∈ SL(4,K) (K = R,C) A 6∈ Z, then there exists
S, T ∈ SL(4, K) such that all eigenvalues of ASAT are distinct.

Proof. As in the proof of Lemma 2 it suffices to prove that there
exists X ∈ SL(4,K) such that all eigvalues of NNX are distinct, where
N denotes the rational canonical form of A in the group GL(4,K).
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Any noncentral matrix A ∈ SL(4,K) is similar to the one of following
matrices:

N1 =




0 1 0 0
0 0 1 0
0 0 0 1
−1 a b c


 ; N2 =

[
Ai 0
0 d

]
, Ai ∈ (2), i = 1, 2 ;

N3 =
[

C1 0
0 C2

]
, Ci =

[
0 1
ai bi

]
.

For N1 and X =




0 1 0 0
0 0 1 0
0 0 0 1
−1 0 y 0


,

(6)
∣∣N1N

X
1 − λE

∣∣ = (λ2 − yλ + 1)[λ2 − (2b− y)λ + 1] .

It is clear that there exists y ∈ K such that the polynomial (6) has four
distinct roots.

From Lemma 3 it follows that for Ai there exists Y ∈ SL(3,K) such
all eigenvalues of AiA

Y
i are distinct which can be chosen different from d2.

Hence there exists the matrix

X =
[

Y 0
0 1

]

such that all eigenvalues of N2N
X
2 are distinct.

By Lemma 2 it follows that for Ci (i = 1, 2) there exist Y, U ∈
SL(2,K) such that the eigenvalues v1, v2 and w1, w2 of C1C

Y
1 and C2C

U
2 ,

respectively are different and that Y and U can be chosen such that
vi 6= wj . Hence there exists the matrix

X =
[

Y 0
0 U

]
,

such that all eigenvalues of N3N
X
3 are distinct.

Theorem 1. If C is any noncentral conjugacy class of SL(2,R), then
SL(2,R) = C4 ∪ Z.

Proof. In the set ASAT , where A,S, T ∈ SL(2,R), there exists the
matrix B with two distinct eigenvalues v, v−1, by Lemma 2.

The matrix B is similar in the group SL(2,R) to the matrix
V = diag(v, v−1). Hence

CV = CB ⊆ C2
A and C2

V ⊆ C4
A .
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By Lemma 1 it follows that SL(2,R) − Z ⊆ CV CV ⊆ C4
A for any

A 6∈ Z. Hence SL(2,R) ⊆ C4
A ∪ Z. The inverse inclusion is obvious.

Corollary 1.1. If C is any nonidentity conjugacy class of PSL(2,R),
then PSL(2,R) = C4.

Proof. The matrices V = diag(v, v−1) and V −1 are similar in the
group PSL(2,R), so Z ⊆ CV CV ⊆ C4.

Note that PSL(2,C) = C2. It follows by ([2] or Lemma 1) and the
fact that the equation A = V XV Y in unknowns X, Y ∈ SL(2,C), where
V =

[
1 1

0 1

]
and A = diag(a, a−1) (a 6= 1) or A = V , has a solution. The

proof given in [4] is wrong (see p. 242, row 2).

Theorem 2. If K = R,C and C – noncentral conjugacy class of
SL(3,K), then SL(3,K) = C4 ∪ Z.

Proof. In the set AAX , where A,X ∈ SL(3,K), A 6∈ Z, there
exists the matrix B with all distinct eigenvalues v1, v2, v3, by Lemma 3.
The matrix B is similar to the diagonal matrix V = diag(v1, v2, v3) in
SL(3,K) i. e. V T = B. Hence

CV = CB ⊆ C2
A and C2

V ⊆ C4
A .

From Lemma 1 it follows that

SL(3,K)− Z ⊆ C2
V ⊆ C4

A, so SL(3, K) ⊆ C4 ∪ Z .

Thus SL(3, K) = C4
A ∪ Z for any A 6∈ Z.

Theorem 3. If C is any noncentral conjugacy class of SL(4,K) and
K = R,C, then SL(4,K) = C4 ∪ Z.

The proof is the same as in Theorem 2 but instead of Lemma 3,
Lemma 4 is used.

Corollary 2.1. If C is any noncentral conjugacy class of PSL(3,K),
then PSL(3,K) = C8.

Proof. From our proof of Lemma 3 it follows that the matrix E does
not necessarily belongs to the set C4. But it is clear that the diagonal
matrices V = diag(1, v, v−1) (v 6= ±1) and V −1 belong to the set C4, so
Z ⊆ CV CV ⊆ C8. Hence PSL(3,K) = C8.

In the same way we can prove the following
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Corollary 3.1. If C is any nonidentity conjugacy class of PSL(4,K),
then PSL(4,K) = C8.

Note that our method do not permit to state whether the exponent
of C is minimal.

The method of proofs of Lemmas 2–4 suggests the conjecture: if
K = R,C, then SL(n,K) = C4 ∪ Z for any n ≥ 2.

Remark. One of reviewers of my paper informed the editor that re-
cently he received a paper (which probably did not apper yet) of Mr. Arieh
Lev: “The covering number of the group PSLn(F )” in which it has been
proved the following two theorems:

Theorem I. Let G be the group PSLn(F ), where n ≥ 3, F is a field
and |F | ≥ 4. Denote by cn(G) the minimal value of k such that Ck = G
for every nontrivial conjugacy class C of G. Then cn(G) = n.

Theorem II. Let C be a nonscalar SLn — conjugacy class of GLn(F ),
where n ≥ 3, F is a field and |F | ≥ 4. Let M = {M ∈ GLn(F ) −
Z(GLn(F ))| detM = (det C)n}. Then M ⊆ Cn. In particular, if det C=1,
then Cn ⊇ SLn(F )− Z(SLn(F )).
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