Title: Balancing numbers which are products of consecutive integers
Author(s): Szabolcs Tengely
In 1999 A. Behera and G. K. Panda defined balancing numbers as follows. A positive integer n is called a balancing number if $1+2+\cdots+(n-1)=(n+$ $1)+(n+2)+\cdots+(n+k)$ for some $k \in \mathbb{N}$. The sequence of balancing numbers is denoted by B_{m} for $m \in \mathbb{N}$. In this paper we show that the Diophantine equation $B_{m}=x(x+1)(x+2)(x+3)(x+4)$ has no solution with $m \geq 0$ and $x \in \mathbb{Z}$. We follow the ideas described, that is we combine Baker's method and the so-called MordellWeil sieve to obtain all solutions.

Address:

Szabolcs Tengely
Mathematical Institute
University of Debrecen
4010 Debrecen, P.O.Box 12
Hungary

