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Certain Riemannian invariants for Sasakian submanifolds

By ADELA MIHAI (Bucharest) and IOANA N. RĂDULESCU (Bucharest)

Abstract. In [2], B. Y. Chen introduced a series of Riemannian invariants on Ka-

ehler manifolds and proved sharp estimates of these invariants for Kaehler submanifolds

in complex space forms in terms of the main extrinsic invariant, namely the squared

mean curvature. In this article we define analogous Chen invariants for Sasakian ma-

nifolds and obtain inequalities involving these invariants for invariant submanifolds in

Sasakian space forms.

1. Introduction

B. Y. Chen introduced in 1993 a series of Riemannian invariants, i.e., int-

rinsic characteristics of a Riemannian manifold, known as Chen invariants. In

this way, he initiated a modern topic in Submanifold Theory, the theory of Chen

invariants, looking for the answers of one of the most interesting problem: find

relationships between the intrinsic and extrinsic invariants of submanifolds. The

most known Chen invariant (called the Chen first invariant) is given by

δM (p) = τ(p)− (infK)(p),

where M is a Riemannian manifold, K(π) is the sectional curvature of M asso-

ciated with a plane section π ⊂ TpM , p ∈ M , and τ(p) is the scalar curvature
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at p. Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen

first equality were studied in [5]. A recent survey of results involving this type of

invariants can be read in [3].

In [2], B. Y. Chen introduced certain invariants on Kaehler manifolds. He

obtained general inequalities involving those invariants for Kaehler submanifolds

in complex space forms and determined such submanifolds satisfying the equality

cases of the above inequalities.

In the present paper we define a series of Chen-like invariants for Sasakian

manifolds. It is well-known that the Sasakian manifolds are the odd version of

Kaehler manifolds and the geometry studying Sasakian manifolds, i.e., contact

geometry, is an important field of Differential Geometry.

It is known that any invariant submanifold of a Sasakian manifold is Sa-

sakian. In this respect, we consider that is interesting to study the behaviour

of invariant submanifolds of Sasakian manifolds from this point of view, of Rie-

mannian invariants and, more precisely, corresponding Chen-like invariants to

those introduced by B. Y. Chen in [2].

In this study of such submanifolds (we must observe that the dimension of

the submanifold should be ≥ 5) in Sasakian space forms we consider the notion

of totally real plane section (similar to that defined by B. Y. Chen in Kaeh-

ler geometry); we need to impose the condition that the plane section must be

orthogonal to the Reeb vector field ξ.

We estimate the sectional curvature of totally real plane sections of an invari-

ant submanifold in terms of the φ-sectional curvature of the embedding Sasakian

space form; the characterization of the equality case is given.

We define a series of Chen-like invariants δrk on any Sasakian manifold. By

using the above estimate of the sectional curvature of totally real plane sections

we obtain sharp inequalities for these invariants for invariant submanifolds of a

Sasakian space form.

Also, we derive characterizations of the equality cases in terms of the shape

operators and give one example which shows that the inequality fails for k ≥ 4.

2. Preliminaries

Let Mn be an n-dimensional Riemannian manifold. We denote by K(π) the

sectional curvature of Mn associated with a plane section π ⊂ TpM
n, p ∈ Mn.

For any orthonormal basis {e1, . . . , en} of the tangent space TpM
n, the scalar
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curvature τ at p is defined by

τ(p) =
∑

i<j

K(ei ∧ ej).

Let M̃2m+1 be a (2m + 1)-differentiable manifold. The triple (φ, ξ, η) on

M̃2m+1 is called a (φ, ξ, η)-structure if it satisfies η (ξ) = 1 and φ2 = −Id+ η⊗ ξ,

where φ is an endomorphism of the tangent bundle, ξ is a vector field, η is a

1-form and Id is the identity tensor.

We recall that φξ = 0 and η ◦ φ = 0.

If the manifold M̃2m+1 with a (φ, ξ, η)-structure admits a Riemannian metric

g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X, Y , M̃2m+1 has a (φ, ξ, η, g)-almost contact metric structure.

For more details see [1], [7].

If, moreover, dη(X,Y ) = g(X,φY ), for all vector fields X,Y , then M̃2m+1 is

a contact metric manifold.

A (2m + 1)-dimensional Riemannian manifold (M̃2m+1, g) is said to be a

Sasakian manifold if it admits a normal contact metric structure, or equivalently,

satisfying

(∇̃Xφ)Y = g(X,Y )ξ − η(Y )X, ∇̃Xξ = φX,

for any vector fields X, Y on TM̃2m+1, where ∇̃ denotes the Riemannian con-

nection with respect to g.

A plane section π in TpM̃
2m+1 is called a φ-section if it is spanned by X and

φX, where X is a unit tangent vector orthogonal to ξ. The sectional curvature

of a φ-section is called a φ-sectional curvature.

A Sasakian manifold with constant φ-sectional curvature c is said to be a

Sasakian space form and is denoted by M̃2m+1(c).

As examples of Sasakian space forms we have R2m+1, S2m+1 with standard

Sasakian structures (see more details in [1]).

A plane section π ⊂ TpM̃
2m+1, orthogonal to ξ, where M̃2m+1 is a Sasakian

manifold, is called anti-invariant or totally real if φπ is perpendicular to π.

Since π is orthogonal to ξ, we have φ2X = −X + g(X, ξ)ξ = −X, ∀X ∈ π;

then we can say that π is totally real with respect to φ.

For each real number k and p ∈ M̃2n+1, where M̃2m+1 is a Sasakian manifold,

we define an invariant δrk by

δrk(p) = τ(p)− k infKr(p),
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where infKr(p) = infπr{K(πr)} and πr runs over all totally real plane sections

in TpM
n.

An n-dimensional submanifold Mn of a Sasakian space form M̃2m+1(c)

tangent to ξ is called an invariant submanifold (or Sasakian submanifold) of

M̃2m+1(c) if φ (TpM
n) ⊆ TpM

n.

We recall important results about invariant submanifolds in Sasakian mani-

folds [8].

Proposition 2.1. Every invariant submanifold of a Sasakian manifold is a

Sasakian manifold.

Proposition 2.2. Every invariant submanifold of a Sasakian manifold is

minimal.

Proposition 2.3. If the second fundamental form of an invariant subma-

nifold Mn of a Sasakian space form M̃2m+1(c) is parallel, then Mn is totally

geodesic.

Proposition 2.4. Let Mn be an invariant submanifold of a Sasakian space

form M̃2m+1(c) with φ-sectional curvature c. Then Mn is totally geodesic if and

only if Mn has constant φ-sectional curvature c.

We put 2q = 2m+ 1− n and choose {en+1, . . . , en+q, en+q+1 = φen+1, . . . ,

e2m+1 = φen+q} an orthonormal normal frame. Then the shape operators Aα =

Aen+α and Aα∗ = Aen+q+α , α, α
∗ = 1, q, of an invariant submanifold Mn in a

Sasakian manifold M̃2m+1 take the forms:

Aα =



A′

α A′′
α 0

A′′
α −A′

α 0

0 0 0


 , Aα∗ =



−A′′

α A′
α 0

A′
α A′′

α 0

0 0 0


 , (2.1)

where A′
α and A′′

α are n× n matrices.

We recall now two important examples of invariant submanifolds.

Example 2.1. Let S2m+1 be a unit sphere with standard Sasakian structure.

An odd-dimensional unit sphere S2n+1(n < m) with induced structure is a totally

geodesic Sasakian submanifold of S2m+1. Obviously the Sasakian space form

R2n+1(−3) in R2m+1(−3) is a totally geodesic Sasakian submanifold.

Example 2.2. The circle bundle (Qn, S1) over a hyperquadric in CPn+1 is a

Sasakian submanifold of S2n+3 which is a η-Einstein manifold.

Chen inequalities for other classes of submanifolds (C-totally real and contact

slant submanifolds, respectively) were obtained in [4] and [6].
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3. Invariants of a Sasakian submanifold

In this section we prove the main results of the article.

First theorem gives an inequality between the infimum of Kr (intrinsic inva-

riant) of an invariant submanifold and the φ-sectional curvature of the Sasakian

space form (extrinsic invariant), i.e. the embedding space; the characterization

of the equality case is given.

In the second theorem we obtain an inequality for δrk of an invariant subma-

nifold of a Sasakian space form and characterize the equality case for k < 4 (the

submanifold is then totally geodesic) and k = 4 (in terms of the shape operator).

For k > 4 the inequality fails.

Theorem 3.1. For any invariant submanifold Mn in a Sasakian space form

M̃2m+1(c), we have:

infKr ≤ c+ 3

4
. (3.1)

The equality case holds if and only if Mn is a totally geodesic submanifold.

Proof. By a φ-sectional curvature H(X) of Mn with respect to a unit

tangent vector X orthogonal to ξ, we mean the sectional curvature K (X,φX)

spanned by the vectors X and φX. Let K(X,Y ) be the sectional curvature deter-

mined by orthonormal vectors X and Y , with X,Y orthogonal to ξ, g (X,φY ) = 0.

Then we have (see [1], p. 111):

K(X,Y ) +K(X,φY ) =
1

4
[(H(X + φY ) +H(X − φY )

+H(X + Y ) +H(X − Y )−H(X)−H(Y ) + 6].

Let T 1Mn denote the unit sphere bundle of Mn consisting of all unit tangent

vectors on Mn. For each x ∈ Mn, we put

Wx = {(X,Y ); X,Y ∈ T 1
xM

n, g(X, ξ) = g(Y, ξ) = g(X,Y ) = g(X,φY ) = 0}.
Then Wx is a closed subset of T 1

xM
n × T 1

xM
n and it is easy to verify that

if {X,Y } spans a totally real plane section, then both {X + φY,X − φY } and

{X + Y,X − Y } also span totally real plane sections. We define a function

Ĥ : Wx → R by

Ĥ(X,Y ) = H(X) +H(Y ), (X,Y ) ∈ Wx.

Suppose that (Xm, Ym) is a point in Wx such that Ĥ attains an absolute

maximum value, say mx, at (Xm, Ym). It follows that

K(Xm, Ym) +K(Xm, φYm) ≤ 1

4
[Ĥ(Xm, Ym) + 6].
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On the other hand, it is known that H(X) ≤ c (as in the Kaehler case,

see [3]). Thus, from the previous relation, we obtain

K(Xm, Ym) +K(Xm, φYm) ≤ c+ 3

2
,

which implies the inequality (3.1).

For the equality case the proof is similar to the proof of Theorem 1 from [2].

¤

Remark. It is well known that on a K-contact manifold, in particular Sa-

sakian, the sectional curvature of a plane section which contains the vector ξ is

equal to 1, i.e., K(X, ξ) = 1; thus we have considered only the case when X and

Y are both orthogonal to ξ.

Theorem 3.2. For any invariant submanifold Mn in a Sasakian space form

M̃2m+1(c), the following statements hold.

(1) For each k ∈ (−∞, 4], δrk satisfies:

δrk ≤ [n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

8
. (3.2)

(2) Inequality (3.2) fails for every k > 4.

(3) δrk = [n(n− 1)− 2k] c+3
8 +(n−1) c−1

8 holds for some k ∈ (−∞, 4) if and only

if Mn is a totally geodesic submanifold of M̃2m+1(c).

(4) The invariant submanifold Mn satisfies

δr4 = [n(n− 1)− 8]
c+ 3

8
+ (n− 1)

c− 1

8

at a point p ∈ Mn if and only if there exists an orthonormal basis

{e1, e2 = φe1, e3, e4 = φe3, . . . , e2k−1, e2k = φe2k−1, e2k+1 = ξ, en+1, . . . , e2m+1}

of M̃2m+1(c) such that, with respect to this basis, the shape operator of Mn

takes the forms (2.1), with

A′
α =



aα bα 0

bα −aα 0

0 0 0


 , A′′

α =



a∗α b∗α 0

b∗α −a∗α 0

0 0 0


 ,

where aα, bα, aα∗ , bα∗ are real numbers.
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Proof. Let Mn be an invariant submanifold in a Sasakian space form

M̃2m+1(c). Then Gauss formula for the submanifold Mn is

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )),

for any X,Y, Z,W ∈ TpM
n.

Since M̃2m+1(c) is a Sasakian space form, we have

4R̃(X,Y, Z,W ) = (c+ 3){−g(Y, Z)g(X,W ) + g(X,Z)g(Y,W )}
+ (c− 1){−η(X)η(Z)g(Y,W ) + η(Y )η(Z)g(X,W )

− g(X,Z)η(Y )g(ξ,W ) + g(Y, Z)η(X)g(ξ,W )

− g(φY,Z)g(φX,W ) + g(φX,Z)g(φY,W )

+ 2g(φX, Y )g(φZ,W )}, ∀X,Y, Z,W ∈ TpM
n. (3.3)

We choose an orthonormal basis {e1, . . . , en = ξ} ⊂ TpM
n and an orthonor-

mal basis {en+1, . . . , e2m+1} ⊂ T⊥
p Mn. For X = Z = ei and Y = W = ej , and

summing by i, j = 1, . . . , n, in (3.3) we obtain:

R̃(ei, ej , ei, ej) = (c+ 3)(−n+ n2) + (c− 1)
[
− 2(n− 1) + 3

n∑

i,j=1

g2(φei, ej)
]
.

In particular, we may choose an orthonormal frame

{e1, e2 = φe1, e3, e4 = φe3, . . . , e2k−1, e2k = φe2k−1, e2k+1 = ξ} ,

n = 2k + 1. Then
∑n

j=1 g
2(φei, ej) = 1; we obtain

R̃(ei, ej , ei, ej) = (n2 − n)(c+ 3) + (n− 1)(c− 1),

which implies that

2τ = n(n− 1)
c+ 3

4
+ (n− 1)

c− 1

4
+ n2 ‖H‖2 − ‖h‖2 ,

where ‖H‖2 and ‖h‖2 are the squared norm of the mean curvature vector

H =
1

n

n∑

i=1

h(ei, ei),
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and the squared norm of the second fundamental form, respectively.

‖h‖2 =

n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

From Proposition 2.2 we have H = 0. Then:

2τ = n(n− 1)
c+ 3

4
+ (n− 1)

c− 1

4
− ‖h‖2 . (3.4)

From (3.4) we obtain

τ ≤ n(n− 1)
c+ 3

8
+ (n− 1)

c− 1

8
, (3.5)

with equality if and only if Mn is totally geodesic, i.e., h = 0.

Next, let π = sp(e1, e2) be a totally real plane section in TpM
n. We compute

K(π) and consider in the Gauss equation X = Z = e1 and Y = W = e2.

Using (3.3), (3.4) and (2.1), we have

n(n− 1)
c+ 3

4
+ (n− 1)

c− 1

4
− 2τ = 4

q∑
α=1

{‖A′
α‖2 + ‖A′′

α‖2}

≥ 4

q∑
α=1

{(hα
11)

2 + (hα
22)

2 + 2(hα
12)

2 + (hα∗
11 )

2 + (hα∗
22 )

2 + 2(hα∗
12 )

2}

≥ −8

q∑
α=1

{hα
11h

α
22 − (hα

12)
2 + hα∗

11 h
α∗
22 − (hα∗

12 )
2} = −8K(π) + 2(c+ 3),

where hr
ij = g(h(ei, ej), er).

Thus we have obtained

−2τ + 8K(π) ≥ 2(c+ 3)− (n− 1)
c− 1

4
− n(n− 1)

c+ 3

4
. (3.6)

Since inequality (3.6) holds for any totally real plane section, we get

τ − 4 infKr ≤ (n2 − n− 8)
c+ 3

8
+ (n− 1)

c− 1

8
. (3.7)

For any positive number s, if we sum (3.5) multiplied by s and (3.7) we

obtain:

(s+ 1)τ − 4 infKr ≤ [(s+ 1)n(n− 1)− 8]
c+ 3

8
+ (s+ 1)(n− 1)

c− 1

8
. (3.8)
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Since s > 0 and 4
s+1 < 4, we have

τ − 4

s+ 1
infKr ≤

[
n(n− 1)− 8

s+ 1

]
c+ 3

8
+ (n− 1)

c− 1

8
. (3.9)

If we put k = 4
s+1 and we use the definition of δrk , we obtain

δrk ≤ [n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

4
, (3.10)

for any k ∈ (0, 4). Combining (3.5), (3.7), (3.10) we get the inequality (3.2) for

k ∈ [0, 4].

The inequality for k ≤ 0 follows from Theorem 3.1.

To prove statement (2) we get the next example: Let π : S7 −→ CP 3 be the

Hopf fibration. The complex quadric Q2 in CP 3 is defined by:

Q2 = {(z0, z1, z2, z3) ∈ CP 3 : z20 + z21 + z22 + z23 = 0}.

We put M5 = π−1(Q2). Then M5 is an invariant submanifolds of S7. We

have the commutative diagram.

M5 → S7

↓ π ↓ π

Q2 → CP 3

.

If we assume that M5 satisfies the equality case of the inequality (3.2), then

Q2 in CP 3 satisfies the equality δrk = 12 − k. According to [2], one has δrk = 8.

Hence this leads to a contradiction for any k > 4.

In order to prove statement (3) we consider 3 cases:

I) If δr0 = n(n − 1) c+3
8 + (n − 1) c−1

8 , then (3.4) implies that Mn is totally

geodesic.

II) If δrk = [n(n− 1)− 2k] c+3
8 + (n− 1) c−1

8 , for some k ∈ (0, 4), then we can

write :

[n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

8
= (1− k

4
)δr0 +

k

4
δr4

≤ [n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

8
,

which implies that Mn is totally geodesic.
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III) If δrk = [n(n− 1)− 2k] c+3
8 + (n− 1) c−1

8 for some k ∈ (−∞, 0), then we

can write:

[n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

8
= τ − k infKr

≤ [n(n− 1)− 2k]
c+ 3

8
+ (n− 1)

c− 1

8
,

which implies that Mn is totally geodesic.

For proving statement (4), we use the proof of statement (1) and the fact

that the second fundamental form of Mn satisfies the conditions:

hr
11 + hr

22 = 0, hr
1j = hr

2j = hr
jk = 0, j, k = 3, . . . , n, r ∈ {α, α∗|α = 1, q }.

Then, the shape operator of Mn takes the forms (2.1), with respect to the

orthonormal basis

{e1, e2 = φe1, e3, e4 = φe3, . . . , e2k−1, e2k = φe2k−1, e2k+1 = ξ, en+1, . . . , e2m+1} .

Conversely, we suppose that the shape operator at a point p ∈ Mn takes the

form (2.1), with A′
α and A′′

α given above, with respect to a suitable orthonormal

basis. From the equation of Gauss we get infKr = K(e1, e2).

Also we have

n(n− 1)
c+ 3

8
+ (n− 1)− c− 1

8
− 2τ = −8K(e1, e2) + 2(c+ 3).

Thus, we get

δr4 = [n(n− 1)− 8]
c+ 3

8
+ (n− 1)

c− 1

8
. ¤
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