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On the number of solutions of binomial Thue inequalities

By MICHAEL A. BENNETT (Vancouver), ISTVÁN PINK (Debrecen)

and ZSOLT RÁBAI (Debrecen)

Abstract. Let a, b and n be positive integers with n ≥ 3 and consider the binomial

Thue inequality |axn−byn| ≤ 3. In this paper, we extend a result of the first author [10]

and prove that, apart from finitely many explicitly given exceptions, this inequality has

at most a single solution in positive integers x and y. In the proof, we combine lower

bounds for linear forms in logarithms of algebraic numbers with the hypergeometric

method of Thue–Siegel and an assortment of techniques from computational Diophantine

approximation.

1. Introduction

A classical problem in number theory is the approximation of algebraic num-

bers by rationals, underlying which one has a theorem of Liouville:

Theorem 1.1 (Liouville, 1844). If α is a given algebraic number of degree

n ≥ 2, then there exists an effectively computable constant c(α) such that, for

Mathematics Subject Classification: 11D41, 11D61.
Key words and phrases: Thue equations, diophantine equations.

The research was supported in part by NSERC (M. A. B.), by the TÁMOP 4.2.1./B-
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every x
y ∈ Q with y > 0, we have

∣∣∣∣α− x

y

∣∣∣∣ >
c(α)

yn
.

For applications to Diophantine equations, it is of utmost importance to

reduce the exponent n here, i.e. to deduce like inequalities with some exponent

λ < n. In full generality, the first such result was due to Thue [38] who proved

the following theorem.

Theorem 1.2 (Thue, 1909). If α is an algebraic number of degree n ≥ 3,

then, given ε > 0, there exists an effectively computable constant c(α, ε) such

that for all integers x and y > 0 we have

∣∣∣∣α− x

y

∣∣∣∣ >
c(α, ε)

y
n
2 +1+ε

.

From this result, Thue deduced that if F (x, y) ∈ Z[x, y] is an irreducible bi-

nary form of degree n ≥ 3, andm is a fixed nonzero integer then the corresponding

Thue equation

F (x, y) = m (1.1)

has at most finitely many solutions in integers x and y. This result is, howe-

ver, ineffective in the sense that it does not provide any way to actually compute

c(α, ε), and hence cannot be applied to determine the solutions of the correspond-

ing equations.

Whilst there is now a well-developed literature on effective solution of Thue

equations, based upon a variety of techniques (including, for instance, lower bo-

unds for linear forms in logarithms of algebraic numbers; see e.g. [4]), in the

paper at hand, we will concentrate on bounding the number of solutions to such

equations, rather than their heights. In this regard, it is known that the number

of solutions to equation (1.1) in integers is bounded above in terms of only the

degree of F and the number of distinct prime divisors of m (see e.g. Bombieri

and Schmidt [19]). We will restrict our attention to what is, in some sense,

the simplest possible case, that of binomial Thue equations and inequalities. For

these equations, the number of such solutions is bounded in terms of m alone

(see Mueller and Schmidt [33]). Despite the fact that the situation we will

consider is a very specialized one, we believe it is instructive to see what can be

said explicitly, as a test of the current state of refinement of computational and

analytic techniques. As a starting point, we note that, implicit in the techniques

of [10] and [16] is the following result.
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Theorem 1.3. Let c be a positive integer. Then there exists an effecti-

vely computable finite set Sc of triples of positive integers a, b and n with the

property that if a, b and n ≥ 3 are any positive integers for which the Diophantine

inequality

|axn − byn| ≤ c (1.2)

has more than a single solution in positive integers x and y, then (a, b, n) ∈ Sc.

The main result of [10] is that the set S1 is empty. In treating (1.2), we will

have occasion to consider the corresponding equation

|axn − byn| = c, (1.3)

where a, b and c are given positive integers, and x, y and n are unknown integers.

Siegel [37], refining earlier work of Thue, showed that if the coefficients a and b

are large enough compared to c and n, then (1.3) has at most one positive solution.

Later, Evertse [21] was able to substantially sharpen Siegel’s theorem (see our

Lemma 2.2). Both results depend on the so-called hypergeometric method. Rela-

ted work in this area, including applications and generalizations to cases where a

and b are taken to be S-units rather than fixed, may be found in, for example,

Mahler [30], [31], Baker [1], [2], [3], Chudnovsky [20] and many, many other

papers, including [5]. [6], [7], [8], [9], [10], [11], [14], [17], [18], [22], [23], [24], [25],

[26], [32] and [39].

The main result of the paper at hand is the following.

Theorem 1.4. With Sc defined as in the statement of Theorem 1.3, we

have S3 ⊆ S∗
3 ∪ T3, where

S∗
3 = {(1, 2, 3), (2, 1, 3), (1, 3, 3), (3, 1, 3), (2, 5, 3), (5, 2, 3)}

and

T3 = {(1, 3, n), (3, 1, n), (2, 5, n), (5, 2, n) with 37 ≤ n ≤ 347, n prime } .
For (a, b, n) ∈ S∗

3 , the solutions in positive integers to inequality (1.2) with c = 3

are, in each case, (x, y) = (1, 1), and also

(a, b, n) (1, 2, 3) (2, 1, 3) (1, 3, 3) (3, 1, 3) (2, 5, 3) (5, 2, 3)

(x, y) (5, 4) (4, 5) (3, 2) (2, 3) (19, 14) (14, 19)

In case n = 3, this theorem represents a slight sharpening of a classical

result of Ljunggren [29], who considered equation (1.3) with n = 3 and c ∈
{1, 3}. It is very likely that S3 = S∗

3 (which should be provable with a finite but

currently infeasible amount of computation). We can, in any case, certainly prove

a sharpened version of Theorem 1.4, with T3 replaced by a somewhat smaller set,

through more careful application of the hypergeometric method; in our opinion

the effort involved would somewhat exceed the payoff.
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2. Some lemmata

In this section, we collect a number of lemmata that we use in the proof

of Theorem 1.4. The first is a state-of-the-art lower bound for linear forms in

the logarithms of two algebraic numbers, due to Laurent (Theorem 2 of [28]).

For any algebraic number α of degree d over Q, we define as usual the absolute

logarithmic height of α by the formula

h(α) =
1

d

(
log |a0|+

d∑

i=1

logmax
(
1, |α(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the

α(i)s are the conjugates of α in the field of complex numbers.

Lemma 2.1. Let α1 and α2 be multiplicatively independent algebraic num-

bers, h, ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ, H =

h

λ
+

1

σ

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Consider the linear form Λ = b2 logα2 − b1 logα1, where b1 and b2 are positive

integers. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R]

and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
, (2.1)

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2), (2.2)

and

a1a2 ≥ λ2. (2.3)

Then

log |Λ| ≥ −C

(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′

(
h+

λ

σ

)2

a1a2

)
(2.4)

with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

(2.5)
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and

C ′ =

√
Cσωθ

λ3µ
. (2.6)

The next lemma is a result of Evertse (Theorem 2.1 of [21]) and, as ment-

ioned earlier, represents a refinement of prior work of Siegel on the hypergeometric

method.

Lemma 2.2. Suppose that a, b, c and n are positive integers with n ≥ 3.

Define

Tn = 3−
n−2
n n

∏

p|n
p

1
p−1 , µ3 = T

11/2
3 , µn = T

max
{

n+2
2(n−3)

, n
n−2

}
n if n ≥ 4,

and

α3 = 9, αn = max

{
3n− 2

2(n− 3)
,
2(n− 1)

n− 2

}
if n ≥ 4.

Then the inequality (1.2) has at most one solution in positive coprime integers x

and y satisfying

max {axn, byn} ≥ µnc
αn .

The final three lemmata we will use are results of the first author [8], [9],

[10] and [13]. To be precise, they are a combination of Theorem 5.2 of [10] with

Theorem 5.2 of [13], a special case of Theorem 1.1 of [8], and a special case of

Theorem 1.1 of [9], respectively. We will use them to treat inequality (1.2) for

“small” values of n.

Lemma 2.3. Suppose b > a are coprime positive integers and m =
[
n+1
3

]
.

Let n, c1(n) and d(n) be as given in the following table.

n c1(n) d(n) n c1(n) d(n) n c1(n) d(n)

17 8.93 13.06 59 39.18 48.34 103 79.16 60.85

19 9.40 15.46 61 39.96 55.93 107 83.55 50.84

23 13.03 17.66 67 44.76 43.56 109 84.18 58.97

29 17.39 29.95 71 48.36 54.80 113 89.22 77.93

31 17.92 30.55 73 52.83 48.11 127 100.47 72.61

37 21.2 − 79 58.27 54.65 131 105.34 71.51

41 25.83 36.08 83 62.70 49.64 137 111.44 79.94

43 26.62 33.95 89 67.56 60.29 139 112.15 77.27

47 30.46 40.16 97 73.71 62.14 149 122.53 85.82

53 34.78 35.37 101 78.29 50.36 151 123.41 89.04
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n c1(n) d(n) n c1(n) d(n) n c1(n) d(n)

157 129.07 81.61 223 195.74 112.93 277 254.62 119.17

163 134.80 93.64 227 201.15 116.91 281 260.46 116.79

167 139.95 82.87 229 202.11 100.61 283 261.67 118.21

173 146.07 87.71 233 207.50 102.49 293 274.23 129.73

179 151.40 83.92 239 213.74 105.66 307 289.00 124.89

181 152.20 91.69 241 214.95 95.14 311 294.70 130.14

191 163.78 84.40 251 226.83 115.64 313 296.38 130.18

193 164.81 91.51 257 233.75 113.23 317 302.73 134.63

197 170.17 104.53 263 240.15 119.49 331 317.41 147.69

199 170.80 110.41 269 246.54 124.75 337 324.63 139.95

211 183.12 124.02 271 247.72 134.21 347 338.02 133.98

If (
m
√
b− m

√
a
)m

ec1(n) < 1, (2.7)

then, for all x and y > 0 integers, we have

∣∣∣∣∣
(
b

a

)1/n

− x

y

∣∣∣∣∣ >
(
C2

(
m
√
b+ m

√
a )m

)−1
y−λ1 ,

where

C2 =




3.15 · 1024(m− 1)2nm−1ec1(n)+d(n) if n 6= 37

5 · 1075 if n = 37
,

and

λ1 = (m− 1)

{
1− log

((
m
√
b+ m

√
a
)m

ec1(n)+1/20
)

log
((

m
√
b− m

√
a
)m

ec1(n)
)

}
.

Lemma 2.4. Let c ∈ {1, 2, 3} and a be a positive integer which satisfies

8
(√

a+
√
a+ c

)2
> c4 · (κ(c))3, (2.8)

where

κ(c) =




3
√
3 for c = 1, 2

√
3 for c = 3.

Then, for all positive integers x and y,

∣∣∣∣ 3

√
1 +

c

a
− x

y

∣∣∣∣ > (4 · a · κ(c))−1
(
104y

)−λ3
, (2.9)
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where

λ3 = 1 +
log

(κ(c)
2 (

√
a+

√
a+ c )2

)

log
(

2
c2·κ(c) (

√
a+

√
a+ c )2

) .

Lemma 2.5. Let a be a positive integer, c ∈ {1, 2, 3} and n ∈ {4, 5, 7, 11, 13}.
If (√

a+
√
a+ c

)2(n−2)
> c2(n−1)

(
κ(c, n)

c2(n)

)n

, (2.10)

then for all positive integers x and y,∣∣∣∣ n

√
1 +

c

a
− x

y

∣∣∣∣ >
1

a
· (1010y)−λ4 , (2.11)

where

λ4 = 1 +
log

(κ(c,n)
c2(n)

(√
a+

√
a+ c

)2)

log
( c2(n)
c2κ(c,n)

(√
a+

√
a+ c

)2) , κ(c, n) =
∏

p|n
pmax{ordp(

n
c )+ 1

p−1 ,0},

c2(4) = 1.62, c2(5) = 1.84, c2(7) = 1.76, c2(11) = 1.67 and c2(13) = 1.65.

3. Proof of Theorem 1.4

We will consider the inequality

|axn − byn| ≤ 3 (3.1)

in integer unknowns x, y, a, b and n which satisfy, without loss of generality,

b > a ≥ 1, n ≥ 3, x ≥ 1, y ≥ 1. (3.2)

We may further assume, again without loss of generality, that in (3.1) the expo-

nent n is either 4 or an odd prime. By Lemma 2.2, it follows that if

xn ≥ µn · 3αn ,

then (3.1) has at most one solution in positive integers x and y. This implies that,

apart from when n ∈ {3, 4, 5}, inequality (3.1) has at most one positive solution

with x ≥ 2. We may thus distinguish two cases.

Case I : The inequality (3.1) has (x, y) = (1, 1) as a solution. We thus have

b = a+ c for c ∈ {1, 2, 3} and hence are led to consider the inequality

|axn − (a+ c)yn| ≤ 3, (3.3)

where c ∈ {1, 2, 3} and a, x, y and n are positive integers with n ≥ 3.

Case II : We have n ∈ {3, 4, 5}, b− a > 3 and inequality (3.1) has a solution

in positive integers x and y with x ≥ 2.

We first deal with Case I.
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3.1. Linear forms in two logarithms. The main purpose of this subsection

is to prove the following.

Theorem 3.1. If there is a solution to inequality (3.3) in positive integers

x and y with (x, y) 6= (1, 1), then n ≤ 347.

To prove this, we will have use of the following technical lemma.

Lemma 3.2. If inequality (3.3) has a solution in positive integers (x, y) 6=
(1, 1) then x > na

c .

Proof of Lemma 3.2. If x ≤ y and y > 1, then

|axn − (a+ c)yn| ≥ cyn > 3,

contradicting (3.3). We may thus suppose that x ≥ y + 1, which by (3.3) yields

axn − (a+ c)yn ≥ a(y + 1)n − (a+ c)yn.

By the binomial theorem, the right hand side of this is

nayn−1 + a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
− cyn.

Since

a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
> 3,

it follows from (3.3) that

nayn−1 − cyn < 0, (3.4)

which in turn implies that x > y > na
c . ¤

Proof of Theorem 3.1. Suppose that inequality (3.3) has a positive so-

lution (x, y) 6= (1, 1) with n > 347. By Lemma 3.2, it follows that x > na/c. We

consider the linear form

|Λ| =
∣∣∣∣log

(
1 +

c

a

)
− n log

(
x

y

)∣∣∣∣ . (3.5)

Since (3.3) is equivalent to the inequality

∣∣∣1−
(
1 +

c

a

)(y
x

)n∣∣∣ ≤ 3

axn
,
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and since, for every z ∈ C with |z − 1| < 0.795, we have | log(z)| < 2|z − 1|, it
follows that

|Λ| < 6

xn
. (3.6)

We write

α1 =
x

y
, α2 = 1 +

c

a
, b1 = n, b2 = 1, µ = 0.63, σ = 0.93155, D = 1,

ρ = 1 +
log(a+ c)

log
(
1 + c

a

) , and choose a1 = 2.003 log(x) and a2 = 3 log(a+ c).

Applying Lemma 2.1, one may readily check that (2.3) holds. We distinguish two

cases according to whether a ≥ 14 or a ≤ 13, respectively.

If a ≥ 14 then, by calculus, we find that there exist absolute constants c1, c2
such that

c1 σ log(a+ c) < λ < c2 σ log(a+ c) (3.7)

Here we may choose c2 = 1.3646 if c = 1, c2 = 1.1835 if c = 2 and c2 = 1.1226

if c = 3. The corresponding values of c1 are c1 = 1 if c ∈ {1, 2}, (c1, a) =

(0.96, 14), (0.98, 16), or (0.99, 17), if c = 3 and 14 ≤ a ≤ 17, and c1 = 1 if c = 3

and a ≥ 18. Since n > 347 and x > na
c , it follows that log(a+c)

log(x) < 1 and, via (3.7),

log

(
n

3 log(a+ c)
+

1

2.003 log(x)

)
+ log(λ) + 1.81 < log

(c2σn
3

+
c2σ

2.003

)
+ 1.81.

Hence, for a ≥ 14, we may take

h = max
{
log

(c2σn
3

+
c2σ

2.003

)
+ 1.81, λ

}
.

Suppose first that h = log
(
c2σn
3 + c2σ

2.003

)
+1.81. Then, by (3.7) and the assumption

that a ≥ 14,
h

λ
+

1

σ
≤ A :=

log
(
c2σn
3 + c2σ

2.003

)
+ 1.81

σc1 log(a+ c)
+

1

σ
. (3.8)

Lemma 2.1 and (3.8) together imply that

log |Λ| > −Cλ2a1a2A
2 −

√
ωθλA− log(C ′a1a2λ2A2) (3.9)

and hence, comparing (3.6) and (3.9), we have

n < Cλ2A2 a1a2
log(x)

+
√
ωθ

λ

log(x)
A+

log(2cC ′a1a2λ2A2)

log(x)
. (3.10)
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Write C = µ
λ3σ C̃. Then, from the definitions of a1 and a2, and from (3.7),

necessarily

Cλ2 a1a2
log(x)

<
C̃ 6.009µ

c1σ2
.

Since x > na/c and n > 347, we have log(a+c)
log(x) < 1. Combining this with (3.7) we

obtain that λ
log(x) < c2σ and, further,

log(2cC ′a1a2λ2A2)

log(x)
< 0.421 log(A) + 1.858.

Inequality (3.10) thus implies

n <

(
µ

σ2c1
C̃ · 6.009

)
A2 + c2σ

√
ωθA+ 0.421 log(A) + 1.858. (3.11)

Since in Lemma 2.1 we haveH ≥ 1+ 1
σ , necessarilyH > 2.0734, whence ω < 4.058

and θ < 1.27. Further, since λ√
a1a2

< c2σ√
6.009

and λ
(

1
a1

+ 1
a2

)
< c2σ

(
1

2.003 +
1
3

)
, we

have C̃ < 5.262 if c = 1, C̃ < 4.853 if c = 2 and C̃ < 4.735 if c = 3. By combining

these estimates with (3.11), we obtain, for a ≥ 14, that

n <

(
6.009C̃ · µ

σ2

1

c1

)
A2 + 2.271c2σA+ 0.421 log(A) + 1.858. (3.12)

To remove the dependence on a in this bound, we appeal to the inequalities

log(a+c) ≥ log(15) for c = 1, log(a+c) ≥ log(16) and a ≥ 14, log(a+c) ≥ log(21)

for a ≥ 18 and c = 3 and log(a + c) = log(a + 3) for c = 3 and a ∈ {14, 16, 17}.
Hence we obtain n ≤ 347 for c ∈ {1, 2, 3} and a ≥ 14, provided h = log

(
c2nσ
3 +

c2σ
2.003

)
+1.81. If h = λ, inequality (3.12) actually implies a stronger bound upon n.

For a ≤ 13 and c ∈ {1, 2, 3}, we omit the general estimates and use exact

values for a. We will provide details in case a = 3 and c = 2; the other cases

proceed in a similar fashion. We first note that direct calculation of the bounds

in Lemma 2.1 with the same parameters as previously, and with a = 3, c = 2,

x > 347a/c, yields an initial upper bound for n of the shape n < 446. For each

prime n between 347 and 446 we apply an algorithm of Pethő [35] (essentially

nothing more than an analysis of convergents in the infinite simple continued

fraction expansions to n
√
b/a ) to search for solutions to our Thue inequality with

x ≤ 10500. After a short computation, we find that the only such solution is

(x, y) = (1, 1). We may thus assume that x > 10500. Using this, (3.10) now yields

n ≤ 326, as desired. ¤
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3.2. The hypergeometric method. Theorem 3.1 leaves us with only finitely

many fixed exponents to treat in (3.3). In this subsection, we will assume that

n is either 4 or an odd prime between 3 and 347. We first apply Lemma 2.2 to

(3.3). Observe, that

max {axn, (a+ c)yn} ≥ a,

so if

a ≥ µnc
αn ,

then (3.3) has at most one solution. Put a0(n) = µn3
αn . We remark here, that

a0(3) = 22678753, a0(4) = 23943 and a0(n) ≤ 1103 for all other values of n.

We thus need consider (3.3) only with a ≤ a0(n). Note that (3.3) implies the

inequality ∣∣∣∣ n

√
1 +

c

a
− x

y

∣∣∣∣ ≤
3

anyn
. (3.13)

To deduce an upper bound for y in (3.3) we combine (3.13) with Lemmata 2.3, 2.4

and 2.5. We thus have

• for n = 3:

y <

(
12 · κ(c) · 104λ3

n

) 1
n−λ3

,

• for n ∈ {4, 5, 7, 11, 13}:

y <

(
3 · 1010λ4

n

) 1
n−λ4

,

• for 17 ≤ n ≤ 347:

y <

(
3C2

(
m
√
a+ c+ m

√
a
)m

an

) 1
n−λ1

.

If we assume that

(a, c) 6∈ {(1, 1), (1, 2), (1, 3), (2, 3)},
routine computations in MAPLE show that these bounds are less then 101000,

except for some “small” values of a and n, where we can appeal to PARI/GP

to solve the corresponding Thue equations directly. By a well known theorem of

Legendre, we have that in (3.3) the ratio x/y is a convergent in the continued

fraction expansion of n
√
1 + c

a . We can thus apply the aforementioned algorithm of

Pethő [35] to compute all solutions of the occurring inequalities. The exceptional

cases here which do not satisfy the requirements of Lemmata 2.3, 2.4 and 2.5
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(again, all with “small” values of a and n) may also be treated via PARI/GP. It

remains to deal with the pairs

(a, c) ∈ {(1, 1), (1, 2), (1, 3), (2, 3)},

for n = 4 or prime n, 3 ≤ n ≤ 347. In case (a, c) = (1, 1), the desired result is an

immediate consequence of Proposition 5.1 of [13]; we find an additional solution

with n = 3 and (x, y) = (5, 4). Suppose next that (a, c) = (1, 3). The Diophantine

equations

xn − 4yn = ±1,±2

can be shown to have no solutions in positive integers for n ≥ 3 by combining

work of Ribet [36] with elementary arguments, while

xn − 4yn = ±3

has no solutions in integers x and y with |xy| > 1, provided n has a prime divisor

p ≥ 7 (see Theorem 1.2 of [15]). It remains, therefore, to treat inequality (3.3)

with (a, c) = (1, 2) or (2, 3) and n ∈ {3, 4, 5, 7, 11, 13, 17}, and (a, c) = (1, 3), n ∈
{3, 4, 5}. We appeal to PARI/GP and find no further nontrivial solutions to (3.3),

unless (a, c, n) = (1, 2, 3) (where there is the additional solution (x, y) = (3, 2))

or (a, c, n) = (2, 3, 3) (where we have (x, y) = (19, 14)). This completes the proof

of Case I.

Case II can be handled similarly. We can assume, for the remainder of the

proof, that for any positive solution (x, y) of (3.1), we have x ≥ 2. Denote

by (x0, y0) a known solution of (3.1). As previously, we may conclude from

Lemma 2.2 that if max(x0, y0) is larger than a computable constant Xn, then

the only positive solution of (3.1) is (x0, y0). Hence, we have only to consider

(3.1) with n ∈ {3, 4, 5} and with a given finite set X of the pairs (x0, y0). By way

of example, if a = 1 and n = 3, we have 2 ≤ x0 ≤ 283, and determine by30 by

factoring ax3
0 + t for t ∈ {±1,±2,±3}. In general, applying Lemma 2.2 to our

set of pairs X , we arrive at a finite set of possible pairs (a, b), with corresponding

finite set of Thue inequalities (really, in this case, equations) to solve. In most

cases, we can carry this out easily via the hypergeometric method. Assume that

(x0, y0) is given and that axn
0 − byn0 = −t, with t ∈ {±1,±2,±3}. Then b can be

written as
axn

0+t
yn
0

and, after substituting this into (3.1), we find that

∣∣∣∣axn − axn
0 + t

yn0
yn

∣∣∣∣ ≤ 3.
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Applying Lemmata 2.4 and 2.5, we are led to inequalities of the shape

c1
(x0y)λ

<

∣∣∣∣∣
xy0
x0y

− n

√
1 +

t

axn
0

∣∣∣∣∣ ≤
3 · yn0

a(x0y)n
,

where the constant c1 can be deduced from the statements of Lemmata 2.4 or 2.5.

This yields, in a similar fashion to Case I, that y is bounded by some absolute

constant (usually around 10500). From (3.1),

∣∣∣∣∣
x

y
− n

√
b

a

∣∣∣∣∣ <
3

anyn

and hence, via Legendre’s theorem, we have that x/y is a convergent in the simple

continued fraction expansion of n
√
b/a. Thus, we may again apply Pethő’s algo-

rithm [35] to compute all solutions of the corresponding inequalities. Repeating

this procedure for all (x0, y0) ∈ X , and using PARI/GP for some exceptional

equations with small coefficients which we are unable to handle via the hypergeo-

metric method, we conclude that (3.1) has at most one solution for each triple

(a, b, n) in Case II. This completes the proof of Theorem 1.4. Full details of these

computations are available from the authors upon request.

4. Concluding remarks

Due to the limitations of the hypergeometric method and lower bounds for

linear forms in logarithms, it was necessary for us to solve a number of Thue

equations of relatively high degree (up to 31). We would like to express our

thanks to Guillaume Hanrot who wrote an extension of PARI which contains

a new treatment of Thue equations based on his paper [27]. In this paper, he

showed that the knowledge of a subgroup of finite index in the unit group is

actually sufficient to solve Thue equations. With this software we were able to

solve Thue equations of quite high degree in a reasonable amount of time and

obtain a result independent of the Generalized Riemann Hypothesis.

It is worth noting that extremely careful application of the techniques of [10]

would enable one to replace the upper bound of n ≤ 347 in the definition of the

exceptional set T by n ≤ 53. To carry this out would be of practical interest only

in the event that the remaining lower degree Thue equations could be explicitly

solved without dependence upon the GRH to certify the putative fundamental

units in the number fields encountered.
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As a final note, the first author would like to acknowledge that Theorem 2.1

of [12], which claims that (in the notation of the current paper) S2 is empty,

overlooks the family of equations of the shape xn − 3yn = 2 which contribute

to our set T3. This mistake was due to an incorrect conductor calculation of a

corresponding Frey curve. The first author regrets any confusion caused by this.
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