Title: Practical pretenders
Author(s): Paul Pollack and Lola Thompson
Following Srinivasan, an integer $n \geq 1$ is called practical if every natural number in $[1, n]$ can be written as a sum of distinct divisors of n. This motivates us to define $f(n)$ as the largest integer with the property that all of $1,2,3, \ldots, f(n)$ can be written as a sum of distinct divisors of n. (Thus, n is practical precisely when $f(n) \geq n$.) We think of $f(n)$ as measuring the "practicality" of n; large values of f correspond to numbers n which we term practical pretenders. Our first theorem describes the distribution of these impostors: Uniformly for $4 \leq y \leq x$,

$$
\#\{n \leq x: f(n) \geq y\} \asymp \frac{x}{\log y}
$$

This generalizes Saias's result that the count of practical numbers in $[1, x]$ is $\asymp \frac{x}{\log x}$.
Next, we investigate the maximal order of f when restricted to non-practical inputs. Strengthening a theorem of Hausman and Shapiro, we show that every $n>3$ for which

$$
f(n) \geq \sqrt{e^{\gamma} n \log \log n}
$$

is a practical number.
Finally, we study the range of f. Call a number m belonging to the range of f an additive endpoint. We show that for each fixed $A>0$ and $\epsilon>0$, the number of additive endpoints in $[1, x]$ is eventually smaller than $x /(\log x)^{A}$ but larger than $x^{1-\epsilon}$.

Address:

Paul Pollack
Department of Mathematics
Boyd Graduate Studies Research Center
University of Georgia
Athens, Georgia 30602
USA
Address:
Lola Thompson
Department of Mathematics
Boyd Graduate Studies Research Center
University of Georgia
Athens, Georgia 30602
USA

