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Grünwald shift spaces

By JOSEF MIKEŠ (Olomouc) and KARL STRAMBACH (Erlangen)

Abstract. An n-dimensional differentiable shift space S for which in case n = 2

there exists an affine connection if S is a Grünwald plane (cf. [13, § 4]) admits for n ≥ 3

no affine connection. In contrast to this the set of all images of the system of curves

arising by shifting the argument from a Grünwald curve C under the translation group

of Rn is a system of geodesics with respect to a metrizable affine connection if and only

if C is a curve corresponding to parabolas in a suitable coordinate system.

1. Introduction

The investigation of systems S of curves in the plane R2 such that any two

different points are incident with precisely one curve of S has a long tradition (see

e.g. [17]). In particular since the second half of the previous century the systemsS

has been studied intensively as natural generalisations of the real affine plane and

the 2-dimensional hyperbolic geometry. These geometries, now called R2-planes,

are classified if they admit an at least 3-dimensional Lie group of automorphisms

[15, Chapter 3].

Although already E. Beltrami has shown that a differentiable curve is a local

geodesic with respect to an affine connection ∇ precisely if it is a solution of

an Abelian differential equation having as coefficients expressions in Christoffel

symbols associated with ∇, the use of differential geometry for study of R2-planes

having differentiable curves as lines started only 2000 by G. Gerlich [5], [6], [7].
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He asked for which R2-planes A with differentiable lines there exists an affine

connection ∇ generating the lines of A and for affine planes A with an at least

three-dimensional collineation group he proved that ∇ exists if and only if A is

either desarguesian or a Moulton plane. Moreover, in [13] it is shown that the

differentiable lines of a generalized shift R2-plane A are geodesics with respect to

an affine connection ∇ precisely if A is either the Euclidean plane or a Grünwald

model of the real affine plane (see [8]).

The extension of the investigation from R2-planes to geometries on Rn having

as lines a system S of curves such that any two different points are incident with

precisely one curve of S surprisingly turns out to be difficult as one can see in the

papers [1], [2], [3], whereD. Betten created a theory of 3-dimensional topological

incidence geometries.

If one tries to extend the characterization of differentiable shift spaces having

as lines geodesics with respect to an affine connection starting with a Grünwald

plane (cf. [13, § 4]), then one meets also great difficulties. Namely, we show that

for at least 3-dimensional differentiable shift spaces S generalizing in a natural way

the 2-dimensional shift spaces corresponding to Grünwald planes there exists no

affine connection ∇ such that the lines of S are geodesics of ∇. This is surprising

since there exist n-dimensional shift spaces if the derivatives of their generating

functions are homeomorphisms of R (Proposition 1).

In contrast to a shift space the set of all images of the system of curves arising

by shifting the argument from a Grünwald curve C under the translation group

of Rn is a system of geodesics with respect to a natural affine connection if and

only if C is a curve corresponding to parabolas in a suitable coordinate system

(Theorem 2). Moreover, ∇ is metrizable and for n = 2 we get the metric tensor

(4.4) of [13].

2. Grünwald shift spaces

An n-dimensional line space S = (Rn,L), n ≥ 2, is an incidence geometry

such that the point set is the Euclidean space Rn, the set L of lines consists of

closed subsets of Rn homeomorphic to R and any two different points are incident

with precisely one line.

We call an n-dimensional line space S an n-dimensional shift space if there

exist continuous functions f
(k)
i : R → R, k = 1, . . . , n − 1, i = k + 1, . . . , n, such

that

`
(k)
(u1,...,un,vk+2,...,vn)

= {(u1, . . . , uk−1, t+ uk, f
(k)
k+1(t) + uk+1, f

(k)
k+2(t+ vk+2)

+ uk+2, . . . , f
(k)
n (t+ vn) + un), t ∈ R}, (1)
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where u1, . . . , un, vk+2, . . . , vn ∈ R,
and {(u1, . . . , un−1, t), t ∈ R} with u1, . . . , un−1 ∈ R

form the set of lines for the line space S(f
(k)
i ). The functions f

(k)
i we will call

generating functions of the shift space S(f
(k)
i ).

Clearly, the group T of translations of Rn is a group of collineations of the

shift spaces S(f
(k)
i ).

We call an n-dimensional line space S, respectively n-dimensional shift space

S(f
(k)
i ), differentiable if the lines of S, respectively of S(f

(k)
i ), are two times

differentiable curves.

Shift spaces of the following proposition give for n = 2 Grünwald planes if

their lines are geodesics with respect to an affine connection (cf. [13, § 4]). For

this reason we call the shift spaces of the following proposition Grünwald shift

spaces.

Proposition 1. Let f
(k)
i : R → R, k = 1, . . . , n − 1, i = k + 1, . . . , n,

be differentiable functions such that the derivatives f
(k)
i

′ are homeomorphisms

of R for all 2 ≤ i ≤ n. Then the functions f
(k)
i are generating functions for an

n-dimensional shift space S(f
(k)
i ).

Proof. The lines of S(f
(k)
i ) are the sets of form (1). Let

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

be two different points of Rn.

Let ar = br for r ≤ k − 1 < n − 1 and ak 6= bk. For a line through a and b

we have up = ap = bp, p = 1, . . . , k − 1. Moreover, the coordinates ak, bk, ak+1,

bk+1 satisfy the following system of equations:

ak = ta + uk, ak+1 = f
(k)
k+1(ta) + uk+1;

bk = tb + uk, bk+1 = f
(k)
k+1(tb) + uk+1. (2)

Since the derivative of the function f
(k)
p , p = k+1, . . . , n, is a homeomorphism

of R, the function

t 7−→ f (k)
p (t+ d)− f (k)

p (t), (3)

is a homeomorphism of R for any fixed d ∈ R\{0} (cf. [15, § 3, p. 161]).
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Now, from (2) we obtain tb = ta − (ak − bk) and

ak+1 = f
(k)
k+1(ta) + uk+1; bk+1 = f

(k)
k+1(ta + (bk − ak)) + uk+1.

This yields

ak+1 − bk+1 = f
(k)
k+1(ta)− f

(k)
k+1(ta + (bk − ak)).

Because ak 6= bk relation (3) gives that there exists precisely one solution ta of the

last equation. Then we have uk = ak − ta, tb = bk −uk, and uk+1 = ak+1− f(ta).

For p = k + 2, . . . , n the coordinates ap and bp fulfill the following system of

equations

ap = f (k)
p (ta + vp) + up; bp = f (k)

p (tb + vp) + up.

Since the function f
(k)
p satisfy (3) this system has precisely one solution up, vp.

If ar = br for r ≤ n− 1, and an 6= bn then the line {(a1, . . . , an−1, t), t ∈ R}
is the unique line joining a and b, and the proposition is proved. ¤

3. Riccati and Abelian differential equations

For a later use we consider the special Riccati differential equations with

unknown function y = y(x):

y′ + a1y
2 + a2y + a3 = 0, (4)

where ai are constants (cf. [9, A4.9] or [10, pp. 33 and 41]).

(4.1) If ai = 0 for i ∈ {1, 2}, then y = −a3x+ c for c ∈ R.
(4.2) If a1 = 0 and a2 6= 0, then y = −a3

a2
+ ce−a2x for c ∈ R.

(4.3) If a1 6= 0 and a22 = 4a1a3, then we have

y = − a2
2a1

+
c1

c1a1x+ c2
with c1, c2 ∈ R and (c1, c2) 6= (0, 0).

(4.4) If a1 6= 0 and λ2 = 4a1a3 − a22 > 0, then

y = − a2
2a1

+
λ

2a1
cotan

λ

2
(x+ c) with c ∈ R.

(4.5) If a1 6= 0 and λ2 = a22 − 4a1a3 > 0, then

y = − a2
2a1

+
λ

2a1

c1e
λ
2 x − c2e

−λ
2 x

c1e
λ
2 x + c2e−

λ
2 x

with c1, c2 ∈ R and (c1, c2) 6= (0, 0).
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Also in (4.3) and (4.5) the solution depends only on one parameter which is

defined on the projective line.

Lemma 1. If f is a differentiable function such that its derivative f ′ is a

homeomorphism of R and a solution of an equation (4), then f has the form

f = −1/2 a3x
2 + cx+ d with a3 6= 0, c, d ∈ R.

Proof. Solutions (4.1) with a3 = 0 and (4.2) are excluded since in this case

f ′ is not a homeomorphism. Solutions (4.1) with a3 6= 0 give the functions in the

assertion.

Since in case of solutions (4.3) and (4.4) the function f ′ is not a homeomor-

phism of R we have to consider solutions (4.5). But also in this case the function

f ′ is not a homeomorphism of R since we have limx→±∞ f ′ = −a2±λ
2a1

. ¤

We consider Abelian differential equations

y′ = α+ βy + γy2 + εy3 with ε 6= 0, (5)

where α, β, γ, ε ∈ R, and we are interested in real functions f such that f ′ = y is

a homeomorphism of R.
To differential equation (5) is associated the cubic algebraic equation

α+ βy + γy2 + εy3 = 0. (6)

Because ε 6= 0, the cubic equation (6) has a real solution y = y1 and hence

equation (5) has a solution y(t) = y1 for all t ∈ R. According to the existence

and uniqueness Theorem applied to (5), any other solution f ′ = y of equation (5)

satisfies either y(t) > y1 or y(t) < y1 for all t ∈ R. Hence it follows

Lemma 2. There exists no real function f with f ′ = y satisfying (5) such

that f ′ is a homeomorphism of the real line R.

4. Affine connections

Since we apply results of differential geometry only for the n-dimensional

space Rn there exist global coordinates and the components Γh
ij , h,i,j∈{1, 2, . . . ,n},

of any affine connection ∇ can be written in a unique way in these coordinates.

An affine connection ∇ is called symmetric if ∇XY = ∇Y X − [X,Y ], where

[X,Y ] is the Lie bracket, i.e. if for its components Γh
ij one has Γh

ij = Γh
ji for all

h, i, j ∈ {1, 2, . . . , n}.
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By a geodesic of ∇ we mean a piecewise C2-curve γ: I → Rn satisfying

∇γ̇ γ̇ = % · γ̇, where % : I → R is a continuous function, and I ⊂ R is an open

interval (cf. [4, p. 3], [14, p. 122]).

Using the components of ∇ the system of differential equations for geodesics

has the form (cf. [14, p. 144])

γ̈h +

n∑

i,j=1

Γh
ij γ̇

iγ̇j = %(t)γ̇h, h ∈ {1, 2, . . . , n}. (7)

From this it follows that the geodesics depend only on the symmetric part of the

connection ∇. Hence we will always assume that ∇ is symmetric.

Let g be a Lie algebra of a group G of diffeomorphisms and let ∇ = {Γh
ij}

be an affine connection. The Lie derivative Lξ∇ along an element ξ( 6= 0) ∈ g is

given with respect to components of ∇ by

LξΓ
h
ij ≡

∂2ξh

∂xi∂xj
+

n∑
α=1

(
ξα

∂Γh
ij

∂xα
− ∂ξh

∂xα
Γα
ij +

∂ξα

∂xi
Γh
αj +

∂ξα

∂xj
Γh
αi

)
,

where h, i, · · · = 1, 2, . . . , n.

The group G preserves geodesics with respect to ∇ if and only if

LξΓ
h
ij = δhi ψj + δhj ψi, (8)

where δhi is the Kronecker symbol and ψi are differentiable functions [11], [12,

p. 143], [18].

The group G consists of affine mappings with respect to ∇ precisely if

LξΓ
h
ij = 0 or, equivalently, if and only if ψi vanishes. Moreover, if Rn is a (pseudo-)

Riemannian space with respect to the metric tensor g, then the Lie group G is a

group of isometries precisely if Lξg = 0 (cf. [18, p. 43], [12, p. 100]).

Proposition 2. Let S be a system of geodesics with respect to an affine

connection ∇. If the translation group T of Rn consists of geodesic maps for S,

then the affine connection ∇ may be chosen in such a way that the components

Γh
ij are constant. Moreover, the components Γσ

σσ, σ = 1, . . . , n, are zero.

Proof. Since T consists of geodesic maps for the Lie derivative LξΓ
h
ij along

any element ξ 6= 0 of the Lie algebra of T one has (8). Taking in particular

ξ = (δhσ)
n
h=1 one obtains

LξΓ
h
ij ≡

∂Γh
ij

∂xσ
= δhi ψj + δhj ψi.
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Integrating these equations for any σ = 1, . . . , n, we get

Γh
ij =

◦
Γh
ij + δhi Ψj + δhj Ψi,

where
◦
Γh
ij are constants, and Ψj(x) are suitable differentiable functions.

If with respect to the affine connection ∇ having the components Γh
ij the

system S consists of geodesics, then the same holds for any connection with the

components Γ̄h
ij satisfying the equations Γ̄h

ij = Γh
ij + δhi ψ̄j + δhj ψ̄i, where ψ̄i are

differentiable functions ([11], [12], [18]). Choosing the functions ψ̄i in such a

way that ψ̄i = −Ψi − 1
2

◦
Γi

ii we see that then Γ̄h
ij are constants, and Γ̄σ

σσ = 0,

σ = 1, . . . , n. ¤

As representatives of affine connections for which the lines of a shift space

S are geodesics we will take henceforth affine connections ∇◦ having constant

components such that Γ̄σ
σσ = 0, σ = 1, . . . , n. We shall call such connections

natural connections of S. With respect to a natural connection ∇◦ the translation

group of Rn consists of affine transformations of S. Namely, for ξ=(δhσ)
n
h=1 one

has LξΓ
h
ij ≡ ∂

∂xσ
Γh
ij = 0.

If a connection ∇ has the components Γh
ij , h, i, j,∈ {1, . . . , n}, the compo-

nents Rh
ijk, h, i, j, k ∈ {1, . . . , n} of the curvature tensor R of ∇ are given by (cf.

[4, p. 8], [16, p. 27])

Rh
ijk =

∂

∂xj
Γh
ik − ∂

∂xk
Γh
ij +

n∑
α=1

(Γα
ikΓ

h
αj − Γα

ijΓ
h
αk). (9)

The Ricci tensor belonging to R has components Rij =
∑n

α=1 R
α
iαj .

The curvature tensor R of ∇ is often called the Riemannian tensor of ∇.

In particular, ∇ is the Levi–Civita connection of a (pseudo-) Riemannian

space with the metric g = (gij) if ∇g = 0, i.e.

∂

∂xk
gij =

n∑
α=1

(giαΓ
α
jk + gjαΓ

α
ik), (10)

where the components Γh
ij (called Christoffel symbols) are given by

Γh
ij =

1

2

n∑
α=1

ghα
(

∂

∂xi
gjα +

∂

∂xj
giα − ∂

∂xα
gij

)
; (11)

thereby (ghα) denotes the inverse matrix of (gij). For g then there exists a unique

symmetric affine connection ∇ such ∇g = 0.

The integrability conditions of (10) have the following form [4, p. 79]:
n∑

α=1

(giαR
α
jkl + gjαR

α
ikl) = 0. (12)
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5. Geometry of Grünwald shift spaces

Theorem 1. Let S(f
(k)
i ) be an n-dimensional Grünwald shift space. If the set

of lines of S(f
(k)
i ) forms the set of geodesics with respect to a natural connection

∇◦, then S(f
(k)
i ) is a Grünwald plane.

Proof. For a line

x(k) = (u1, . . . , uk−1, t+ uk, f
(k)
k+1(t) + uk+1, f

(k)
k+2(t+ vk+2) + uk+2,

. . . , f (k)
n (t+ vn) + un), t ∈ R,

one has

ẋ(k) = (0, . . . , 0, 1, f
(k)
k+1

′(t), f (k)
k+2

′(t+ vk+2), . . . , f
(k)
n

′(t+ vn)),

ẍ(k) = (0, . . . , 0, 0, f
(k)
k+1

′′(t), f (k)
k+2

′′(t+ vk+2), . . . , f
(k)
n

′′(t+ vn)).

This line is a geodesic if and only if relation (7) holds. We put in this relation

tk+1 ≡ t and tλ ≡ t+ vλ for λ > k + 1.

For h = k = n− 1 one has %(tn) = 2Γn−1
n−1n f

(n−1)
n

′(tn) + Γn−1
nn (f

(n−1)
n

′(tn))2

and for h = n, k = n− 1 using Γn
nn = 0 (Proposition 2) we get

f (n−1)
n

′′ + Γn
n−1n−1 + 2Γn

n−1n f
(k)
σ

′ = %(tn)f
(n−1)
n

′. (13)

Substituting %(tn) into (13) we obtain

f (n−1)
n

′′ = −Γn
n−1n−1−2Γn

n−1n f
(k)
σ

′+2Γn−1
n−1n (f

(n−1)
n

′)2+Γn−1
nn (f (n−1)

n
′)3. (14)

This equation with constant coefficients is an Abelian differential equation with

respect to f
(n−1)
n

′(tn). By Lemma 1 and 2 it follows that f
(n−1)
n (tn) = α t2n +

β tn + γ with constants α 6= 0, β and γ. Putting this in (14) we get

Γn−1
nn = Γn−1

n−1n = Γn
n−1n = 0, but Γn

n−1n−1 = −2α 6= 0. (15)

If n > 2 then from (7) for h = k = n− 2 one has

%(tn−1)=2Γn−2
n−2 n−1f

(n−2)
n−1

′(tn−1)+2Γn−2
n−2 nf

(n−2)
n

′(tn)+Γn−2
n−1n−1(f

(n−2)
n−1

′(tn−1))
2

+2Γn−2
n−1 nf

(n−2)
n−1

′(tn−1)f
(n−2)
n

′(tn) + Γn−2
nn (f (n−2)

n
′(tn))2

and for h = n, k = n− 2 using Γn
nn = Γn

n−1n = 0 we get

f
(n−2)
h

′′(tn) + Γn
n−2n−2 + 2Γn

n−2n−1 f
(n−2)
n−1

′(tn−1) + 2Γn
n−2n f

(n−2)
n

′(tn)

+Γn
n−1n−1 (f

(n−2)
n−1

′(tn−1))
2 = %(tn−1)f

(n−2)
n

′(tn).
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Substituting into this %(tn−1) we obtain

(f
(n−2)
n−1

′(tn−1))
2 · (Γn

n−1n−1 − Γn−2
n−1n−1 f

(n−2)
n

′(tn))

+f
(n−2)
n−1

′(tn−1) ·A(tn) +B(tn) = 0,

where A(tn) and B(tn) are functions of the variable tn. Since the variables tn−1

and tn are independent and f
(n−2)
n−1

′ 6= 0 the coefficient functions A(tn) and B(tn)

vanish and

Γn
n−1n−1 − Γn−2

n−1n−1 f
(n−2)
n

′(tn) = 0. (16)

From (16) it follows Γn−2
n−1n−1 = 0 and Γn

n−1n−1 = 0. This contradicts rela-

tions (15). Hence n must be 2 and S(f
(k)
i ) is a Grünwald plane (cf. [13]). ¤

Remark. If n = 2 then the proof of Theorem 1 yields that Γ2
11 = −2α 6= 0

and all other components are zero. Hence this shift space is the Grünwald plane

Mα having a metric tensor g with corresponds to the Levi–Civita connection ∇
of the form (4.4) in [13].

6. Translation shell of a Grünwald curve

Let C be a curve homeomeomorphic to R which is a closed subset of in Rn,

n ≥ 2. The translation shell CT of C is the set of all images of C under the

translation group T of Rn. We consider a curve of the form

C = {(t, f2(t), f3(t), . . . , fn(t)), t ∈ R}, (17)

where fi(t) are two times differentiable functions such that the derivatives f ′
i(t)

are homeomorphisms of R for all i = 2, . . . , n. The translation shell of C is the

set

CT = {(t+ u1, f2(t) + u2, f3(t) + u3, . . . , fn(t) + un), t ∈ R},

where u1, . . . , un ∈ R.
The extended translation shell ĈT is the set

ĈT = {(t+ u1, f2(t) + u2, f3(t+ v3) + u3, . . . , fn(t+ vn) + un), t ∈ R},
where u1, . . . , un, v3, . . . , vn ∈ R. (18)

We search for affine connections ∇ for which the extended translation shell

ĈT or the translation shell CT consists of geodesics with respect to ∇. If n = 2

then the extended shell ĈT is a Grünwald plane if we adjoin to ĈT the lines

{(u, t); t ∈ R}, u ∈ R. For this reason we call such curves C Grünwald curves.
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Theorem 2. For a Grünwald curve C the extended translation shell ĈT con-

sists of geodesics with respect to a natural affine connection ∇◦ with components

Γh
ij if and only if the functions fi(t) may be chosen as fi(t) = − 1

2 Γ
i
11 t

2+βi t with

Γ i
11 6= 0, βi ∈ R, i = 2, 3, . . . , n, whereas all other components of ∇◦ are zero.

Proof. Let x(t) be a curve in (18). Then we have

ẋ(t) = (1, f ′
2(t), f

′
3(t+ v3), . . . , f

′
n(t+ vn)),

ẍ(t) = (0, f ′′
2 (t), f

′′
3 (t+ v3), . . . , f

′′
n (t+ vn)).

The curve x(t) is a geodesic if and only if relation (7) holds. We put in this

relation t2 ≡ t, and tλ ≡ t+ vλ for λ > 2.

For h = 1 one has

%(t2) = 2

n∑
σ=2

Γ1
1σ f

′
σ(tσ) +

n∑
σ,τ=2

Γ1
στ f

′
σ(tσ) f

′
τ (tτ ),

and for h > 1 we get

f ′′
h (th) + Γh

11 + 2

n∑
σ=2

Γh
1σ f

′
σ(tσ) +

n∑
σ,τ=2

Γh
στ f

′
σ(tσ) f

′
τ (tτ ) = %(t2)f

′
h(th). (19)

Putting %(t2) into (19) and fixing all variables tσ different from th we obtain

with respect to function f ′(th) an Abelian differential equation with constant

coefficients since ∇◦ is a natural affine connection. By Lemmas 1 and 2 it follows

fh(th) = αhth
2 + βhth + γh, with constants αh 6= 0, βh and γh.

Substituting %(t2) and fh(th) in (19) we obtain

αh + Γh
11 + 2

n∑
σ=2

(Γh
1σ − Γ1

1σ (αh th + βh)) · (ασ tσ + βσ)

+

n∑
σ,τ=2

(Γh
στ − Γ1

στ (αh th + βh)) (ασ tσ + βσ) (ατ tτ + βτ ) ≡ 0, (20)

where h = 2, 3, . . . , n and t2, t3, . . . , tn are independent variables.

Since (20) is a cubic polynomial the coefficients at monomials are zero. This

yields αh = −Γh
11 6= 0 and all other components of ∇◦ are zero. ¤

Remark. The metric tensor g with components

g11 = 1 + (x1)
2 ·

n∑
α=2

(Γα
11)

2, g1b = Γb
11 · x1, gab = δab, a, b 6= 1,
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where δab is the Kronecker symbol, determines (see (11)) the Levi–Civita con-

nection ∇ with components as in Theorem 2 (having Γh
11, h = 2, . . . , n, as the

only non zero components). Moreover, the Riemannian tensor vanishes, hence

the space (Rn, Γh
ij) is locally Euclidean (cf. [14]).

If we strength the hypothesis on the Grünwald curve C we obtain the same

system of functions fi(t) as in Theorem 2, but for a given system of functions

fi(t) there are more natural affine connections having the curves of the translation

shell CT as geodesics.

Theorem 3. Let C be a Grünwald curve such that the derivatives of all

its functions fi(t) satisfy Abelian differential equations with constant coefficients.

Then the translation shell CT of C consists of geodesics with respect to a natural

affine connection ∇◦ with components Γh
ij if and only if the functions fi(t) may

be chosen as fi(t) = − 1
2 Γ

i
11 t

2+βi t with Γ i
11 6= 0, βi ∈ R, i = 2, 3, . . . , n, whereas

all other components of ∇◦ are zero with exception of Γh
hσ = Γh

σh = Γ1
1σ = Γ1

σ1

for h > 1, σ > 1.

Proof. Let x(t) be a curve in CT . Since f ′
i(t), i = 2, . . . , n, satisfy Abelian

differential equations with constant coefficients it follows from Lemma 1 and 2

that fi(t) =
1
2 αi t

2+βit+ γi with constants αi 6= 0, βi and γi. Therefore for x(t)

we have

ẋ(t) = (1, α2t+ b2, α3t+ b3, . . . , αnt+ bn) and ẍ(k) = (0, α2, α3, . . . , αn).

The curve x(t) is a geodesic if and only if relation (7) holds. For h = 1 in (7) one

has

%(t) = 2

n∑
σ=2

Γ1
1σ (ασt+ βσ) +

n∑
σ,τ=2

Γ1
στ (ασt+ βσ) (ατ t+ βτ ),

and for h > 1 we get

αh + Γh
11 + 2

n∑
σ=2

Γh
1σ (ασt+ βσ) +

n∑
σ,τ=2

Γh
στ (ασt+ βσ) (ατ t+ βτ )

= %(t)(αht+ βh). (21)

Putting %(t) into (21) we obtain a polynomial which is identically zero. It follows

immediately that Γ1
στ =0 for σ> 1, τ > 1 and αh = −Γh

11 as well as Γh
σ1 =Γh

1σ = 0

for h > 1, σ > 1. Finally, we have
n∑

σ,τ=2

Γh
στ (ασt+ βσ) (ατ t+ βτ )− 2 (αht+ βh) ·

n∑
σ=2

Γ1
1σ (ασt+ βσ) = 0.

From this relation it follows that Γh
hσ = Γh

σh = Γ1
1σ = Γ1

σ1 for h > 1, σ > 1 and

all other components Γh
στ vanish. ¤
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