Grünwald shift spaces

By JOSEF MIKEŠ (Olomouc) and KARL STRAMBACH (Erlangen)

Abstract

An n-dimensional differentiable shift space \mathcal{S} for which in case $n=2$ there exists an affine connection if \mathcal{S} is a Grünwald plane (cf. [13, § 4]) admits for $n \geq 3$ no affine connection. In contrast to this the set of all images of the system of curves arising by shifting the argument from a Grünwald curve \mathcal{C} under the translation group of \mathbb{R}^{n} is a system of geodesics with respect to a metrizable affine connection if and only if \mathcal{C} is a curve corresponding to parabolas in a suitable coordinate system.

1. Introduction

The investigation of systems \mathfrak{S} of curves in the plane \mathbb{R}^{2} such that any two different points are incident with precisely one curve of \mathfrak{S} has a long tradition (see e.g. [17]). In particular since the second half of the previous century the systems \mathfrak{S} has been studied intensively as natural generalisations of the real affine plane and the 2-dimensional hyperbolic geometry. These geometries, now called \mathbb{R}^{2}-planes, are classified if they admit an at least 3-dimensional Lie group of automorphisms [15, Chapter 3].

Although already E. Beltrami has shown that a differentiable curve is a local geodesic with respect to an affine connection ∇ precisely if it is a solution of an Abelian differential equation having as coefficients expressions in Christoffel symbols associated with ∇, the use of differential geometry for study of \mathbb{R}^{2}-planes having differentiable curves as lines started only 2000 by G. Gerlich [5], [6], [7].

[^0]He asked for which \mathbb{R}^{2}-planes A with differentiable lines there exists an affine connection ∇ generating the lines of A and for affine planes A with an least three-dimensional collineation group he proved that ∇ exists if and only if A is either desarguesian or a Moulton plane. Moreover, in [13] it is shown that the differentiable lines of a generalized shift \mathbb{R}^{2}-plane A are geodesics with respect to an affine connection ∇ precisely if A is either the Euclidean plane or a Grünwald model of the real affine plane (see [8]).

The extension of the investigation from \mathbb{R}^{2}-planes to geometries on \mathbb{R}^{n} having as lines a system \mathfrak{S} of curves such that any two different points are incident with precisely one curve of \mathfrak{S} surprisingly turns out to be difficult as one can see in the papers [1], [2], [3], where D. BETTEN created a theory of 3-dimensional topological incidence geometries.

If one tries to extend the characterization of differentiable shift spaces having as lines geodesics with respect to an affine connection starting with a Grünwald plane (cf. [13, §4]), then one meets also great difficulties. Namely, we show that for at least 3-dimensional differentiable shift spaces \mathcal{S} generalizing in a natural way the 2-dimensional shift spaces corresponding to Grünwald planes there exists no affine connection ∇ such that the lines of \mathcal{S} are geodesics of ∇. This is surprising since there exist n-dimensional shift spaces if the derivatives of their generating functions are homeomorphisms of \mathbb{R} (Proposition 1).

In contrast to a shift space the set of all images of the system of curves arising by shifting the argument from a Grünwald curve \mathcal{C} under the translation group of \mathbb{R}^{n} is a system of geodesics with respect to a natural affine connection if and only if \mathcal{C} is a curve corresponding to parabolas in a suitable coordinate system (Theorem 2). Moreover, ∇ is metrizable and for $n=2$ we get the metric tensor (4.4) of [13].

2. Grünwald shift spaces

An n-dimensional line space $\mathcal{S}=\left(\mathbb{R}^{n}, \mathcal{L}\right), n \geq 2$, is an incidence geometry such that the point set is the Euclidean space \mathbb{R}^{n}, the set \mathcal{L} of lines consists of closed subsets of \mathbb{R}^{n} homeomorphic to \mathbb{R} and any two different points are incident with precisely one line.

We call an n-dimensional line space S an n-dimensional shift space if there exist continuous functions $f_{i}^{(k)}: \mathbb{R} \rightarrow \mathbb{R}, k=1, \ldots, n-1, i=k+1, \ldots, n$, such that

$$
\begin{array}{r}
\ell_{\left(u_{1}, \ldots, u_{n}, v_{k+2}, \ldots, v_{n}\right)}^{(k)}=\left\{\left(u_{1}, \ldots, u_{k-1}, t+u_{k}, f_{k+1}^{(k)}(t)+u_{k+1}, f_{k+2}^{(k)}\left(t+v_{k+2}\right)\right.\right. \\
\left.\left.+u_{k+2}, \ldots, f_{n}^{(k)}\left(t+v_{n}\right)+u_{n}\right), t \in \mathbb{R}\right\} \tag{1}
\end{array}
$$

where $u_{1}, \ldots, u_{n}, v_{k+2}, \ldots, v_{n} \in \mathbb{R}$, and $\quad\left\{\left(u_{1}, \ldots, u_{n-1}, t\right), t \in \mathbb{R}\right\} \quad$ with $\quad u_{1}, \ldots, u_{n-1} \in \mathbb{R}$
form the set of lines for the line space $S\left(f_{i}^{(k)}\right)$. The functions $f_{i}^{(k)}$ we will call generating functions of the shift space $S\left(f_{i}^{(k)}\right)$.

Clearly, the group T of translations of \mathbb{R}^{n} is a group of collineations of the shift spaces $S\left(f_{i}^{(k)}\right)$.

We call an n-dimensional line space S, respectively n-dimensional shift space $S\left(f_{i}^{(k)}\right)$, differentiable if the lines of S, respectively of $S\left(f_{i}^{(k)}\right)$, are two times differentiable curves.

Shift spaces of the following proposition give for $n=2$ Grünwald planes if their lines are geodesics with respect to an affine connection (cf. [13, § 4]). For this reason we call the shift spaces of the following proposition Grünwald shift spaces.

Proposition 1. Let $f_{i}^{(k)}: \mathbb{R} \rightarrow \mathbb{R}, k=1, \ldots, n-1, i=k+1, \ldots, n$, be differentiable functions such that the derivatives $f_{i}^{(k) \prime}$ are homeomorphisms of R for all $2 \leq i \leq n$. Then the functions $f_{i}^{(k)}$ are generating functions for an n-dimensional shift space $S\left(f_{i}^{(k)}\right)$.

Proof. The lines of $S\left(f_{i}^{(k)}\right)$ are the sets of form (1). Let

$$
a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad \text { and } \quad b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

be two different points of \mathbb{R}^{n}.
Let $a_{r}=b_{r}$ for $r \leq k-1<n-1$ and $a_{k} \neq b_{k}$. For a line through a and b we have $u_{p}=a_{p}=b_{p}, p=1, \ldots, k-1$. Moreover, the coordinates a_{k}, b_{k}, a_{k+1}, b_{k+1} satisfy the following system of equations:

$$
\begin{array}{ll}
a_{k}=t_{a}+u_{k}, & a_{k+1}=f_{k+1}^{(k)}\left(t_{a}\right)+u_{k+1} \\
b_{k}=t_{b}+u_{k}, & b_{k+1}=f_{k+1}^{(k)}\left(t_{b}\right)+u_{k+1} \tag{2}
\end{array}
$$

Since the derivative of the function $f_{p}^{(k)}, p=k+1, \ldots, n$, is a homeomorphism of \mathbb{R}, the function

$$
\begin{equation*}
t \longmapsto f_{p}^{(k)}(t+d)-f_{p}^{(k)}(t) \tag{3}
\end{equation*}
$$

is a homeomorphism of \mathbb{R} for any fixed $d \in \mathbb{R} \backslash\{0\}$ (cf. [15, § 3, p. 161]).

Now, from (2) we obtain $t_{b}=t_{a}-\left(a_{k}-b_{k}\right)$ and

$$
a_{k+1}=f_{k+1}^{(k)}\left(t_{a}\right)+u_{k+1} ; \quad b_{k+1}=f_{k+1}^{(k)}\left(t_{a}+\left(b_{k}-a_{k}\right)\right)+u_{k+1} .
$$

This yields

$$
a_{k+1}-b_{k+1}=f_{k+1}^{(k)}\left(t_{a}\right)-f_{k+1}^{(k)}\left(t_{a}+\left(b_{k}-a_{k}\right)\right)
$$

Because $a_{k} \neq b_{k}$ relation (3) gives that there exists precisely one solution t_{a} of the last equation. Then we have $u_{k}=a_{k}-t_{a}, t_{b}=b_{k}-u_{k}$, and $u_{k+1}=a_{k+1}-f\left(t_{a}\right)$.

For $p=k+2, \ldots, n$ the coordinates a_{p} and b_{p} fulfill the following system of equations

$$
a_{p}=f_{p}^{(k)}\left(t_{a}+v_{p}\right)+u_{p} ; \quad b_{p}=f_{p}^{(k)}\left(t_{b}+v_{p}\right)+u_{p}
$$

Since the function $f_{p}^{(k)}$ satisfy (3) this system has precisely one solution u_{p}, v_{p}.
If $a_{r}=b_{r}$ for $r \leq n-1$, and $a_{n} \neq b_{n}$ then the line $\left\{\left(a_{1}, \ldots, a_{n-1}, t\right), t \in \mathbb{R}\right\}$ is the unique line joining a and b, and the proposition is proved.

3. Riccati and Abelian differential equations

For a later use we consider the special Riccati differential equations with unknown function $y=y(x)$:

$$
\begin{equation*}
y^{\prime}+a_{1} y^{2}+a_{2} y+a_{3}=0 \tag{4}
\end{equation*}
$$

where a_{i} are constants (cf. [9, A4.9] or [10, pp. 33 and 41]).
(4.1) If $a_{i}=0$ for $i \in\{1,2\}$, then $y=-a_{3} x+c$ for $c \in \mathbb{R}$.
(4.2) If $a_{1}=0$ and $a_{2} \neq 0$, then $y=-\frac{a_{3}}{a_{2}}+c \mathrm{e}^{-a_{2} x}$ for $c \in \mathbb{R}$.
(4.3) If $a_{1} \neq 0$ and $a_{2}^{2}=4 a_{1} a_{3}$, then we have

$$
y=-\frac{a_{2}}{2 a_{1}}+\frac{c_{1}}{c_{1} a_{1} x+c_{2}} \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R} \quad \text { and } \quad\left(c_{1}, c_{2}\right) \neq(0,0) .
$$

(4.4) If $a_{1} \neq 0$ and $\lambda^{2}=4 a_{1} a_{3}-a_{2}^{2}>0$, then

$$
y=-\frac{a_{2}}{2 a_{1}}+\frac{\lambda}{2 a_{1}} \operatorname{cotan} \frac{\lambda}{2}(x+c) \quad \text { with } \quad c \in \mathbb{R}
$$

(4.5) If $a_{1} \neq 0$ and $\lambda^{2}=a_{2}^{2}-4 a_{1} a_{3}>0$, then

$$
y=-\frac{a_{2}}{2 a_{1}}+\frac{\lambda}{2 a_{1}} \frac{c_{1} \mathrm{e}^{\frac{\lambda}{2} x}-c_{2} \mathrm{e}^{-\frac{\lambda}{2} x}}{c_{1} \mathrm{e}^{\frac{\lambda}{2} x}+c_{2} \mathrm{e}^{-\frac{\lambda}{2} x}} \quad \text { with } \quad c_{1}, c_{2} \in \mathbb{R} \quad \text { and } \quad\left(c_{1}, c_{2}\right) \neq(0,0) .
$$

Also in (4.3) and (4.5) the solution depends only on one parameter which is defined on the projective line.

Lemma 1. If f is a differentiable function such that its derivative f^{\prime} is a homeomorphism of \mathbb{R} and a solution of an equation (4), then f has the form $f=-1 / 2 a_{3} x^{2}+c x+d$ with $a_{3} \neq 0, c, d \in \mathbb{R}$.

Proof. Solutions (4.1) with $a_{3}=0$ and (4.2) are excluded since in this case f^{\prime} is not a homeomorphism. Solutions (4.1) with $a_{3} \neq 0$ give the functions in the assertion.

Since in case of solutions (4.3) and (4.4) the function f^{\prime} is not a homeomorphism of \mathbb{R} we have to consider solutions (4.5). But also in this case the function f^{\prime} is not a homeomorphism of \mathbb{R} since we have $\lim _{x \rightarrow \pm \infty} f^{\prime}=-\frac{a_{2} \pm \lambda}{2 a_{1}}$.

We consider Abelian differential equations

$$
\begin{equation*}
y^{\prime}=\alpha+\beta y+\gamma y^{2}+\varepsilon y^{3} \quad \text { with } \quad \varepsilon \neq 0 \tag{5}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \varepsilon \in \mathbb{R}$, and we are interested in real functions f such that $f^{\prime}=y$ is a homeomorphism of \mathbb{R}.

To differential equation (5) is associated the cubic algebraic equation

$$
\begin{equation*}
\alpha+\beta y+\gamma y^{2}+\varepsilon y^{3}=0 \tag{6}
\end{equation*}
$$

Because $\varepsilon \neq 0$, the cubic equation (6) has a real solution $y=y_{1}$ and hence equation (5) has a solution $y(t)=y_{1}$ for all $t \in \mathbb{R}$. According to the existence and uniqueness Theorem applied to (5), any other solution $f^{\prime}=y$ of equation (5) satisfies either $y(t)>y_{1}$ or $y(t)<y_{1}$ for all $t \in \mathbb{R}$. Hence it follows

Lemma 2. There exists no real function f with $f^{\prime}=y$ satisfying (5) such that f^{\prime} is a homeomorphism of the real line \mathbb{R}.

4. Affine connections

Since we apply results of differential geometry only for the n-dimensional space \mathbb{R}^{n} there exist global coordinates and the components $\Gamma_{i j}^{h}, h, i, j \in\{1,2, \ldots, n\}$, of any affine connection ∇ can be written in a unique way in these coordinates.

An affine connection ∇ is called symmetric if $\nabla_{X} Y=\nabla_{Y} X-[X, Y]$, where [X, Y] is the Lie bracket, i.e. if for its components $\Gamma_{i j}^{h}$ one has $\Gamma_{i j}^{h}=\Gamma_{j i}^{h}$ for all $h, i, j \in\{1,2, \ldots, n\}$.

By a geodesic of ∇ we mean a piecewise C^{2}-curve $\gamma: I \rightarrow \mathbb{R}^{n}$ satisfying $\nabla_{\dot{\gamma}} \dot{\gamma}=\varrho \cdot \dot{\gamma}$, where $\varrho: I \rightarrow \mathbb{R}$ is a continuous function, and $I \subset \mathbb{R}$ is an open interval (cf. [4, p. 3], [14, p. 122]).

Using the components of ∇ the system of differential equations for geodesics has the form (cf. [14, p. 144])

$$
\begin{equation*}
\ddot{\gamma}^{h}+\sum_{i, j=1}^{n} \Gamma_{i j}^{h} \dot{\gamma}^{i} \dot{\gamma}^{j}=\varrho(t) \dot{\gamma}^{h}, \quad h \in\{1,2, \ldots, n\} . \tag{7}
\end{equation*}
$$

From this it follows that the geodesics depend only on the symmetric part of the connection ∇. Hence we will always assume that ∇ is symmetric.

Let \mathfrak{g} be a Lie algebra of a group G of diffeomorphisms and let $\nabla=\left\{\Gamma_{i j}^{h}\right\}$ be an affine connection. The Lie derivative $\mathcal{L}_{\xi} \nabla$ along an element $\xi(\neq 0) \in \mathfrak{g}$ is given with respect to components of ∇ by

$$
\mathcal{L}_{\xi} \Gamma_{i j}^{h} \equiv \frac{\partial^{2} \xi^{h}}{\partial x_{i} \partial x_{j}}+\sum_{\alpha=1}^{n}\left(\xi^{\alpha} \frac{\partial \Gamma_{i j}^{h}}{\partial x_{\alpha}}-\frac{\partial \xi^{h}}{\partial x_{\alpha}} \Gamma_{i j}^{\alpha}+\frac{\partial \xi^{\alpha}}{\partial x_{i}} \Gamma_{\alpha j}^{h}+\frac{\partial \xi^{\alpha}}{\partial x_{j}} \Gamma_{\alpha i}^{h}\right),
$$

where $h, i, \cdots=1,2, \ldots, n$.
The group G preserves geodesics with respect to ∇ if and only if

$$
\begin{equation*}
\mathcal{L}_{\xi} \Gamma_{i j}^{h}=\delta_{i}^{h} \psi_{j}+\delta_{j}^{h} \psi_{i} \tag{8}
\end{equation*}
$$

where δ_{i}^{h} is the Kronecker symbol and ψ_{i} are differentiable functions [11], [12, p. 143], [18].

The group G consists of affine mappings with respect to ∇ precisely if $\mathfrak{L}_{\xi} \Gamma_{i j}^{h}=0$ or, equivalently, if and only if ψ_{i} vanishes. Moreover, if \mathbb{R}^{n} is a (pseudo-) Riemannian space with respect to the metric tensor g, then the Lie group G is a group of isometries precisely if $\mathfrak{L}_{\xi} g=0$ (cf. [18, p. 43], [12, p. 100]).

Proposition 2. Let S be a system of geodesics with respect to an affine connection ∇. If the translation group T of \mathbb{R}^{n} consists of geodesic maps for S, then the affine connection ∇ may be chosen in such a way that the components $\Gamma_{i j}^{h}$ are constant. Moreover, the components $\Gamma_{\sigma \sigma}^{\sigma}, \sigma=1, \ldots, n$, are zero.

Proof. Since T consists of geodesic maps for the Lie derivative $\mathcal{L}_{\xi} \Gamma_{i j}^{h}$ along any element $\xi \neq 0$ of the Lie algebra of T one has (8). Taking in particular $\xi=\left(\delta_{\sigma}^{h}\right)_{h=1}^{n}$ one obtains

$$
\mathcal{L}_{\xi} \Gamma_{i j}^{h} \equiv \frac{\partial \Gamma_{i j}^{h}}{\partial x_{\sigma}}=\delta_{i}^{h} \psi_{j}+\delta_{j}^{h} \psi_{i} .
$$

Integrating these equations for any $\sigma=1, \ldots, n$, we get

$$
\Gamma_{i j}^{h}=\stackrel{\circ}{\Gamma}_{i j}^{h}+\delta_{i}^{h} \Psi_{j}+\delta_{j}^{h} \Psi_{i}
$$

where $\stackrel{\circ}{\Gamma}_{i j}^{h}$ are constants, and $\Psi_{j}(x)$ are suitable differentiable functions.
If with respect to the affine connection ∇ having the components $\Gamma_{i j}^{h}$ the system S consists of geodesics, then the same holds for any connection with the components $\bar{\Gamma}_{i j}^{h}$ satisfying the equations $\bar{\Gamma}_{i j}^{h}=\Gamma_{i j}^{h}+\delta_{i}^{h} \bar{\psi}_{j}+\delta_{j}^{h} \bar{\psi}_{i}$, where $\bar{\psi}_{i}$ are differentiable functions ([11], [12], [18]). Choosing the functions $\bar{\psi}_{i}$ in such a way that $\bar{\psi}_{i}=-\Psi_{i}-\frac{1}{2} \stackrel{\circ}{\Gamma}_{i i}^{i}$ we see that then $\bar{\Gamma}_{i j}^{h}$ are constants, and $\bar{\Gamma}_{\sigma \sigma}^{\sigma}=0$, $\sigma=1, \ldots, n$.

As representatives of affine connections for which the lines of a shift space S are geodesics we will take henceforth affine connections ∇° having constant components such that $\bar{\Gamma}_{\sigma \sigma}^{\sigma}=0, \sigma=1, \ldots, n$. We shall call such connections natural connections of S. With respect to a natural connection ∇° the translation group of \mathbb{R}^{n} consists of affine transformations of S. Namely, for $\xi=\left(\delta_{\sigma}^{h}\right)_{h=1}^{n}$ one has $\mathcal{L}_{\xi} \Gamma_{i j}^{h} \equiv \frac{\partial}{\partial x_{\sigma}} \Gamma_{i j}^{h}=0$.

If a connection ∇ has the components $\Gamma_{i j}^{h}, h, i, j, \in\{1, \ldots, n\}$, the components $R_{i j k}^{h}, h, i, j, k \in\{1, \ldots, n\}$ of the curvature tensor R of ∇ are given by (cf. [4, p. 8], [16, p. 27])

$$
\begin{equation*}
R_{i j k}^{h}=\frac{\partial}{\partial x_{j}} \Gamma_{i k}^{h}-\frac{\partial}{\partial x_{k}} \Gamma_{i j}^{h}+\sum_{\alpha=1}^{n}\left(\Gamma_{i k}^{\alpha} \Gamma_{\alpha j}^{h}-\Gamma_{i j}^{\alpha} \Gamma_{\alpha k}^{h}\right) . \tag{9}
\end{equation*}
$$

The Ricci tensor belonging to R has components $R_{i j}=\sum_{\alpha=1}^{n} R_{i \alpha j}^{\alpha}$.
The curvature tensor R of ∇ is often called the Riemannian tensor of ∇.
In particular, ∇ is the Levi-Civita connection of a (pseudo-) Riemannian space with the metric $g=\left(g_{i j}\right)$ if $\nabla g=0$, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}} g_{i j}=\sum_{\alpha=1}^{n}\left(g_{i \alpha} \Gamma_{j k}^{\alpha}+g_{j \alpha} \Gamma_{i k}^{\alpha}\right), \tag{10}
\end{equation*}
$$

where the components $\Gamma_{i j}^{h}$ (called Christoffel symbols) are given by

$$
\begin{equation*}
\Gamma_{i j}^{h}=\frac{1}{2} \sum_{\alpha=1}^{n} g^{h \alpha}\left(\frac{\partial}{\partial x_{i}} g_{j \alpha}+\frac{\partial}{\partial x_{j}} g_{i \alpha}-\frac{\partial}{\partial x_{\alpha}} g_{i j}\right) \tag{11}
\end{equation*}
$$

thereby $\left(g^{h \alpha}\right)$ denotes the inverse matrix of $\left(g_{i j}\right)$. For g then there exists a unique symmetric affine connection ∇ such $\nabla g=0$.

The integrability conditions of (10) have the following form [4, p. 79]:

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left(g_{i \alpha} R_{j k l}^{\alpha}+g_{j \alpha} R_{i k l}^{\alpha}\right)=0 \tag{12}
\end{equation*}
$$

5. Geometry of Grünwald shift spaces

Theorem 1. Let $S\left(f_{i}^{(k)}\right)$ be an n-dimensional Grünwald shift space. If the set of lines of $S\left(f_{i}^{(k)}\right)$ forms the set of geodesics with respect to a natural connection ∇°, then $S\left(f_{i}^{(k)}\right)$ is a Grünwald plane.

Proof. For a line

$$
\begin{aligned}
& x_{(k)}=\left(u_{1}, \ldots, u_{k-1}, t+u_{k}, f_{k+1}^{(k)}(t)+u_{k+1}, f_{k+2}^{(k)}\left(t+v_{k+2}\right)+u_{k+2}\right. \\
&\left.\ldots, f_{n}^{(k)}\left(t+v_{n}\right)+u_{n}\right), t \in \mathbb{R}
\end{aligned}
$$

one has

$$
\begin{aligned}
\dot{x}_{(k)} & =\left(0, \ldots, 0,1, f_{k+1}^{(k) \prime}(t), f_{k+2}^{(k) \prime}\left(t+v_{k+2}\right), \ldots, f_{n}^{(k) \prime}\left(t+v_{n}\right)\right), \\
\ddot{x}_{(k)} & =\left(0, \ldots, 0,0, f_{k+1}^{(k) \prime \prime}(t), f_{k+2}^{(k) \prime \prime}\left(t+v_{k+2}\right), \ldots, f_{n}^{(k) \prime \prime}\left(t+v_{n}\right)\right) .
\end{aligned}
$$

This line is a geodesic if and only if relation (7) holds. We put in this relation $t_{k+1} \equiv t$ and $t_{\lambda} \equiv t+v_{\lambda}$ for $\lambda>k+1$.

For $h=k=n-1$ one has $\varrho\left(t_{n}\right)=2 \Gamma_{n-1}^{n-1} f_{n}^{(n-1) \prime}\left(t_{n}\right)+\Gamma_{n n}^{n-1}\left(f_{n}^{(n-1) \prime}\left(t_{n}\right)\right)^{2}$ and for $h=n, k=n-1$ using $\Gamma_{n n}^{n}=0$ (Proposition 2) we get

$$
\begin{equation*}
f_{n}^{(n-1) \prime \prime}+\Gamma_{n-1 n-1}^{n}+2 \Gamma_{n-1 n}^{n} f_{\sigma}^{(k) \prime}=\varrho\left(t_{n}\right) f_{n}^{(n-1) \prime} . \tag{13}
\end{equation*}
$$

Substituting $\varrho\left(t_{n}\right)$ into (13) we obtain

$$
\begin{equation*}
f_{n}^{(n-1) \prime \prime}=-\Gamma_{n-1 n-1}^{n}-2 \Gamma_{n-1 n}^{n} f_{\sigma}^{(k) \prime}+2 \Gamma_{n-1 n}^{n-1}\left(f_{n}^{(n-1) \prime}\right)^{2}+\Gamma_{n n}^{n-1}\left(f_{n}^{(n-1) \prime}\right)^{3} . \tag{14}
\end{equation*}
$$

This equation with constant coefficients is an Abelian differential equation with respect to $f_{n}^{(n-1) \prime}\left(t_{n}\right)$. By Lemma 1 and 2 it follows that $f_{n}^{(n-1)}\left(t_{n}\right)=\alpha t_{n}^{2}+$ $\beta t_{n}+\gamma$ with constants $\alpha \neq 0, \beta$ and γ. Putting this in (14) we get

$$
\begin{equation*}
\Gamma_{n n}^{n-1}=\Gamma_{n-1 n}^{n-1}=\Gamma_{n-1 n}^{n}=0, \text { but } \Gamma_{n-1 n-1}^{n}=-2 \alpha \neq 0 . \tag{15}
\end{equation*}
$$

If $n>2$ then from (7) for $h=k=n-2$ one has

$$
\begin{aligned}
\varrho\left(t_{n-1}\right)= & 2 \Gamma_{n-2}^{n-2}{ }_{n-1} f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right)+2 \Gamma_{n-2}^{n-2} f_{n}^{(n-2) \prime}\left(t_{n}\right)+\Gamma_{n-1 n-1}^{n-2}\left(f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right)\right)^{2} \\
& +2 \Gamma_{n-1}^{n-2} f_{n-1}^{(n-2) \prime \prime}\left(t_{n-1}\right) f_{n}^{(n-2) \prime}\left(t_{n}\right)+\Gamma_{n n}^{n-2}\left(f_{n}^{(n-2) \prime}\left(t_{n}\right)\right)^{2}
\end{aligned}
$$

and for $h=n, k=n-2 \operatorname{using} \Gamma_{n n}^{n}=\Gamma_{n-1 n}^{n}=0$ we get

$$
\begin{aligned}
f_{h}^{(n-2) \prime \prime}\left(t_{n}\right) & +\Gamma_{n-2 n-2}^{n}+2 \Gamma_{n-2 n-1}^{n} f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right)+2 \Gamma_{n-2 n}^{n} f_{n}^{(n-2) \prime}\left(t_{n}\right) \\
& +\Gamma_{n-1 n-1}^{n}\left(f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right)\right)^{2}=\varrho\left(t_{n-1}\right) f_{n}^{(n-2) \prime}\left(t_{n}\right) .
\end{aligned}
$$

Substituting into this $\varrho\left(t_{n-1}\right)$ we obtain

$$
\begin{gathered}
\left(f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right)\right)^{2} \cdot\left(\Gamma_{n-1 n-1}^{n}-\Gamma_{n-1 n-1}^{n-2} f_{n}^{(n-2) \prime}\left(t_{n}\right)\right) \\
\quad+f_{n-1}^{(n-2) \prime}\left(t_{n-1}\right) \cdot A\left(t_{n}\right)+B\left(t_{n}\right)=0
\end{gathered}
$$

where $A\left(t_{n}\right)$ and $B\left(t_{n}\right)$ are functions of the variable t_{n}. Since the variables t_{n-1} and t_{n} are independent and $f_{n-1}^{(n-2) \prime} \neq 0$ the coefficient functions $A\left(t_{n}\right)$ and $B\left(t_{n}\right)$ vanish and

$$
\begin{equation*}
\Gamma_{n-1 n-1}^{n}-\Gamma_{n-1 n-1}^{n-2} f_{n}^{(n-2) \prime}\left(t_{n}\right)=0 \tag{16}
\end{equation*}
$$

From (16) it follows $\Gamma_{n-1 n-1}^{n-2}=0$ and $\Gamma_{n-1 n-1}^{n}=0$. This contradicts relations (15). Hence n must be 2 and $S\left(f_{i}^{(k)}\right)$ is a Grünwald plane (cf. [13]).

Remark. If $n=2$ then the proof of Theorem 1 yields that $\Gamma_{11}^{2}=-2 \alpha \neq 0$ and all other components are zero. Hence this shift space is the Grünwald plane M_{α} having a metric tensor g with corresponds to the Levi-Civita connection ∇ of the form (4.4) in [13].

6. Translation shell of a Grünwald curve

Let \mathcal{C} be a curve homeomeomorphic to \mathbb{R} which is a closed subset of in \mathbb{R}^{n}, $n \geq 2$. The translation shell \mathcal{C}^{T} of \mathcal{C} is the set of all images of \mathcal{C} under the translation group T of \mathbb{R}^{n}. We consider a curve of the form

$$
\begin{equation*}
\mathcal{C}=\left\{\left(t, f_{2}(t), f_{3}(t), \ldots, f_{n}(t)\right), t \in \mathbb{R}\right\} \tag{17}
\end{equation*}
$$

where $f_{i}(t)$ are two times differentiable functions such that the derivatives $f_{i}^{\prime}(t)$ are homeomorphisms of \mathbb{R} for all $i=2, \ldots, n$. The translation shell of \mathcal{C} is the set

$$
\begin{gathered}
\mathcal{C}^{T}=\left\{\left(t+u_{1}, f_{2}(t)+u_{2}, f_{3}(t)+u_{3}, \ldots, f_{n}(t)+u_{n}\right), t \in \mathbb{R}\right\} \\
\text { where } \quad u_{1}, \ldots, u_{n} \in \mathbb{R}
\end{gathered}
$$

The extended translation shell $\hat{\mathcal{C}}^{T}$ is the set

$$
\begin{gather*}
\hat{\mathcal{C}}^{T}=\left\{\left(t+u_{1}, f_{2}(t)+u_{2}, f_{3}\left(t+v_{3}\right)+u_{3}, \ldots, f_{n}\left(t+v_{n}\right)+u_{n}\right), t \in \mathbb{R}\right\}, \\
\text { where } u_{1}, \ldots, u_{n}, v_{3}, \ldots, v_{n} \in \mathbb{R} . \tag{18}
\end{gather*}
$$

We search for affine connections ∇ for which the extended translation shell $\hat{\mathcal{C}}^{T}$ or the translation shell \mathcal{C}^{T} consists of geodesics with respect to ∇. If $n=2$ then the extended shell $\hat{\mathcal{C}}^{T}$ is a Grünwald plane if we adjoin to $\hat{\mathcal{C}}^{T}$ the lines $\{(u, t) ; t \in \mathbb{R}\}, u \in \mathbb{R}$. For this reason we call such curves \mathcal{C} Grünwald curves.

Theorem 2. For a Grünwald curve \mathcal{C} the extended translation shell $\hat{\mathcal{C}}^{T}$ consists of geodesics with respect to a natural affine connection ∇° with components $\Gamma_{i j}^{h}$ if and only if the functions $f_{i}(t)$ may be chosen as $f_{i}(t)=-\frac{1}{2} \Gamma_{11}^{i} t^{2}+\beta_{i} t$ with $\Gamma_{11}^{i} \neq 0, \beta_{i} \in \mathbb{R}, i=2,3, \ldots, n$, whereas all other components of ∇° are zero.

Proof. Let $x(t)$ be a curve in (18). Then we have

$$
\begin{aligned}
\dot{x}(t) & =\left(1, f_{2}^{\prime}(t), f_{3}^{\prime}\left(t+v_{3}\right), \ldots, f_{n}^{\prime}\left(t+v_{n}\right)\right) \\
\ddot{x}(t) & =\left(0, f_{2}^{\prime \prime}(t), f_{3}^{\prime \prime}\left(t+v_{3}\right), \ldots, f_{n}^{\prime \prime}\left(t+v_{n}\right)\right)
\end{aligned}
$$

The curve $x(t)$ is a geodesic if and only if relation (7) holds. We put in this relation $t_{2} \equiv t$, and $t_{\lambda} \equiv t+v_{\lambda}$ for $\lambda>2$.

For $h=1$ one has

$$
\varrho\left(t_{2}\right)=2 \sum_{\sigma=2}^{n} \Gamma_{1 \sigma}^{1} f_{\sigma}^{\prime}\left(t_{\sigma}\right)+\sum_{\sigma, \tau=2}^{n} \Gamma_{\sigma \tau}^{1} f_{\sigma}^{\prime}\left(t_{\sigma}\right) f_{\tau}^{\prime}\left(t_{\tau}\right)
$$

and for $h>1$ we get

$$
\begin{equation*}
f_{h}^{\prime \prime}\left(t_{h}\right)+\Gamma_{11}^{h}+2 \sum_{\sigma=2}^{n} \Gamma_{1 \sigma}^{h} f_{\sigma}^{\prime}\left(t_{\sigma}\right)+\sum_{\sigma, \tau=2}^{n} \Gamma_{\sigma \tau}^{h} f_{\sigma}^{\prime}\left(t_{\sigma}\right) f_{\tau}^{\prime}\left(t_{\tau}\right)=\varrho\left(t_{2}\right) f_{h}^{\prime}\left(t_{h}\right) \tag{19}
\end{equation*}
$$

Putting $\varrho\left(t_{2}\right)$ into (19) and fixing all variables t_{σ} different from t_{h} we obtain with respect to function $f^{\prime}\left(t_{h}\right)$ an Abelian differential equation with constant coefficients since ∇° is a natural affine connection. By Lemmas 1 and 2 it follows $f_{h}\left(t_{h}\right)=\alpha_{h} t_{h}{ }^{2}+\beta_{h} t_{h}+\gamma_{h}$, with constants $\alpha_{h} \neq 0, \beta_{h}$ and γ_{h}.

Substituting $\varrho\left(t_{2}\right)$ and $f_{h}\left(t_{h}\right)$ in (19) we obtain

$$
\begin{align*}
& \alpha_{h}+\Gamma_{11}^{h}+2 \sum_{\sigma=2}^{n}\left(\Gamma_{1 \sigma}^{h}-\Gamma_{1 \sigma}^{1}\left(\alpha_{h} t_{h}+\beta_{h}\right)\right) \cdot\left(\alpha_{\sigma} t_{\sigma}+\beta_{\sigma}\right) \\
+ & \sum_{\sigma, \tau=2}^{n}\left(\Gamma_{\sigma \tau}^{h}-\Gamma_{\sigma \tau}^{1}\left(\alpha_{h} t_{h}+\beta_{h}\right)\right)\left(\alpha_{\sigma} t_{\sigma}+\beta_{\sigma}\right)\left(\alpha_{\tau} t_{\tau}+\beta_{\tau}\right) \equiv 0 \tag{20}
\end{align*}
$$

where $h=2,3, \ldots, n$ and $t_{2}, t_{3}, \ldots, t_{n}$ are independent variables.
Since (20) is a cubic polynomial the coefficients at monomials are zero. This yields $\alpha_{h}=-\Gamma_{11}^{h} \neq 0$ and all other components of ∇° are zero.

Remark. The metric tensor g with components

$$
g_{11}=1+\left(x_{1}\right)^{2} \cdot \sum_{\alpha=2}^{n}\left(\Gamma_{11}^{\alpha}\right)^{2}, \quad g_{1 b}=\Gamma_{11}^{b} \cdot x_{1}, \quad g_{a b}=\delta_{a b}, \quad a, b \neq 1
$$

where $\delta_{a b}$ is the Kronecker symbol, determines (see (11)) the Levi-Civita connection ∇ with components as in Theorem 2 (having $\Gamma_{11}^{h}, h=2, \ldots, n$, as the only non zero components). Moreover, the Riemannian tensor vanishes, hence the space $\left(\mathbb{R}^{n}, \Gamma_{i j}^{h}\right)$ is locally Euclidean (cf. [14]).

If we strength the hypothesis on the Grünwald curve \mathcal{C} we obtain the same system of functions $f_{i}(t)$ as in Theorem 2, but for a given system of functions $f_{i}(t)$ there are more natural affine connections having the curves of the translation shell \mathcal{C}^{T} as geodesics.

Theorem 3. Let \mathcal{C} be a Grünwald curve such that the derivatives of all its functions $f_{i}(t)$ satisfy Abelian differential equations with constant coefficients. Then the translation shell \mathcal{C}^{T} of \mathcal{C} consists of geodesics with respect to a natural affine connection ∇° with components $\Gamma_{i j}^{h}$ if and only if the functions $f_{i}(t)$ may be chosen as $f_{i}(t)=-\frac{1}{2} \Gamma_{11}^{i} t^{2}+\beta_{i} t$ with $\Gamma_{11}^{i} \neq 0, \beta_{i} \in \mathbb{R}, i=2,3, \ldots, n$, whereas all other components of ∇° are zero with exception of $\Gamma_{h \sigma}^{h}=\Gamma_{\sigma h}^{h}=\Gamma_{1 \sigma}^{1}=\Gamma_{\sigma 1}^{1}$ for $h>1, \sigma>1$.

Proof. Let $x(t)$ be a curve in \mathcal{C}^{T}. Since $f_{i}^{\prime}(t), i=2, \ldots, n$, satisfy Abelian differential equations with constant coefficients it follows from Lemma 1 and 2 that $f_{i}(t)=\frac{1}{2} \alpha_{i} t^{2}+\beta_{i} t+\gamma_{i}$ with constants $\alpha_{i} \neq 0, \beta_{i}$ and γ_{i}. Therefore for $x(t)$ we have

$$
\dot{x}(t)=\left(1, \alpha_{2} t+b_{2}, \alpha_{3} t+b_{3}, \ldots, \alpha_{n} t+b_{n}\right) \quad \text { and } \quad \ddot{x}_{(k)}=\left(0, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right)
$$

The curve $x(t)$ is a geodesic if and only if relation (7) holds. For $h=1$ in (7) one has

$$
\varrho(t)=2 \sum_{\sigma=2}^{n} \Gamma_{1 \sigma}^{1}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)+\sum_{\sigma, \tau=2}^{n} \Gamma_{\sigma \tau}^{1}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)\left(\alpha_{\tau} t+\beta_{\tau}\right),
$$

and for $h>1$ we get

$$
\begin{array}{r}
\alpha_{h}+\Gamma_{11}^{h}+2 \sum_{\sigma=2}^{n} \Gamma_{1 \sigma}^{h}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)+\sum_{\sigma, \tau=2}^{n} \Gamma_{\sigma \tau}^{h}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)\left(\alpha_{\tau} t+\beta_{\tau}\right) \\
 \tag{21}\\
=\varrho(t)\left(\alpha_{h} t+\beta_{h}\right)
\end{array}
$$

Putting $\varrho(t)$ into (21) we obtain a polynomial which is identically zero. It follows immediately that $\Gamma_{\sigma \tau}^{1}=0$ for $\sigma>1, \tau>1$ and $\alpha_{h}=-\Gamma_{11}^{h}$ as well as $\Gamma_{\sigma 1}^{h}=\Gamma_{1 \sigma}^{h}=0$ for $h>1, \sigma>1$. Finally, we have

$$
\sum_{\sigma, \tau=2}^{n} \Gamma_{\sigma \tau}^{h}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)\left(\alpha_{\tau} t+\beta_{\tau}\right)-2\left(\alpha_{h} t+\beta_{h}\right) \cdot \sum_{\sigma=2}^{n} \Gamma_{1 \sigma}^{1}\left(\alpha_{\sigma} t+\beta_{\sigma}\right)=0
$$

From this relation it follows that $\Gamma_{h \sigma}^{h}=\Gamma_{\sigma h}^{h}=\Gamma_{1 \sigma}^{1}=\Gamma_{\sigma 1}^{1}$ for $h>1, \sigma>1$ and all other components $\Gamma_{\sigma \tau}^{h}$ vanish.

References

[1] D. Betten, Eine Charakterisierung des Reellen Halbraumes, Rend. Circ. Mat. Palermo, II. Ser. 32 (1983), 145-150.
[2] D. Betten, Einige Klassen topologischer 3-Räume, Result. Math. 12 (1987), 37-61.
[3] D. Betten, Topological shift spaces, Adv. Geom. 5 (2005), 107-118.
[4] L. P. Eisenhart, Non-Riemannian geometry, Vol. 8, American Mathematical Society Colloquium Publications, 2000.
[5] G. Gerlich, Stable projective planes with Riemannian metrics, Arch. Math. 79 (2002), 317-320.
[6] G. Gerlich, Topological affine planes with affine connections, Adv. Geom. 5 (2005), 265-278.
[7] G. Gerlich, Cones for the Moulton planes, J. Geom. 88, no. 1-2 (2008), 30-40.
[8] J. Grünwald, Über duale Zahlen und ihre Anwendung in der Geometrie, Monatsh. Math. Phys. 17 (1906), 81-136.
[9] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Akademische Verlagsgesellschaft, Leipzig, 1942.
[10] E. Kamke, Differentialgleichungen reeller Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1956.
[11] J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (1996), 311-333.
[12] J. Mikeš, A. Vanžurová and I. Hinterleitner, Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009.
[13] J. MikeŠ and K. Strambach, Differentiable structures on elementary geometries, Result. Math. 53, no. 1-2 (2009), 153-172.
[14] A. P. Norden, Spaces of an Affine Connection, Nauka, Moscow, 1976 (in Russian).
[15] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact projective planes, de Gruyter, 1995.
[16] N. S. Sinyukov, Geodesic mappings of Riemannian spaces, Moscow, Nauka, 1979 (in Russian).
[17] L. A. Skornjakov, Systems of curves on a surface, Trudy Moskov. Mat. Obsc. 6 (1957), 135-164 (in Russian).
[18] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton: N. J.: Princeton University Press, 1953.

JOSEF MIKEŠ
DEPARTMENT OF ALGEBRA AND GEOMETRY
FACULTY OF SCIENCE
PALACKY UNIVERSITY
17. LISTOPADU 12

77146 OLOMOUC
CZECH REPUBLIC
E-mail: josef.mikes@upol.cz
KARL STRAMBACH
DEPATMENT MATHEMATIK
DER UNIVERSITÄT ERLANGEN-NÜRNBERG
CAUERSTR. 11,
D-91052 ERLANGEN
GERMANY
E-mail: strambach@mi.uni-erlangen.de
(Received April 11, 2012; revised November 29, 2012)

[^0]: Mathematics Subject Classification: Primary: 51H20; Secondary: 53B05, 53C22.
 Key words and phrases: shift space, extended translation shell of a curve, affine connection, geodesic.
 The paper was supported by grant P201/11/0356 of The Czech Science Foundation and by the Department Mathematik der Universität Erlangen-Nürnberg.

