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On Clairaut-type equations

By SHYUICHI IZUMIYA (Sapporo)

Abstract. We study implicit first order ordinary differential equations with com-
plete integral. We establish the principle of duality among these equations. We also
give a characterization of first order differential equation with smooth complete solu-
tions which we call Clairaut type equations.

0. Introduction

About 260 years ago Alex Claude Clairaut [4] studied the fol-

lowing equation which is called the Clairaut equation now: y = x · dy

dx
+

f

(
dy

dx

)
. It is usually taught in the first or second year course of calculus

in the university and treated as one of the typical examples of non-linear
equations that are easily solved. Moreover it has a quite beautiful geomet-
ric structure as follows: There exists a “general solution” that consists of
lines; y = t · x + f(t), where t is a parameter and the singular solution is
the envelope of such a family.

In this article we shall discuss equations with the same geometric
structure as the Clairaut equation. Here, we give another example as

follows: y −
(

dy

dx

)2

= 0. We can easily solve this equation: the “general

solution” is given by y = 1
4 (x + t)2, where t is a parameter. Here, the

“singular solution” is given by y = 0 that is the envelope of the family of
graphs of the “general solution”. The “general solution” of this equation
does not consist of lines. However, the “singular solution” is the envelope
of the graphs of the “general solution” like as the Clairaut equation. We
will refer such an equation as a Clairaut-type equation.
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In ([5], [8]) it has been proved that Clairaut type equations are not
generic in all implicit differential equations. However, these are generic in
the set of implicit differential equations with complete solution (cf. [6]).
In this paper we give a characterization of Clairaut type equations and es-
tablish the principle of duality among implicit differential equations with
complete integral. We assert that Clairaut type equations play the princi-
pal role of such duality (cf. Corollary 4.2).

Al map germs considered here are differentiable of class C∞, unless
stated otherwise.

1. Basic notions

We stick to first order ordinary differential equations of the form

F

(
x, y,

dy

dx

)
= 0. We assume that F : (R3, (x0, y0, p0)) → (R, 0) is a

function germ such that grad F 6= 0. Then S = F−1(0) is a smooth sur-
face in (R3, (x0, y0, p0)).

We now define the notion of solutions. A smooth solution of F = 0 is a
function germ y = f(x) at the origin such that (0, f(0), f ′(0)) = (x0, y0, p0)
and F (x, f(x), f ′(x)) = 0. This is the classical notion of solutions of the
equation F = 0. The following is the geometric generalization of the
notion of solution due to Lie. A geometric solution of F = 0 is a smooth
immersion germ γ : (R, 0) → F−1(0) such that y′(t) = p(t)x′(t) where
γ(t) = (x(t), y(t), p(t)) in the canonical coordinate system of R3. In the
terminology of contact geometry, the above curve is called a Legendrian
curve (see [1]). The proof of the following lemma is just an exercise for
readers.

Lemma 1.1. Let γ : (R, 0) → F−1(0) be a geometric solution. Sup-
pose that x′(0) 6= 0. Then there exist a diffeomorphism germ φ : (R, 0) →
(R, 0) and a function germ f such that γ ◦ φ(x) = (x, f(x), f ′(x)).

According to the above property, we may define the notion of singular
point of solutions. We say that t0 is a geometric singular point of the
solution γ if x′(t0) = 0. Thus γ is multivalued around the geometric
singular point. It is clear that t0 is a geometric singular point of γ if and
only if (x′(t0), y′(t0)) = (0, 0).

On the other hand, there exists a notion of the Legendrian transfor-
mation by which a dual relationship can be set up between one equation
and another. We adopt another coordinate system (X, Y, P ) of R3 by
X = p, Y = x ·p−y, P = x. We refer to a smooth mapping ∗L : R3 → R3;
∗L(x, y, p) = (p, x · p− y, x) as a Legendre transformation. By the defini-
tion, we have ∗L−1(X, Y, P ) = (P, X ·P −Y, X). If we apply the Legendre
transformation to our equation, we obtain a new equation

F ∗(X,Y, P ) = F (P, X · P − Y,X) = 0
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in the new coordinate system (X, Y, P ).
If we calculate partial derivatives at the point (X0, Y0, P0) correspond-

ing to (x0, y0, p0), we can show the following:

F ∗P (X0, Y0, P0) = (Fx + p · Fy)(x0, y0, p0)

F ∗Y (X0, Y0, P0) = −Fy(x0, y0, p0)

F ∗X(X0, Y0, P0) = (Fp + x · Fy)(x0, y0, p0).

The following lemma is quite simple but important in the later sec-
tions.

Lemma 1.2. (1) Let γ : (R, 0) → F−1(0) be a geometric solution of
F = 0. Then ∗L ◦ γ : (R, 0) → F ∗−1(0) is a geometric solution of F ∗ = 0.

(2) If t0 is a geometric singular point of γ, then t0 is a geometric
non-singular point of ∗L ◦ γ.

We now call (x0, y0, p0) a π-singular point of F = 0 if F = Fp = 0 at
(x0, y0, p0) and denote Σπ(F ) as the set of π-singular points. We also call
the set DF = π(Σπ(F )) a discriminant set of F = 0, where π(x, y, p) =
(x, y).

The following notion is a basis of our concerns. Let Γ : (R× R, 0) →
(F−1(0), (x0, y0, p0)) be an one-parameter family of geometric solutions of
F = 0. We say that Γ is a complete solution at (x0, y0, p0) if

rank
(

xt yt pt
xc yc pc

)
= 2

and Γ(0) = (x0, y0, p0), where Γ(t, c) = (x(t, c), y(t, c), p(t, c)) and c is a
parameter. In some classical textbooks (cf. [7]), the above term is used in
a different sense. However, we adopt the above definition according to the
terminology in the theory of first-order partial differential equations ([2],
[3]). We say that an equation F = 0 is completely integrable at (x0, y0, p0)
if there exists a complete solution of F = 0 at (x0, y0, p0). The uiniqueness
of the complete solution is dealt with in the following:

Proposition 1.3. Let Γi : (R × R, 0) → (F−1(0), (x0, y0, p0)) (i =
1, 2) be complete solutions of F = 0 at (x0, y0, p0). Then there exists a
diffeomorphism germ Φ : (R × R, 0) → (R × R, 0) of the form Φ(t, c) =
(φ1(t, c), φ2(c)) such that Γ1 ◦ Φ = Γ2.

Proof. Suppose that the assertion does not hold. Since the so-
lution is an one-parameter family of curves in F−1(0), then there ex-
ists a point (x1, y1, p1) ∈ (R × R × R, 0) such that Γ1,c1 and Γ2,c2 are
transversal near (x1, y1, p1). Then we can construct an immersiv germ
Γ : (R × R, (x1, y1, p1)) → F−1(0) such that ∂y

∂t = p(t, c) · ∂x
∂t (t, c) and
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∂y
∂c = p(t, c) · ∂x

∂c (t, c), where Γ(t, c) = (x(t, c), y(t, c), p(t, c)). If we cal-
culate second-order partial derivatives of both equalities, we get ∂2y

∂t ∂c =
∂p
∂c

∂x
∂t + p · ∂2x

∂t ∂c and ∂2y
∂c ∂t = ∂p

∂t
∂x
∂c + p · ∂2x

∂c ∂t . This contradicts fact that γ
is an immersion.

We now give some examples of completely integrable equations.
Example 1.4. 1) The dual of the Clairaut equation. Consider the

equation: y = f(x). This equation is given by the Legendre transform
of the Clairaut equation. The geometric conplete solution is given by
{(c, f(c), x) | (c, x) ∈ R× R}.

2) Consider the following equation: y−2p3 = 0. We have the complete
solution Γ(t, c) = (3t2 + c, 2t3, t).

2. The Clairaut type equation

In this section we give a characterization of equations with smooth
complete solution. By the definition of smoothness of the solution and a
parameterized version of Lemma 1.1, a smooth complete solution of F = 0
is given by one-parameter family of smooth function germs y = f(x, c) such
that F (x, f(x, c), ∂f

∂x (x, c)) = 0 and the mapping j1
∗f : (R×R, 0) → F−1(0)

defined by j1
∗f(x, c) = (x, f(x, c), ∂f

∂x (x, c)) is an immersion germ. We

remark that j1
∗f is an immersion gern if and only if

(
∂f
∂c , ∂2f

∂x ∂c

)
6= (0, 0).

The following definition is due to Dara [5]. We say that an equation
F = 0 is Clairaut type at (x0, y0, p0) if there exist smooth function germs
A(x, y, p), B(x, y, p) at (x0, y0, p0) such that Fx + p · Fy = A · F + B · Fp.
We now give some examples of Clairaut type equations.

Example 2.1. 1) Of course, one of the example is the Clairaut equa-
tion. In this case we can easily show that Fx + p · Fy = 0. Then we may
choose A = B = 0.

2) Consider the following equation: y−p2 = 0. Then we have Fx +p ·
Fy = p and Fp = −2p, so that we may choose A = 0 and B = − 1

2 . Here,
we can get the smooth complete solution as follows: y = 1

4 (x + c)2.
Moreover, DF is the envelope of the family graphs of the smooth

complete solution.
3) “Free particle” on the line. Consider the following equation: y2 +

p2 − 1 = 0. We can calculate that Fx + p · Fy = 2y · p and Fp = 2p.
Then we have A = 0 and B = y. The smooth complete solution around

(0,±1, 0) is given by y =
±1

(c2 + 2c + 2)
1
2
· cos(t+ ct), where (t, c) is a point

near (0,−1). In this case we can also show that DF is the envelope of the
family of graphs of the smooth complete solution.
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The following theorem gives a characterization of equations with
smooth complete solution.

Theorem 2.2. For an equation F = 0, the followings are equivalent.
(1) F = 0 is Clairaut type equation at (x0, y0, p0).
(2) F = 0 has a smooth complete solution at (x0, y0, p0).

Moreover, in this case, if Σπ(F ) 6= 0, then DF is the envelope of the
family of the graphs of the complete solution.

Proof. (1) =⇒ (2). By the assumption, there exist function germs
A, B at (x0, y0, p0) such that Fz + p · Fy = A · F + B · Fp. We now
consider a vector field germ V = ∂

∂x + p · ∂
∂y − B · ∂

∂p at (x0, y0, p0). Let
c(t) be an integral curve of V such that c(0) ∈ F−1(0). Then we can

calculate that
dF (c(t))

dt

∣∣∣∣
t=0

= Fx + p · Fy − B · Fp = 0. It follows that

V is tangent to F−1(0). If we set c(t) = (x(t), y(t), p(t)), then we have
x′(t) = 1, y′(t) = p(c(t)) and p′(t) = B(c(t)). These equalities guarantee
that c(t) is a smooth solution of F = 0. Then the flows of the vector field
V gives the smooth complete solution of F = 0.

(2) =⇒ (1). Let y = f(x, c) be the complete solution of F = 0. If we
calculate the partial derivative of F (x, f(x, c), fx(x, c)) = 0 with respect to
x, then we have Fx +fx ·Fy +fxx ·Fp = 0 at (x, f(x, c), fx(x, c)) ∈ F−1(0).

Since the map j1
∗f is an immersion, then there exists a function germ

B(x, y, p) near (x0, y0, p0) such that B ◦ j1
∗f(x, c) = fxx(x, c). For any

(x, y, p) ∈ (F−1(0), (x0, y0, p0)), there exists (x, c) such that (x, f(x, c),
fx(x, c)) = (x, y, p). Then we have Fx + p · Fy = B · Fp. Since grad F 6= 0,
then the above equality means that there exists a function germ A(x, y, p)
at (x0, y0, p0) such that Fx + p · Fy = B · Fp + A · F . This completes the
proof of the first part.

For the proof of the second part, we may assume that there exists a
smooth complete solution y = f(x, c) of F = 0 around (x0, y0, p0). By
definition, j1

∗f(x, c) ∈ Σπ(F ) if and only if

rank
(

1 fx
0 fc

)
< 2

at (x, c). It is equivalent to the fact that fc = 0. Then the set Σπ(F ) is
given by the equation fc = 0 near (x0, y0, p0). We now consider the family
of graphs of the smooth complete solution which is defined by the equation
f(x, c)−y = 0 on the (x, y)-plane. Then the set {(x, f(x, c)) | There exists
c such that fc(x, c) = 0} is the envelope of this family by the definition.
This set is equal to the discriminant set DF by the previous argument.
This completes the proof.

We now consider Clairaut equations rather than Clairaut type equa-
tions. We have the following theorem.
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Theorem 2.3. For an equation F = 0 at (x0, y0, p0), the followings
are equivalent.

(1) There exists a function germ A : (R3, (x0, y0, p0)) → R such that

Fx + p · Fy = A · F

and (x0, y0, p0) ∈ Σπ(F ).
(2) There exists a function germ f : (R, p0) → R such that

F−1(0) = {(x, y, p) | y = x · p + f(p)}.

This theorem has been proved by Dara [5], however, we now give an
elementary proof.

Proof. Suppose that F = 0 satisfies condition (1). If Fy = 0 at
(x0, y0, p0), then F = Fx = Fp = 0 at (x0, y0, p0). This contradicts the
fact that grad F 6= 0. Then Fy 6= 0 at (x0, y0, p0). By the implicit function
theorem, there exist a function germ h(x, p) and a non vanishing function
germ λ(x, y, p) such that F (x, y, p) = λ(x, y, p) · (h(x, p) − y). We now
consider the Legendre transform F ∗ of F . Then F ∗(X, Y, P ) = Λ(X, Y, P )·
(H(X, P )−Y ), where Λ(X, Y, P ) = −λ(P, X ·P−Y, X) and H(X,P ) = X ·
P−h(P, X). It follows that F ∗P = Λ·HP on F ∗−1(0). Since F ∗P = Fx+p·Fy

and ∗L({(x, y, p) | y = h(x, p)}) = {(X, Y, P ) | Y = H(X,P )}, we have
HP ≡ 0. Then we can put f(X) = −H(X, P ). Pulling back by the
Legendre transformation, we have F−1(0) = {(x, y, p) | y = x · p + f(p)}.
The converse of the proof is given by a direct calculation.

3. The principle of duality

Dulaity is one of the most beautiful properties in projective geom-
etry. As we already mentioned in §1, the dual relationship among the
equations is given by the Legendre transformation in the classical theory
of the ordinary differential equations. However, situations are confused in
the classical theory as usual. The following arguments may be considered
as the principle of duality among completely integrable equatuions.

Let CI(x0, y0, p0) be the set of germs corresponding to completely
integrable first order ordinary differntial equations at (x0, y0, p0). For
any F ∈ CI(x0, y0, p0), we have a unique complete solution ΓF : (R ×
R, 0) → F−1(0) such that ΓF (0) = (x0, y0, p0). We denote it by ΓF (t, c) =
(xF (t, c), yF (t, c), pF (t, c)). We also define three subsets of CI(x0, y0, p0) as
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follows:

CI0(x0, y0, p0) =
{

F ∈ CI(x0, y0, p0)
∣∣∣ dxF

dt
(x0, y0, p0) 6= 0

and
dpF

dt
(x0, y0, p0) 6= 0

}
,

CI1(x0, y0, p0) =
{

F ∈ CI(x0, y0, p0)
∣∣∣ dpF

dt
(x0, y0, p0) = 0

}
,

CI2(x0, y0, p0) =
{

F ∈ CI(x0, y0, p0)
∣∣∣ dxF

dt
(x0, y0, p0) = 0

}
.

By the uniqueness of the complete solution of F = 0, these subsets are
well–defined. We denote by C∗I (X0, Y0, P0) the set of complete integrable
first order ordinary differential equations at (X0, Y0, P0) in the coordinate
system (X, Y, P ). We also define sets C∗I0

(X0, Y0, P0), C∗I1
(X0, Y0, P0) and

C∗I2
(X0, Y0, P0) by exactly the same definition as those of the above. Then

we have the following duality theorem.

Theorem 3.1. We have an one-to-one correspondence

D : CI(x0, y0, p0) → C∗I (X0, Y0, P0)

defined by D(F ) = F ∗.
Furthermore, we have relations:

D(CI0(x0, y0, p0)) = C∗I0
(X0, Y0, P0)(1)

D(CI1(x0, y0, p0)) = C∗I2
(X0, Y0, P0)(2)

D(CI2(x0, y0, p0)) = C∗I1
(X0, Y0, P0).(3)

Proof. By the definition, we have D(F ) = F ∗ = F ◦ (∗L)−1, where
∗L is the Legendre transformation. For any F ∈ CI(x0, y0, p0), ∗L ◦ ΓF is
the unique complete solution of F ∗ by Lemma 1.2, (1). Then D is a well-
defined and one-to-one correspondence. Since ∗L ◦ ΓF (t, c) = (pF (t, c),
xF (t, c) · pF (t, c) − yF (t, c), xF (t, c)), then we can easily show that the
relations (1), (2) and (3).

We now give the following quite beautiful result as a corollary of the
above theorem.

Corollay 4.2. Let F = 0 be an equation at (x0, y0, p0). Then F = 0
is completely integrable at (x0, y0, p0) if and only if F = 0 is of Clairaut
type at (x0, y0, p0) or F ∗ = 0 is of Clairaut type at (X0, Y0, P0).

We already presented interesting examples of completely integrable
equations (see Example 1.4). We can easily verify that the duals of these
examples are Clairaut type.
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[5] L. Dara, Sindularités générique des équations differentielles multiformes, Bol. Soc.
Brasil Mat. 6 (1975), 95–128.

[6] A. Hayakawa, G. Ishikawa, S. Izumiya and K. Yamaguchi, Classification of
generic integral diagram and first order ordinary differential equations, (to appear
in International Jour. of Math).

[7] I. G. Petrovski, Ordinary differential equations, Prentice-Hall, 1966.
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