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Rational points in geometric progressions on certain
hyperelliptic curves

By ANDREW BREMNER (Tempe) and MACIEJ ULAS (Kraków)

Abstract. We pose a simple Diophantine problem which may be expressed in the

language of geometry. Let C be a hyperelliptic curve given by the equation y2 = f(x),

where f ∈ Z[x] is without multiple roots. We say that points Pi = (xi, yi) ∈ C(Q) for

i = 1, 2, . . . , k, are in geometric progression if the numbers xi for i = 1, 2, . . . , k, are in

geometric progression.

Let n ≥ 3 be a given integer. In this paper we show that there exist polynomials

a, b ∈ Z[t] such that on the curve y2 = a(t)xn + b(t) (defined over the field Q(t)) we

can find four points in geometric progression. In particular this result generalizes earlier

results of Berczes and Ziegler concerning the existence of geometric progressions on Pell

type quadrics y2 = ax2 + b. We also investigate for fixed b ∈ Z, when there can exist

rationals yi, i = 1, . . . , 4, with {y2
i − b} forming a geometric progression, with particular

attention to the case b = 1. Finally, we show that there exist infinitely many parabolas

y2 = ax+ b which contain five points in geometric progression.

1. Introduction

Let f ∈ Z[x] be without multiple roots, and consider the hyperelliptic curve

C : y2 = f(x). We say that the rational points Pi = (xi, yi), i = 1, 2, . . . , k, lying

on the curve C, are in geometric progression if the numbers x1, x2, . . . , xk are in

geometric progression, i.e. there exist p, t ∈ Q such that xi = pti for i = 1, . . . , k.

In a recent paper, Bérczes and Ziegler [1, Theorem 4] proved that for any four

term geometric progression 0 < x1 < x2 < x3 < x4 there exist infinitely many

a, b ∈ Z such that there exist yi ∈ Q with the property that the points Pi = (xi, yi)
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for i = 1, 2, 3, 4 lie on the curve y2 = ax2 + b. Moreover one can choose a, b in

such a way that a is not a square, b 6= 0, and gcd(a, b) is squarefree. In view

of this result it may be asked what can be proved in the case of a more general

curve such as y2 = axn + b, where n ∈ N+ is a fixed integer. More precisely: can

one obtain a straight generalization of the cited result for the curve y2 = axn+ b,

for all n? This problem is most interesting in the case n = 1. In order to see

this, note that we may concentrate on geometric progressions of the form xi = ti

for i = 0, 1, . . . , k; for if the points P ′
i = (x′

i, yi) are in geometric progression on

C ′ : y2 = axn + b, with x′
i = pti, then the points Pi = (ti, yi) lie in geometric

progression on the curve C : y2 = apnxn + b, which is of the same type. We say

that the geometric progression of the form ti for i = 0, 1, . . . , k−1, is the geometric

progression generated by t of length k. Next, note that we can indeed reduce the

investigation to the case n = 1. For if the points Pi = (ti, yi) lie in geometric

progression on C : y2 = axn + b, then the points Qi = (tin, yi) lie in geometric

progression on the curve y2 = ax + b. Thus, the problem for a given positive

integer n is equivalent to the investigation of geometric progressions of the form

xi = tin on the parabola y2 = ax + b. In other words, if we denote by S(t, n)

the problem of existence of four term geometric progressions generated by t on

curves of type y2 = axn + b, then we have the equivalence S(t, n) ⇔ S(tn, 1). We

thus see that the cited result from [1] immediately implies that if n is even then

the problem S(t, n) has an affirmative answer. Henceforth, in this paper we shall

consider only the case n odd. Moreover, we should note that the problem S(t, 1)

can also be rephrased as a problem of the existence of four values of the polynomial

(y2 − b)/a which are in geometric progression. This is clearly equivalent to the

investigation of the Diophantine system

Y 2 − b

X2 − b
=

Z2 − b

Y 2 − b
=

W 2 − b

Z2 − b
. (1)

This system was investigated in [8], where it is shown that there exists a ho-

mogeneous polynomial b ∈ Z[u, v] of degree 18 such that there is a solution

X,Y, Z,W ∈ Z[u, v] of (1). However, the discussion presented there is far from

exhaustive. Indeed, in [8] we were interested in integer solutions of (1) only. This

assumption is very restrictive, and rational solutions of the system are missed. For

example when b = −6 there is a solution (X,Y, Z,W ) = (3/11, 3, 39/7, 453/49).

A natural question arises as to whether there are infinitely many parametric so-

lutions of the system (1) (where b is treated as a variable for this question).

The strategy we adopt is the following. The variety which parameterizes

the instances of a, b such that there is a four term geometric progression, say
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1, t, t2, t3, on the curve y2 = ax+ b results in the study of a certain elliptic curve

C defined over the field Q(t). Now C may also be viewed as an elliptic surface,

and using the Shioda theory of elliptic surfaces, we compute the rank of C over

C(t) (it is equal to one) and find on C a point of infinite order. This allow us to

find infinitely many b ∈ Q(t) such that the system (1) has a non-trivial solution

in polynomials X,Y, Z,W ∈ Q(t). Moreover, using the Silverman specialization

theorem and a theorem of Hurwitz we prove that the set of all rational points

on C, that is, the set C(Q), is dense in the real topology in the set of all real points

on C.
Secondly, we investigate when there can exist solutions of the system (1) for

a fixed value of b, and show that there exist infinitely many solutions for b of

certain type, including b = 1. Note that the “three-term geometric progression”

corresponding to the system

Y 2 − 1

X2 − 1
=

Z2 − 1

Y 2 − 1

has been much studied in the past; see, for example, Guy [3], Section D23, and

the references given there; and Ulas [10].

Thirdly, we prove that there exist infinitely many distinct parabolas y2 =

ax + b which contain five points in geometric progression. Finally, some comp-

utational remarks are made.

2. A parameterizing curve

In this section we construct a curve E defined over the field Q(t) which para-

meterizes pairs of rational functions a, b with the property that on the parabola

y2 = f(x) = ax + b there lie four points in geometric progression, say the geo-

metric progression 1, t, t2, t3 generated by t of length 4. Demanding a + b = U2,

at+ b = V 2, gives

a =
U2 − V 2

1− t
, b =

V 2 − tU2

1− t
. (2)

It remains to satisfy f(t2), f(t3) both squares. Thus we investigate the curve C
given by the intersection of the following two quadrics:

C : −tU2 + (1 + t)V 2 = R2, −t(1 + t)U2 + (1 + t+ t2)V 2 = S2. (3)

We prove the following result.
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Theorem 2.1. Consider the curve C in P3 over Q(t) defined by (3). Then C
is birationally equivalent over Q(t) to an elliptic curve E with rank E(Q(t)) = 1.

Moreover, regarding E as a surface in R3 then the set E(Q) ⊂ R3 of all rational

points is dense in the set E(R) of all real points lying on E .
Proof. Taking (1, 1, 1, 1) as the zero point, then a cubic model for the el-

liptic curve C is given by

E : Y 2 = X(X + t2)(X + t(1 + t)2).

The discriminant ∆(E) of E is

∆(E) = 16t8(1 + t)4(1 + t+ t2)2,

so the specialization of E at t ∈ C is singular for the values t ∈ A, where

A =

{
∞,−1, 0, −1 +

√−3

2
, −1−√−3

2

}
.

Now E represents a K3-surface, and the Néron–Severi group over C, denoted by

NS(E) = NS(E ,C), is a finitely generated Z-module. From Shioda [5], we have

rankNS(E ,C) = rank E(C(t)) + 2 +
∑
ν

(mν − 1),

where the sum ranges over all fibers of the pencil Et, with mν the number of

irreducible components of the fiber. Recall that if the fiber in the pencil Et is

smooth then mν − 1 = 0, thus the series on the right hand side is finite. For

t ∈ A, the decomposition is of Kodaira classification as follows. For t = 0 and

t = ∞ we have type I∗2 , each with mν = 7. For t = − 1±√−3
2 we have type I2 and

then mν = 2. For t = −1 we have type I4 and then mν = 4. Summing up gives

rankNS(E ,C) = rank E(C(t)) + 2 + 2(7− 1) + (4− 1) + 2(2− 1).

Since the rank of the Néron–Severi group of a K3-surface cannot exceed 20, then

rank E(C(t)) ≤ 1. The curve E has three two-torsion points

T1 = (0, 0), T2 = (−t2, 0), T3 = (−t(1 + t)2, 0)

and the point

P = (t3(1 + t), t3(1 + t)(1 + t+ t2)).
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The height of P equals 3/4, so that P is of infinite order; and hence E(Q(t)) (and
so E(C(t))) has rank 1.

We will prove that the set of rational points on the surface E is dense in the

Euclidean topology. However, we first prove Zariski density of the set of rational

points. Because the curve E is of positive rank over Q(t), the set of multiples of the

point P , i.e. mP = (Xm(t), Ym(t)) for m = 1, 2, . . . , gives infinitely many Q(t)-
rational points on the curve E . Now, regarding the curve E as an elliptic surface in

the space with coordinates (X,Y, t) we see that each rational curve (Xm, Ym, t) is

included in the Zariski closure, say R, of the set of rational points on E . Because
this closure consists of only finitely many components, it has dimension two, and

as the surface E is irreducible, R is the whole surface. Thus the set of rational

points on E is dense in the Zariski topology.

To obtain the density of the set E(Q) in the Euclidean topology, we use two

beautiful results: a theorem of Hurwitz [4] (see also [7, p. 78]) and a theorem

of Silverman [6, p. 368]. The theorem of Hurwitz states that if an elliptic curve

E defined over Q has positive rank and one torsion point of order two (defined

over Q) then the set E(Q) is dense in E(R). The same result holds if E has three

torsion points of order two under the assumption that we have a rational point

of infinite order on the bounded branch of the set E(R).
Silverman’s theorem states that if E is an elliptic curve defined over Q(t)

with positive rank, then for all but finitely many t0 ∈ Q, the curve Et0 obtained

from the curve E by specialization at t = t0 has positive rank. From this result

we see that for all but finitely many t ∈ Q the elliptic curve Et is of positive rank.
Denote by G the set of t ∈ Q such that the specialization Pt of the point P at

t ∈ Q is of infinite order on the curve Et. From Mazur’s theorem we know that the

order of a torsion point on an elliptic curve defined over Q is at most 12. Thus,

in order to find G it is enough to find all t ∈ Q such that Pt has finite order. This

is straightforward: compute the expression mP = (X(m), Y (m)) for m ∈ N and

m ≤ 12, and determine for any given m those t ∈ Q such that the denominator

of X(m) has a zero at t. The only t ∈ Q with such a property for which Et is

nonsingular is t = 1. In this case P1 is of order four on the curve E1. Moreover

the rank of E1(Q) is equal to zero. We thus get that G = Q\{−1, 0, 1}. Note that

the values t = −1, 0, 1 are without interest because they lead to trivial geometric

progressions.

Now define the polynomial Xi(t) to be the X-coordinate of the torsion point

Ti for i = 1, 2, 3. We have the following equalities

P + T1 = (t+ 1,−(1 + t)(1 + t+ t2)),

P + T2 = (−t(t+ 1), t2(t+ 1)),
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P + T3 = (−t2(t+ 1),−t3(t+ 1)),

and it is straightforward to verify the following inequalities:

X2(t) < XP+T1
(t) < X1(t) < X3(t) for t ∈ (−∞,−1),

X2(t) < XP+T3(t) < X1(t) < X2(t) for t ∈ (−1, 0),

X3(t) < XP+T3
(t) < X2(t) < X1(t) for t ∈ (0,∞).

For each i = 1, 2, 3, the point P +Ti is of infinite order on the curve E . Moreover,

for all t ∈ G and i = 1, 2, 3, the specialization of the point P + Ti is of infinite

order on the curve Et. From the above inequalities we deduce that for all t ∈ G
there is a point of infinite order lying on the bounded branch of the real curve Et.
Using the Hurwitz theorem, it follows that for all t ∈ G the set Et(Q) is dense

in the set Et(R). This proves that the set E(Q) is dense in the set E(R) in the

Euclidean topology. Note, it follows from the birational equivalence that C(Q) is
dense in C(R). ¤

Remark 2.2. Consider the system (1). If X, Y , Z, W is a solution of (1) for

some b, and the common value of the equalities is t, it follows immediately that

there exists a such that

X2 − b = a, Y 2 − b = at, Z2 − b = at2, W 2 − b = at3.

Solving the first three equations with respect to a, b, t gives

a =
(X2 − Y 2)2

X2 − 2Y 2 + Z2
, b =

−Y 4 +X2Z2

X2 − 2Y 2 + Z2
, t =

Y 2 − Z2

X2 − Y 2
.

Substituting into the fourth equation,

t =
Y 2 − Z2

X2 − Y 2
=

Z2 −W 2

Y 2 − Z2
. (4)

If we are not interested in the value of t, we need to investigate the projective

surface (Y 2−Z2)2 = (X2−Y 2)(Z2−W 2), and essentially this approach was used

in [8] in order to find one polynomial solution of the system. If we are interested

in the solutions (4) with given t, this leads to the intersection of the two quadratic

surfaces

Z2 = −tX2 + (1 + t)Y 2, W 2 = −t(t+ 1)X2 + (1 + t+ t2)Y 2,

which, on renaming the variables, is exactly the same intersection defining the

curve C from (3). Theorem 2.1 now implies that the set of rational points on the

surface (Y 2 − Z2)2 = (X2 − Y 2)(Z2 −W 2) is dense in the Euclidean topology.
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Example 2.3. Using the pullbacks on C of the points P and mP + Ti for

m ∈ Z and i = 1, 2, 3, one can compute a(t), b(t), given by (2); and without loss

of generality, a, b may be taken as polynomials in Z[t]. For such b, provided that

a 6= 0, we get a solution of the system (1). The pullbacks when m = 1 lead only

to trivial solutions; the pullback of 2P however leads to

a = 8(1 + t)(1 + t2), b = (−1− t− 3t2 + t3)(−1 + 3t+ t2 + t3),

with solution of system (1) given by

(X,Y, Z,W ) = (t3 − t2 − t− 3, t3 − t2 +3t+1, t3 +3t2 − t+1, −3t3 − t2 − t+1).

Note that the degree of b is equal to six. This improves upon the degree 18

polynomial obtained in [8]. The expressions X2− b, Y 2− b, Z2− b, W 2− b are in

geometric progression with quotient t. This progression is clearly non-trivial for

t 6= −1, 0, 1.

Returning to the initial question about the existence of geometric progres-

sions on hyperelliptic curves of the form y2 = axn + b, we note the following.

Corollary 2.4. Let n be a given positive (odd) integer. For any nontrivial

four term geometric progression xi, i = 1, 2, 3, 4, there exist infinitely many pair-

wise non-isomorphic hyperelliptic curves C : y2 = axn + b such that xi is the

x-coordinate of a rational point on C.

Proof. It is clear that we may assume xi = ui, say, for i = 0, 1, 2, 3. In the

previous example it was shown that there exist infinitely many rational functions

am(t), bm(t) (corresponding to the point mP ) such that am(t)ti + bm(t) is the

square of a rational function, say rm(t), for i = 0, 1, 2, 3, and m = 1, 2, . . . .

Putting t = un we immediately obtain am(un)(ui)n + bm(un) = rm(un)2. This

implies that for i = 0, 1, 2, 3, the point (xi, rm(t)) lies on the hyperelliptic curve

C : y2 = am(t)xn+bm(t) for m = 1, 2, . . . . That there are infinitely many distinct

such curves is a simple consequence of the following reasoning. Let Cm : y2 =

am(t)xn + bm(t), where m is a positive integer. The coefficients am and bm are

given by (2) and are calculated from the Q(t)-rational point mP on the curve C,
where P is the point of infinite order on E given in the proof of Theorem 2.1.

Note that the curves Cp and Cq are isomorphic if and only if

ap(t)
n−1bp(t) = aq(t)

n−1bq(t)W
2n

for some W ∈ Q(t). Suppose we have constructed the integers k1, k2, . . . , km such

that the curves Cki are pairwise non-isomorphic over Q(t). Consider the m curves

Ci : a(U, V )n−1b(U, V ) = aki(t)
n−1bki(t)W

2n
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for i = 1, 2 . . . ,m, where a(U, V ), b(U, V ) are given by (2). The polynomial defi-

ning the curve Ci is homogenous of degree 2n in the coordinates (U : V : W ); and

it is clear from (2) that Ci is defined over Q(t). The curve Ci for i = 1, 2, . . . ,m

is of genus ≥ 2, so that the set C1(Q(t))∪ . . .∪Cm(Q(t)) is finite (this is just the
function field analogue of Faltings Theorem [2]). Because the elliptic curve C has

infinitely many rational points we can find an integer km+1 > km such that the

curve Ckm+1 is not isomorphic over Q(t) to any of the curves Cki for i = 1, 2 . . . ,m.

By induction we can construct an infinite set A with the required property. ¤

Corollary 2.5. There exists k ∈ Z[t] such that on the elliptic curve C : y2 =

x3 + k there are four independent rational points in geometric progression.

Proof. In order to prove the result it is enough to take

k(t) = (1 + t3)2(1 + t6)2(−1− t3 − 3t6 + t9)(−1 + 3t3 + t6 + t9).

This corresponds to the values of a, b presented in Example 2.3, and is equal to
1
64a(t

3)2b(t3). Then on the curve C : y2 = x3 + k(t) we have the four points in

geometric progression:

P1 =(2(1 + t3)(1 + t6), (1 + t3)(1 + t6)(−3− t3 − t6 + t9)),

P2 =(2t(1 + t3)(1 + t6), (1 + t3)(1 + t6)(1 + 3t3 − t6 + t9)),

P3 =(2t2(1 + t3)(1 + t6), (1 + t3)(1 + t6)(1− t3 + 3t6 + t9)),

P4 =(2t3(1 + t3)(1 + t6), (1 + t3)(1 + t6)(−1 + t3 + t6 + 3t9)).

The above points are seen to be independent in the group C(Q(t)) by means of a

simple specialization argument. Specialize the curve C at t = 2 to get the elliptic

curve

C2 : y2 = x3 + 63752753025.

The points Pi, i = 1, 2, 3, 4, specialize respectively to

R1 = (1170, 255645), R2 = (2340, 276705),

R3 = (4680, 407745), R4 = (9360, 940095),

and the determinant of the height pairing matrix of the four points is equal to

326.8430126208496567501056976. This proves independence of the points Ri on

the curve C2, and thus the independence of the points Pi on the curve C. ¤
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Remark 2.6. The result above is very similar to the one obtained in Ulas

[9], where it is proved that there exists k ∈ Z[t] such that on the curve E : y2 =

x3 + k(t) there are four points in arithmetic progression which are independent

in the group E(Q(t)).
Further, it is possible to prove that for each odd n which is divisible by 3

there exists k ∈ Z[t] such that the rank of the Jacobian of the curve A : Y 2 =

Xn +K(t) defined over Q(t) is greater than or equal to 4. Indeed, it is enough

to take K(t) = k(tn/3), where k ∈ Z[t] is given above. Then there is a map

from A to the elliptic curve C ′ : y2 = x3 + K(t) given by (X,Y ) 7→ (Xn/3, Y ).

Thus C ′ is a factor of the Jacobian J (A) (up to isogeny), which implies that

rankJ (A(Q(t))) ≥ rankC ′(Q(t)). From the reasoning presented in Corollary 2.5

it follows that the rank of C ′ over Q(t) is greater than or equal to 4, and thus the

same is true for J (A(Q(t))).

3. The case of fixed b

It is interesting to ask whether there exist solutions in rationals of the system

(1) for a given squarefree integer value of b. We do not know how to answer this

question, but can make some inroads.

Consider the intersection of (1) with

X2Z2 = (4X2 − 3Y 2)Y 2.

It follows from the first equation at (1) that

Y 2(4X2 − 3b) = bX2. (5)

We suppose that b is of the form b = c2 + 3d2, so that this latter curve (5) of

genus 0 may be parametrized by

X = b(m2 + 3n2)/(2(dm2 − 2cmn− 3dn2)), (6)

Y = b(m2 + 3n2)/(2(cm2 + 6dmn− 3cn2)); (7)

and the requirement that 4X2 − 3Y 2 = (XZ/Y )2 gives

Z = b(m2 + 3n2)k/(2(cm2 + 6dmn− 3cn2)2), (8)
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where

(4c2 − 3d2)m4 + 60cdm3n

− 18(2c2 − 9d2)m2n2 − 180cdmn3 + 9(4c2 − 3d2)n4 = k2. (9)

The second equation at (1) gives, on eliminating Z, then Y :

W 2 = bX2(8X2 − 9b)2/(4X2 − 3b)3 = (8X2 − 9b)2Y 6/(b2X4),

so that
W = (8X2 − 9b)Y 3/(bX2)

=
b(m2 + 3n2)((2c2 − 3d2)m4 + 36cdm3n

2(cm2 + 6dmn− 3cn2)3

+
−6(4c2 − 15d2)m2n2 − 108cdmn3 + 9(2c2 − 3d2)n4)

2(cm2 + 6dmn− 3cn2)3
. (10)

Then (X,Y, Z,W ) at (6), (7), (8), (10), give a solution of (1) with b = c2 + 3d2,

and common ratio equal to

−3(dm2 − 2cmn− 3dn2)2/(cm2 + 6dmn− 3cn2)2.

It follows that when the quartic (9) represents an elliptic curve of positive rank,

then there will be infinitely many distinct rational solutions of the system (1)

when b = c2 + 3d2. In the range 1 ≤ b < 100, the only such values of b occur for

b = 1, 19, 31, 61, 79.

Perhaps the most interesting case is (c, d) = (1, 0), with b = 1. The curve

(9) is now

k2 = 4(m4 − 9m2n2 + 9n4),

with cubic model

y2 = x3 − 63x+ 162,

of rational rank 1, and generator (x, y) = (1, 10). Modulo torsion, the multiples

of the generator pull back to (m,n) = (0, 1), (1, 1), (4, 1), (−45, 7), . . . The first

two result in trivial solutions, and the next two give the following solutions of (1),

in the case b = 1:

(X,Y, Z,W ) = (−19/16, 19/26, 209/169, 1387/2197),

(181/105, 181/313, 108419/97969, 29478203/30664297), . . .

More generally, the rank of (9) can be forced to be positive by setting 4c2−3d2 =

e2, say. Take

(c, d, e) = (g2 + 3h2, g2 + 2gh− 3h2, g2 − 6gh− 3h2),
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so that
b = 4(g4 + 3g3h− 9gh3 + 9h4),

and (9) becomes

k2 = (g2 − 6gh− 3h2)2m4 + 60(g − h)(g + 3h)(g2 + 3h2)m3n

+ 18(7g4 + 36g3h− 30g2h2 − 108gh3 + 63h4)m2n2

− 180(g − h)(g + 3h)(g2 + 3h2)mn3 + 9(g2 − 6gh− 3h2)2n4.

With (m,n, k) = (0, 1, 3(g2 − 6gh − 3h2)) as zero of the group, then the point

(m,n, k) = ((0, 1,−3(g2 − 6gh− 3h2)) has height 4, and is of infinite order. Thus

the system (1) has infinitely many solutions in the case that

b ≡ (g4 + 3g3h− 9gh3 + 9h4) mod Q∗2.

4. Some remarks on five points in geometric progression

on y2 = ax + b

The problem of finding five points in geometric progression on the parabola

y2 = ax+ b reduces to considering the system

x2− b=A/q2, y2− b = A/q, z2− b = A, t2− b = Aq, u2− b = Aq2, (11)

where, by absorbing squares into x, y, z, t, u, and A, we may assume without loss

of generality that b is a squarefree integer.

We show that there are infinitely many essentially distinct solutions of this

system.

Solving for A, b, q,

A =
(z2 − t2)(y2 − z2)

t2 + y2 − 2z2
, b =

t2y2 − z4

t2 + y2 − 2z2
, q =

z2 − t2

y2 − z2
,

and substituting into the remaining two equations,

x2(t2 − z2) = y2(t2 − y2) + y2z2 − z4, u2(y2 − z2) = t2(y2 − t2) + t2z2 − z4.

Equivalently,

(t2 − z2)(y2(t2 − y2) + y2z2 − z4) = ¤, (y2 − z2)(t2(y2 − t2) + t2z2 − z4) = ¤.
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If we set

t2(y2 − 4z2) = −3z4,

then

(t2 − z2)(y2(t2 − y2) + y2z2 − z4) =

(
z(y2 − z2)(y2 − 2z2)

y2 − 4z2

)2

,

and

(y2 − z2)(t2(y2 − t2) + t2z2 − z4) = (−4y2 + 13z2)

(
z2(y2 − z2)

y2 − 4z2

)2

.

Accordingly, we demand

−4y2 + 13z2 = ¤, y2 − 4z2 = −3¤, (12)

the equation of an elliptic curve on taking (1, 1, 3, 1) as zero. The curve has

rational rank 1 with P = (−1,−1,−3, 1) as generator. It follows that we can

construct an infinite chain of solutions to the system (11) by pulling back multiples

of the generator. Note that b = (t2y2−z4)/(t2+y2−2z2) and t2(y2−4z2) = −3z4

imply that b(y2 − 5z2) = −4z4. Thus, with (12), we have for fixed b that

b(y2 − 5z2) = −¤, −4y2 + 13z2 = ¤, y2 − 4z2 = −3¤,

the equation of a curve of genus 5, with only finitely many rational points. Ac-

cordingly, infinitely many b arise from this construction. In particular, this implies

that there are infinitely many distinct quadratic polynomials f(x) = x2 − b such

that the set f(Q) contains a non-constant geometric progression of length 5. This

shows that the conjecture of Ulas [8, Conjecture 3.3] is false.

As example, the points

2P = (−23, 13, 9, 7), 3P = (−1873,−1117, 1479, 703), . . .

give rise to (y, z) = (−23, 13), (−1873,−1117), . . . giving the following solutions

to the system (11):

(b, A, q) =

(
79,−7110

169
,−169

147

)
, (x, y, z, t, u) =

(
15089

2197
,
1817

169
,
79

13
,
79

7
,
237

49

)
,

and

(b, A, q) =

(
682579,−385732218690

1247689
,−1247689

1482627

)
,

(x, y, z, t, u) =

(
691282564829

1393668613
,
1278470467

1247689
,
682579

1117
,
682579

703
,
336511447

494209

)
,

etc.
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5. Computational remarks

Finally, a search was undertaken for small solutions of (1) in the range

−100 < b < 100, and the results are presented in the Table in the Appendix.

The parameterization at (6)–(10) above was discovered by focussing on solutions

in which the common ratio was of type −3¤. It seems highly plausible that there

should be other parameterizable solutions corresponding (say) to the common

ratio being a square.

Two solutions found exhibit Z = 0. It is straightforward to analyze those

solutions in which XY ZW = 0. By symmetry, we may suppose W = 0 or Z = 0.

In the former case, (1) reduces to

−tX2 + (1 + t)Y 2 = Z2, −t(1 + t)X2 + (1 + t+ t2)Y 2 = 0.

But then t(1+ t)(1+ t+ t2) = ¤, representing an elliptic curve of rational rank 0.

The finite rational points occur for t = 0,−1, affording no solution to the original

problem.

In the latter case, (1) reduces to

−tX2 + (1 + t)Y 2 = 0, −t(1 + t)X2 + (1 + t+ t2)Y 2 = W 2.

Thus t(1 + t) = ¤; set t = 1/(u2 − 1). Then X2 = u2Y 2, Y 2 = (1 − u2)W 2,

so put u = 2v/(v2 + 1), giving X = 2v/(v2 + 1)Y , W = (v2 + 1)/(v2 − 1)Y ,

b = (v2 + 1)2/(2(v4 + 1))Y 2. Accordingly, we have the infinite family

(X,Y, Z,W ) =

(
4v(1 + v4)

(1 + v2)2
,

2(1 + v4)

1 + v2
, 0,

2(1 + v4)

v2 − 1

)
, b = 2(1 + v4),

with common ratio t = −(1+v2)2/(1−v2)2. It is worth remarking that there will

be infinitely many distinct solutions of the system (1) for b of the form 2(1+ v40).

For a solution with such b, we demand v ∈ Q such that b = 2(1+v40) = 2(1+v4)y2,

equivalently, (1+ v40)(1+ v4) = w2, say. This latter equation is that of an elliptic

curve, with points given by (±v,±w) = (v0, 1 + v40), (1/v0, (1 + v40)/v
2
0). Taking

(v0, 1 + v40) as zero of the group, then the point (v0,−1 − v40) has height 4, and

so is non-torsion. Its multiples (v, w) correspond to the solution

(X,Y, Z,W ) =

(
4vw

(1 + v2)2
,

2w

1 + v2
, 0,

2w

1− v2

)
, b = 2(1 + v40),

with common ratio −(1 + v2)2/(1− v2)2.
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6. Appendix

b X Y Z W ratio

-95 16 29 49 81 8/3
-87 145/64 29/4 145/13 2581/169 256/169
-79 79/135 7979/765 82871/4335 766221/24565 684/289
-79 419/15 119/3 167/3 233/3 25/13
-74 3086/529 578/23 202/3 4678/27 529/81
-59 3599/361 1711/19 649 4661 361/7
-39 3 21 69 219 10
-39 5 11 19 31 5/2
-29 29/64 551/16 899/4 1450 208/5
-23 5251/1681 181/41 17/3 188/27 1681/1296
-11 3 7 13 23 3
-11 19/3 37 193 1003 27
-11 2085/529 3485/644 11105/1568 794405/87808 4761/3136
-7 23/27 29/9 17/3 9 9/4
-6 3/11 3 39/7 453/49 121/49
1 299/289 23/17 23/7 529/49 578/49
1 19/16 19/26 209/169 1387/2197 -192/169
1 9951/7168 771/448 699/308 2649/847 256/121
1 2201/1849 155/43 93/5 7471/75 12943/450
1 475799/243049 5357/493 487/7 21915/49 243049/5880
1 181/105 181/313 108419/97969 29478203/30664297 -33075/97969
2 557/368 13/8 229/124 4343/1922 2116/961
11 83/25 17/5 5 19 25
14 19/5 5 17 83 25
15 453/121 39/11 3 3/7 121/49
19 1349/343 247/49 19/7 19/3 -49/27
22 9/2 17/4 29/8 23/16 9/4
22 230/49 34/7 10 62 49
23 187933/52822 3335/1078 2231/946 24265/40678 2401/1849
29 6887/1331 733/121 17/11 11 -121/35
29 37/7 41/7 11/7 89/7 -5
31 31/5 31/7 341/49 713/343 -75/49
31 188/41 17/4 181/48 5251/1728 1681/1296
34 136/25 34/5 0 34/3 -25/9
34 10 32 122 472 -25/9
41 123/25 41/5 0 41/4 -25/16
41 4343/529 229/23 13 557/31 2116/961
43 6 31/4 19/16 769/64 -39/16
51 9771/961 579/31 543/13 16629/169 961/169
61 262/21 138/7 242/7 442/7 45/13
69 933/125 249/25 3/5 15 -25/11
69 7187/729 1267/81 307/9 83 81/13
78 62/7 10 34 230 49
79 97/11 103/11 47/11 247/11 -7
79 15089/2197 1817/169 79/13 79/7 -169/147
79 1817/169 79/13 79/7 237/49 -169/147
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89 13 43 197 923 22
91 9 11 1 19 -3
93 2445/361 111/19 75/17 309/289 361/289
93 5815/529 337/23 25 541/11 529/121
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Naturforsch. Ges. Zürich 62 (1917), 207–229.

[5] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59.

[6] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.

[7] Th. Skolem, Diophantische Gleichungen, Chelsea Publishing Company, New York, 1950.

[8] M. Ulas, On the diophantine equation (x2 + k)(y2 + k) = (z2 + k)2, Rocky Mountain J.
Math. 38(6) (2008), 2091–2099.

[9] M. Ulas, Rational points in arithmetic progressions on y2 = xn + k, Can. Math. Bull. 55
(1) (2012), 193-207.

[10] M. Ulas, On the diophantine equation f(x)f(y) = f(z)2, Colloq. Math. 107 (2007), 1–6.

ANDREW BREMNER

SCHOOL OF MATHEMATICAL

AND STATISTICAL SCIENCES

ARIZONA STATE UNIVERSITY

TEMPE AZ 85287-1804

USA

E-mail: bremner@asu.edu

MACIEJ ULAS

JAGIELLONIAN UNIVERSITY

FACULTY OF MATHEMATICS

AND COMPUTER SCIENCE

INSTITUTE OF MATHEMATICS

ÃLOJASIEWICZA 6

30-348 KRAKÓW
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