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Griinwald shift spaces

By JOSEF MIKES (Olomouc) and KARL STRAMBACH (Erlangen)

Abstract. An n-dimensional differentiable shift space S for which in case n = 2
there exists an affine connection if S is a Griinwald plane (cf. [13, § 4]) admits for n > 3
no affine connection. In contrast to this the set of all images of the system of curves
arising by shifting the argument from a Griinwald curve C under the translation group
of R™ is a system of geodesics with respect to a metrizable affine connection if and only
if C is a curve corresponding to parabolas in a suitable coordinate system.

1. Introduction

The investigation of systems & of curves in the plane R? such that any two
different points are incident with precisely one curve of & has a long tradition (see
e.g. [17]). In particular since the second half of the previous century the systems &
has been studied intensively as natural generalisations of the real affine plane and
the 2-dimensional hyperbolic geometry. These geometries, now called R?-planes,
are classified if they admit an at least 3-dimensional Lie group of automorphisms
[15, Chapter 3].

Although already E. Beltrami has shown that a differentiable curve is a local
geodesic with respect to an affine connection V precisely if it is a solution of
an Abelian differential equation having as coefficients expressions in Christoffel
symbols associated with V, the use of differential geometry for study of R2-planes
having differentiable curves as lines started only 2000 by G. GERLICH [5], [6], [7].
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He asked for which R2-planes A with differentiable lines there exists an affine
connection V generating the lines of A and for affine planes A with an at least
three-dimensional collineation group he proved that V exists if and only if A is
either desarguesian or a Moulton plane. Moreover, in [13] it is shown that the
differentiable lines of a generalized shift R2-plane A are geodesics with respect to
an affine connection V precisely if A is either the Euclidean plane or a Griinwald
model of the real affine plane (see [8]).

The extension of the investigation from R2-planes to geometries on R™ having
as lines a system & of curves such that any two different points are incident with
precisely one curve of & surprisingly turns out to be difficult as one can see in the
papers [1], [2], [3], where D. BETTEN created a theory of 3-dimensional topological
incidence geometries.

If one tries to extend the characterization of differentiable shift spaces having
as lines geodesics with respect to an affine connection starting with a Griinwald
plane (cf. [13, § 4]), then one meets also great difficulties. Namely, we show that
for at least 3-dimensional differentiable shift spaces S generalizing in a natural way
the 2-dimensional shift spaces corresponding to Grinwald planes there exists no
affine connection V such that the lines of S are geodesics of V. This is surprising
since there exist n-dimensional shift spaces if the derivatives of their generating
functions are homeomorphisms of R (Proposition 1).

In contrast to a shift space the set of all images of the system of curves arising
by shifting the argument from a Griinwald curve C under the translation group
of R™ is a system of geodesics with respect to a natural affine connection if and
only if C is a curve corresponding to parabolas in a suitable coordinate system
(Theorem 2). Moreover, V is metrizable and for n = 2 we get the metric tensor
(4.4) of [13].

2. Grinwald shift spaces

An n-dimensional line space § = (R™, £), n > 2, is an incidence geometry
such that the point set is the Euclidean space R™, the set £ of lines consists of
closed subsets of R™ homeomorphic to R and any two different points are incident
with precisely one line.

We call an n-dimensional line space S an n-dimensional shift space if there

exist continuous functions fi(k) "R—-R k=1,....n—1,i=k+1,...,n, such
that
k k k
féu)l,__,,un,vk%,__,vn) = {(u1,...,up_1,t +Uk7f;§+)1(t) + Uk+1,f;i+)g(f + Vk12)

+uk+2a---af7gk)(t+vn) +un)> te R}7 (1)
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where u1,...,Un, Vkt2,...,0, € R,

and  {(u1,...,up—1,t), t € R} with wuy,...,up—1 €R

form the set of lines for the line space S( fi(k)). The functions fi(k) we will call
generating functions of the shift space S( fi(k)).

Clearly, the group T of translations of R™ is a group of collineations of the
shift spaces S(fi(k)).

We call an n-dimensional line space S, respectively n-dimensional shift space
S(fi(k)), differentiable if the lines of S, respectively of S(fi(k)), are two times
differentiable curves.

Shift spaces of the following proposition give for n = 2 Grinwald planes if
their lines are geodesics with respect to an affine connection (cf. [13, § 4]). For
this reason we call the shift spaces of the following proposition Grinwald shift
spaces.

Proposition 1. Let fi(k) R—->R, k=1,....n—1, i = k+1,...,n,
be differentiable functions such that the derivatives fi(k)’ are homeomorphisms
of R for all 2 < i < n. Then the functions fi(k) are generating functions for an
n-dimensional shift space S( fi(k)),

PRrOOF. The lines of S(fi(k)) are the sets of form (1). Let
a=(ay,az,...,a,) and b= (by,ba,...,by,)

be two different points of R™.

Let a, = b, forr <k —1<n—1 and ap # b,. For a line through a and b
we have u, = a, = b,, p=1,...,k — 1. Moreover, the coordinates ay, bx, ar+1,
br+1 satisfy the following system of equations:

k
ap =tq +ug, g1 = f,iﬁl(ta) + Ug41;

bi =ty +up,  brar = fin (1) + wi. (2)
Since the derivative of the function f},’”, p=k+1,...,n,is a homeomorphism

of R, the function
t— [t +d) - £P (1), (3)

is a homeomorphism of R for any fixed d € R\{0} (cf. [15, § 3, p. 161]).
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Now, from (2) we obtain t, = t, — (ax — br) and
_ ¢(k) . p _ (k) b —
ak+1 = friy(ta) +uktrs ber = frpy (ta + (be — ax)) + upt1.

This yields
1 — b1 = Fi2 (ta) — ) (ta + (b — ap).

Because ay # by relation (3) gives that there exists precisely one solution ¢, of the
last equation. Then we have u, = ag — tq, tp = bg — ug, and ugy1 = g1 — f(ta)-
For p =k +2,...,n the coordinates a, and b, fulfill the following system of

equations
a, = fék)(ta +up) +up; by = f;’“> (to + vp) + up.

Since the function flgk) satisfy (3) this system has precisely one solution uy, v,.
If a, = b, for r <n —1, and a, # b, then the line {(a1,...,an-1,t), t € R}
is the unique line joining a and b, and the proposition is proved. (Il

3. Riccati and Abelian differential equations

For a later use we consider the special Riccati differential equations with
unknown function y = y(z):
y' + a1y’ + agy +az =0, (4)
where a; are constants (cf. [9, A4.9] or [10, pp. 33 and 41]).
(4.1) If a; =0 for i € {1,2}, then y = —agz + c for c € R.
(4.2) Ifa; =0and az # 0, then y = —¢2 + ce™ 2" for c € R.
(4.3) If ay # 0 and a3 = 4aja3, then we have

as C1 .
=t th R d 0,0).
Yy CTRT—— wi c1,C0 € and (c1,c2) # (0,0)

(4.4) If ay # 0 and \? = 4ajaz — a3 > 0, then

a9 )\ )\ .
= —— 4+ —~cotan — th R.
Yy 5a; + 2a1CO an2(x+c) wi cE€

(4.5) If a1 # 0 and A\? = a3 — 4ajaz > 0, then

A _

as A cre2® — e 2"
y:_f""fﬁ
a1 a1 crez2”® + coe

[N IS

with ¢1,c0 € R and  (e1,¢2) # (0,0).

x
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Also in (4.3) and (4.5) the solution depends only on one parameter which is
defined on the projective line.

Lemma 1. If f is a differentiable function such that its derivative f’ is a
homeomorphism of R and a solution of an equation (4), then f has the form
f=-1/2a32 + cx + d with ag # 0, ¢,d € R.

PROOF. Solutions (4.1) with ag = 0 and (4.2) are excluded since in this case
f' is not a homeomorphism. Solutions (4.1) with as # 0 give the functions in the
assertion.

Since in case of solutions (4.3) and (4.4) the function f’ is not a homeomor-
phism of R we have to consider solutions (4.5). But also in this case the function

f' is not a homeomorphism of R since we have lim,_ 4o f' = —agail’\. ]

We consider Abelian differential equations
Yy =a+By+yy’+ey® with e #0, (5)

where «, 3,7,¢ € R, and we are interested in real functions f such that f' =y is
a homeomorphism of R.
To differential equation (5) is associated the cubic algebraic equation

a+ By +yy° +ey’ =0. (6)

Because £ # 0, the cubic equation (6) has a real solution y = y; and hence
equation (5) has a solution y(t) = y; for all t € R. According to the existence
and uniqueness Theorem applied to (5), any other solution f’ = y of equation (5)
satisfies either y(t) > y; or y(t) < y; for all t € R. Hence it follows

Lemma 2. There exists no real function f with f' = y satisfying (5) such
that f' is a homeomorphism of the real line R.

4. Affine connections

Since we apply results of differential geometry only for the n-dimensional
space R™ there exist global coordinates and the components l"fj, hyi,je{l,2,...,n},
of any affine connection V can be written in a unique way in these coordinates.

An affine connection V is called symmetric if VxY = Vy X — [X, Y], where
[X,Y] is the Lie bracket, i.e. if for its components I'"; one has thj = I’;Li for all

ij
h,i,je{1,2,...,n}.
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By a geodesic of V we mean a piecewise C?-curve v: I — R" satisfying
V¥ = 04, where ¢ : I — R is a continuous function, and I C R is an open
interval (cf. [4, p. 3], [14, p. 122]).

Using the components of V the system of differential equations for geodesics
has the form (cf. [14, p. 144])

A 4 ZF”W’Y =o(t)4", he{1,2,...,n}. (7)

i,j=1

From this it follows that the geodesics depend only on the symmetric part of the
connection V. Hence we will always assume that V is symmetric.

Let g be a Lie algebra of a group G of diffeomorphisms and let V = {FZ}
be an affine connection. The Lie derivative £V along an element {(# 0) € g is
given with respect to components of V by

n h, h @
+ Z (faar il—\a ag Fh 8£ Fh )7

h
Lely = ;™ Oa;

where h,i,---=1,2,...,n
The group G preserves geodesics with respect to V if and only if

LDy = by + 614, (8)

where 67 is the Kronecker symbol and 1; are differentiable functions [11], [12,
p. 143], [18].

The group G consists of affine mappings with respect to V precisely if
Sgl"fj = 0 or, equivalently, if and only if ¢); vanishes. Moreover, if R" is a (pseudo-)
Riemannian space with respect to the metric tensor g, then the Lie group G is a
group of isometries precisely if £c9 = 0 (cf. [18, p. 43], [12, p. 100]).

Proposition 2. Let S be a system of geodesics with respect to an affine
connection V. If the translation group T of R™ consists of geodesic maps for S,
then the affine connection V may be chosen in such a way that the components
Fﬁ’j are constant. Moreover, the components I'7 ., 0 =1,...,n, are zero.

PrROOF. Since T consists of geodesic maps for the Lie derivative Egl"?j along
any element & # 0 of the Lie algebra of T' one has (8). Taking in particular
&€= (6M)n_, one obtains
h
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Integrating these equations for any o = 1,...,n, we get
o
Iy =T} + 60, + 071,

where lgfj are constants, and ¥;(z) are suitable differentiable functions.

If with respect to the affine connection V having the components F?j the
system S consists of geodesics, then the same holds for any connection with the
components f?j satisfying the equations f?j = F?j + 0 + 6?1/7%, where 1); are
differentiable functions ([11], [12], [18]). Choosing the functions ; in such a
way that ¥, = —¥; — % f‘; we see that then f‘?j are constants, and I'7, = 0,
c=1,...,n. O

As representatives of affine connections for which the lines of a shift space
S are geodesics we will take henceforth affine connections V° having constant
components such that T, = 0, ¢ = 1,...,n. We shall call such connections
natural connections of S. With respect to a natural connection V° the translation
group of R™ consists of affine transformations of S. Namely, for £ =(62)7_, one
has LT} = 52-T7 = 0.

If a connectlon V has the components F”, h,i,5,€ {1,...,n}, the compo-
nents Rijk, h,i,5,k € {1,...,n} of the curvature tensor R of V are given by (cf.
[4, p. 8], [16, p. 27])

9 o
R}y = %jrﬂ 7Fh + Z (DgTh; —T3Thy)- (9)

The Ricci tensor belonging to R has components Rij=5%"_ 1 B
The curvature tensor R of V is often called the Riemannian tensor of V.
In particular, V is the Levi—Civita connection of a (pseudo-) Riemannian
space with the metric g = (g,;) if Vg =0, i.e.
9 - o o
aixkgij = ;(giarjk + gjalik), (10)

where the components Ff”j (called Christoffel symbols) are given by

1 & 0 9] 0
h _ ha . R A
Fij D) 0?:1 g <6$2 Jja + oz, Fia Oz gz]) ; (11)
thereby (¢"®) denotes the inverse matrix of (9ij)- For g then there exists a unique

symmetric affine connection V such Vg = 0.
The integrability conditions of (10) have the following form [4, p. 79]:

n

Z(giaR?kl + gjaRik) = 0. (12)

a=1
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5. Geometry of Griinwald shift spaces

Theorem 1. Let S( fi(k)) be an n-dimensional Griinwald shift space. If the set
of lines of S( fi(k)) forms the set of geodesics with respect to a natural connection
V°, then S(fi(k)) is a Griinwald plane.

PROOF. For a line
Ty = (Ur, . up—1, t+ Uy, f;i]i)l(t) + Ugy1, f,i’i)g(t + Uk+2) + U2,
.. ,fflk)(t +up) tug), tER,

one has
. k k
x(k) = (07 e 707 17 féﬁll(t)’ f}iﬁzl(t + Uk+2)7 cc fr(],k)/(t + Un))?

fﬁ(k) — (0 ,0,0, f’glj_)lu( ) fk+2 (t+1}k+2),. . ,’fék)//(t_*_un)).

This line is a geodesic if and only if relation (7) holds. We put in this relation
tker =tand ty =t 4oy for A >k + 1.
For h =k =n—1one has g(t,) = 2I"=} £y Tt (£ D1(2,))2

n—1ln

and for h =n, k =n — 1 using I',, = 0 (Proposition 2) we get
S Dy + 205 [ = e(tn) " (13)
Substituting o(t,) into (13) we obtain
ST = ey = 2 S 20T (TP T (A (1)

This equation with constant coefficients is an Abelian differential equation with
respect to fénil)’(tn). By Lemma 1 and 2 it follows that f{" " (th) = at? +
Bt, + v with constants o # 0, 8 and ~. Putting this in (14) we get

It =Tny,=Th 1, =0 but In_;,_; =-2a#0. (15)

If n > 2 then from (7) for h =k =n — 2 one has

o(tn—1) =202 D () 420072 F D ) T2 (P (1))

2rn=2 B g, ) FD (1) + TR (D (8,))

and for h=n, k=n—2using I'y,,, =17

n—1ln

=0 we get

]—(Lnf2)//( )+Fn - 2+2Fn S (n 2)/( n—l)+2FZ_2nf7(ln_2)/(t")

AT (P8 (4m))? = 0(tne) £ ().
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Substituting into this o(t,—1) we obtain
2 () Ty = T £ ()

A (tr) - Alta) + Bta) =0,

where A(t,,) and B(t,) are functions of the variable ¢,,. Since the variables ¢,,_;
and t,, are independent and f(TSQ)/ # 0 the coefficient functions A(%,) and B(ty,)

n
vanish and

FZ—1 n—1" Fzzin—l ?gniz)/(tn) =0. (16)
From (16) it follows I3 | = 0 and T"_,, , = 0. This contradicts rela-

tions (15). Hence n must be 2 and S(fi(k)) is a Griinwald plane (cf. [13]). O

Remark. If n = 2 then the proof of Theorem 1 yields that ['?; = —2a # 0
and all other components are zero. Hence this shift space is the Griinwald plane
M, having a metric tensor g with corresponds to the Levi-Civita connection V
of the form (4.4) in [13].

6. Translation shell of a Griinwald curve

Let C be a curve homeomeomorphic to R which is a closed subset of in R",
n > 2. The translation shell CT of C is the set of all images of C under the
translation group T of R™. We consider a curve of the form

C:{(t’f2(t)7f3(t>7"'afn(t))’ tER}, (17)

where f;(t) are two times differentiable functions such that the derivatives f/(¢)
are homeomorphisms of R for all ¢ = 2,...,n. The translation shell of C is the
set

CT = {(t + u1, f2(t) + uz, f3(t) + uz, ..., fn(t) +uy), t € R},
where wuq,...,u, € R.
The extended translation shell C7 is the set
CT = {(t +ua, folt) +uz, f3(t +v3) +us,..., fult +va) +un), t € R},
where uq,...,Un,v3,...,0, € R. (18)

We search for affine connections V for which the extended translation shell
CT or the translation shell CT consists of geodesics with respect to V. If n = 2
then the extended shell C7 is a Griinwald plane if we adjoin to CT the lines
{(u,t); t € R}, u € R. For this reason we call such curves C Grinwald curves.
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Theorem 2. For a Griinwald curve C the extended translation shell CT con-
sists of geodesics with respect to a natural affine connection V° with components
I} if and only if the functions f;(t) may be chosen as f;(t) = —5 T'{; t*+ B; t with
T}y #0,8; €R,i=2,3,...,n, whereas all other components of V° are zero.

PROOF. Let x(t) be a curve in (18). Then we have

2(t) = (1, f5(t), fa(t +vs), ..., f(t+ on)),
B(t) = (0, f5' (), f5' (t +v3), ..., £/ (t+ vn)).
The curve z(t) is a geodesic if and only if relation (7) holds. We put in this

relation to = ¢, and ¢ty =t + vy for A > 2.
For h = 1 one has

o(t2) =23 T, filte) + Y Th filte) f1(tr),
o=2

o, 7=2

and for h > 1 we get

H(tn) AT +2) T, folto) + D Ty folte) fr(tr) = o(t2) fi(tn)-  (19)

o=2 o, 7=2

Putting o(t2) into (19) and fixing all variables t, different from ¢, we obtain
with respect to function f'(¢,) an Abelian differential equation with constant
coefficients since V° is a natural affine connection. By Lemmas 1 and 2 it follows
fr(tn) = antp® + Butn + yh, with constants oy, # 0, B4 and 7.

Substituting o(t2) and f3,(tn) in (19) we obtain

an + Ty +2) (P, =T, (anty + Bu)) - (a0 to + 55)

o=2
+ ) (T —TL, (anth + Bn)) (0o to + Bs) (artr + B-) =0, (20)
o, 7=2
where h = 2,3,...,n and ts,t3,...,t, are independent variables.

Since (20) is a cubic polynomial the coefficients at monomials are zero. This
yields aj, = —T'%; # 0 and all other components of V° are zero. d
Remark. The metric tensor g with components

n

g1 = 1+ (I1)2 ' Z(F?1)27 g1y = Fl{l * L1y, Gab = 5ab7 avb 7£ 17

a=2
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where d4p is the Kronecker symbol, determines (see (11)) the Levi-Civita con-
nection V with components as in Theorem 2 (having I'?,,h = 2,...,n, as the

only non zero components). Moreover, the Riemannian tensor vanishes, hence
the space (R™, I'};) is locally Euclidean (cf. [14]).

If we strength the hypothesis on the Griinwald curve C we obtain the same
system of functions f;(¢) as in Theorem 2, but for a given system of functions
fi(t) there are more natural affine connections having the curves of the translation
shell CT' as geodesics.

Theorem 3. Let C be a Griinwald curve such that the derivatives of all
its functions f;(t) satisfy Abelian differential equations with constant coefficients.
Then the translation shell CT of C consists of geodesics with respect to a natural
affine connection V° with components F?j if and only if the functions f;(t) may
be chosen as f;(t) = —% [j t?2+B;t withT'}, #0, B; €R,i=2,3,...,n, whereas
all other components of V° are zero with exception of T} =T, =T1 =TL,
forh > 1,0 > 1.

PROOF. Let z(t) be a curve in CT. Since f/(t), i = 2,...,n, satisfy Abelian
differential equations with constant coefficients it follows from Lemma 1 and 2
that f;(t) = % a; t? + Bit +y; with constants a; # 0, 3; and ;. Therefore for x(t)
we have

@(t) = (1, ant + by, a3t +b3,...,ant +b,) and &) = (0,02,03,...,045).

The curve z(t) is a geodesic if and only if relation (7) holds. For A = 1 in (7) one
has

o(t) =2 Z F%a (ot + Bo) + Z F}TT (ot + Bs) (art + B7),
o=2

o, 7=2

and for h > 1 we get

ap + F?l + 22 Fllla (oot + B5) + Z Fl}YLT (a0t + Bo) (art + Br)

o=2 o,7=2
= o(t)(ant + Bn). (21)
Putting o(t) into (21) we obtain a polynomial which is identically zero. It follows
immediately that I'}_ =0 for 0 >1,7>1and aj, = —T% aswell as %, =T} =0

for h > 1,0 > 1. Finally, we have

Z I (agt + Bo) (art + Br) — 2 (ant + Br) - Z I'}, (agt + B5) = 0.

o, 7=2 o=2
From this relation it follows that T'? =T" =Ti =T., for h > 1,0 > 1 and
all other components I'?_ vanish. (]
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