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Linear and sublinear operators on generalized Morrey spaces
with non-doubling measures

By VAGIF GULIYEV (Baku) and YOSHIHIRO SAWANO (Hachioji)

Abstract. By using a geometric structure of the Euclidean space, the theory of

generalized Morrey spaces is shown to be available in the non-doubling setting. Some

classical operators are established to be bounded in the generalized spaces defined in

the present paper.

1. Introduction

Morrey spaces are function spaces that appear not only in harmonic analysis

but also in partial differential equations. In this paper, we can and do modify,

generalize and extend the definition so that the definition fits the setting of non-

doubling measures. As examples in the present paper below, our framework covers

many existing function spaces related to Morrey spaces. The aim of the present

paper is to define generalized Morrey spaces associated to Radon measures in

general. Actually, we present the following definition.

Definition 1.1. Let k ≥ 1 and let µ be a Radon measure on Rd.
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(1) Let x ∈ Rd and r > 0. Then define

Q(x, r) := {y ∈ Rd : max(|x1 − y1|, |x2 − y2|, . . . , |xd − yd|) ≤ r},
where one wrote x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd).

(2) The set Q(µ) denotes the totality of the cubes Q(x, r) with positive µ-

measure. Given Q ∈ Q(µ), denote by kQ the k-times expansion of Q.

(3) Let 1 ≤ p < ∞ and ϕ : Rd × (0,∞) → (0,∞] be a function. One defines

the generalized Morrey space Mp,ϕ(k, µ) for µ by the norm; for f ∈ Lp
loc(µ),

define

‖f‖Mp,ϕ(k,µ) := sup
Q(x,r)∈Q(µ)

1

ϕ(x, kr)µ(Q(x, kr))1/p
‖f‖Lp(Q(x,r)).

Here and below, it is understood that a
∞ = 0 for all a ∈ R. The Morrey

space Mp,ϕ(k, µ) denotes the set of all f ∈ Lp
loc(Rd) for which the norm

‖f‖Mp,ϕ(k,µ) is finite.

Note that its origin is, of course, the classical generalized Morrey norm

‖f‖Mp,ϕ given by ‖f‖Mp,ϕ := supx∈Rd, r>0
1

ϕ(x,r)|Q(x,r)|1/p ‖f‖Lp(Q(x,r)) defined by

Nakai [28], where |Q(x, r)| is the Lebesgue measure of Q(x, r). See [30], [31]

for further details. Here and below, for a measurable subset E, we write |E| for
the volume of E. Based upon this definition, we are going to prove the following

theorem, which is again fundamental in the non-doubling setting.

Theorem 1.2. Let 1 ≤ p < ∞.

(1) There exists a function ϕ† : Rd × (0,∞) → (0,∞] such that Mp,ϕ(k, µ) and

Mp,ϕ†(k, µ) coincide as a set, that ϕ† is independent of k > 1, and that

ϕ†(x, r)µ(Q(x, r))1/p & ϕ†(y, s)µ(Q(y, s))1/p (1.1)

for all x, y ∈ Rd and r, s > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ).

(2) The function space Mp,ϕ(k, µ) does not depend upon the parameter k > 1.

Therefore, in view of this theorem, we can say that the theory of generalized

Morrey spaces is extended to a large extent. An example in [37] shows that

Mp
q (1, µ) and Mp

q (2, µ) are not always isomorphic. This result combines [29,

p. 445], [39] and [40, Proposition 1.1]. Observe also that this extends the following

Morrey norm ‖f‖Mp
q

for non-doubling measures. In [40], for k > 1 and f ∈
Lq
loc(µ), the second author and Tanaka defined

‖f‖Mp
q (k,µ) := sup

Q∈Q(µ)

µ(k Q)
1
p− 1

q

(∫

Q

|f(y)|q dµ(y)
) 1

q

, (1.2)
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whose origin is the classical Morrey norm ‖f‖Mp
q
given by

‖f‖Mp
q
:= sup

x∈Rd, l>0

|B(x, l)| 1p− 1
q

(∫

B(x,l)

|f(y)|q dy
) 1

q

.

Note that (1.2) is a special case ofMq,ϕ(k, µ) which is obtained by letting ϕ(x, t) ≡
t−1/p. Recently, there are many results on generalized Morrey spaces [8], [9], [10],

[11], [28], [36], [39], [43]. We aim here to arrange and strengthen some of them

to the non-doubling setting. Recently, generalized Morrey spaces, initiated by

E. Nakai [28], have a significant meaning in harmonic analysis. Especially, it

turned out that this is useful when we want to describe the endpoint case of

the boundedness of operators. For example, we have the following embedding

result, which also describes the boundedness of (1−∆)−n/(2p) from Mp
q (Rd) to a

generalized Morrey space.

Proposition 1.3 ([43, Theorem 5.1]). Let 1 < q < p < ∞. Then there

exists a positive constant Cp,q such that

∫

Q

|f(x)|dx ≤ Cp,q|Q|(1 + |Q|)− 1
p log

(
e+

1

|Q|
)
‖(1−∆)n/(2p)f‖Mp

q

holds for all f ∈ Mp
q (Rn) with (1−∆)n/(2p)f ∈ Mp

q (Rn) and for all cubes Q.

In view of the integral kernel of (1−∆)−α/2 (see [42]) and the Adams theorem,

we have

(1−∆)−α/2 : Mp
q (Rd) → Ms

t (Rd) (1.3)

is bounded as long as

1 < q ≤ p < ∞, 1 < t ≤ s < ∞,
1

s
=

1

p
− α

d
,

t

s
=

q

p
.

The operator norm of (1 − ∆)α/2 : Mp
q (Rd) → Ms

t (Rd) is shown to blow up as

p ↑ d
α . Hence Proposition 1.3 can be considered as a substitute of (1.3). We refer

to [43] for a counterexample showing that (1.3) is no longer true for α = d
p .

Generalized Morrey spaces are now studied by many researchers and nowa-

days they are recognized as a suitable tool to grasp the property of fractional

integral operators [13], [16], [17], [44]. The definition given above in the present

paper covers the one in [36].

One of the advantages of allowing ϕ to take the value ∞ is that the following

examples fall under the scope of our new framework.
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Example 1.4. (1) Let µ(x) = e−π|x|2 dx be the Gaussian measure. Let us

set

Ba = {B(x, r) > r ≤ amin(1, |x|−1)}
be the set of locally doubling balls. Let 1 ≤ q ≤ p < ∞. Recently, in [23] the

second author, Liguang Liu and Dachun Yang considered Morrey spaces

given by

‖f‖Mp,q
Ba

(µ) := sup
B∈Ba

1

[µ(B)]1/q−1/p

{∫

B

|f(y)|q dµ(y)
}1/q

< ∞.

In [23, Proposition 2.6], the space Mp,q
Ba

(µ) is shown to be independent of

the parameter a > 0. Note that there exists a constant Ca > 0 such that

µ(B(x, 2r)) ≤ Caµ(B(x, r)) for all B(x, r) ∈ Ba. This is a concrete example

of our new framework, where

ϕ(x, r) :=

{
µ(B(x, r))−1/p B(x, r) ∈ Ba,

∞ otherwise.

(2) Let G ⊂ Rd be an open set and (p, ν) ∈ [1,∞) × (0,∞). In [27] Mizuta,

Shimomura and Sobukawa considered the Morrey norm ‖f‖Lp,k,ν(µ) given

by

‖f‖Lp,k,ν(µ) := sup

(
rν

µ(B(x, kr))

∫

B(x,r)

|f(y)|p dµ(y)
)1/p

for µ-measurable functions f , where sup is over x ∈ G, r ∈ (0, diam(G))

and µ(B(x, r)) > 0. This is again a concrete example of our new framework,

where

ϕ(x, r) := rν/p +∞χ[diam(G),∞)(r).

In the present paper we also consider the weak-type function spaces. Let

k ≥ 1 and 1 ≤ p < ∞. For a function ϕ : Rd × (0,∞) → (0,∞], we also define

‖f‖WMp,ϕ(k,µ) := sup
Q(x,r)∈Q(µ), λ>0

λ(µ{y ∈ Q(x, r) > |f(y)| > λ})1/p
ϕ(x, kr)µ(Q(x, kr))1/p

and WMp,ϕ(k, µ) denotes the set of all f ∈ Lp
loc(k, µ) for which the quasi-norm

‖f‖WMp,ϕ(k,µ) is finite. When ϕ(x, t) ≡ t−1/u, then this definition coincides with

the one appearing in [34]. Indeed, in this case, WMp,ϕ(k, µ) = WMp,u(k, µ) with

norm coincidence.

An idea similar to Theorem 1.2 yields the following: The proof being close

to that in Theorem 1.2, we omit the proof.
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Theorem 1.5. Let 1 ≤ p < ∞ and ϕ : Rd × (0,∞) → (0,∞] be a function.

Then the space WMp,ϕ(k, µ) does not depend upon the parameter k > 1 as a set.

The remaining part of this paper is structured as follows: In Section 2 we

study the fundamental strucuture of our Morrey spaces. The result will amount

to the combination of [29, p. 445] and [40, Proposition 1.1]. Section 3 is devoted

to investigating the boundedness of the operators. We take up maximal opera-

tors, singular integral operators fractional integral operators and commutators in

Section 4–Section 6, where we formulated the main results for these operators in

the beginning of each section.

2. Fundamental structure of the function space Mp,ϕ(k, µ)

Now we prove Theorems 1.2 and 1.5. The following is the first step for this

purpose.

Proposition 2.1. Let 1 ≤ p < ∞, k > 1 and ϕ : Rd+1
+ = Rd × (0,∞) →

(0,∞] be a function. Then define a function ϕ† : Rd+1
+ → (0,∞] by

ϕ†(x, t) :=




µ(Q(x, t))−1/p inf

Q(y,s)⊃Q(x,t)
ϕ(y, s)µ(Q(y, s))1/p (Q(x, t) ∈ Q(µ)),

∞ (otherwise)

for (x, t) ∈ Rd+1
+ . Then

‖f‖M
p,ϕ† (k,µ) = ‖f‖Mp,ϕ(k,µ)

for all f ∈ Lp
loc(µ).

Proof. Since ϕ†(x, t) ≤ ϕ(x, t), it is easy from Definition 1.1 to see that

‖f‖Mp,ϕ(k,µ) ≤ ‖f‖M
p,ϕ† (k,µ). (2.1)

Let us prove the reverse inequality of (2.1). To this end we take Q = Q(x, r) ∈
Q(µ) and consider

I(x, r) =
1

ϕ†(x, kr)µ(Q(x, kr))1/p
‖f‖Lp(Q(x,r)).

It follows from the definition of ϕ† that we have

I(x, r) = sup

{
1

ϕ(y, ks)µ(Q(y, ks))1/p
‖f‖Lp(Q(x,r)) > Q(y, s) ⊃ Q(x, r)

}
.
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Observe that

1

ϕ(y, ks)µ(Q(y, ks))1/p
‖f‖Lp(Q(x,r)) ≤

1

ϕ(y, ks)µ(Q(y, ks))1/p
‖f‖Lp(Q(y,s))

when Q(y, s) ⊃ Q(x, r). Consequently, it follows that

I(x, r) ≤ ‖f‖Mp,ϕ(k,µ).

Since Q = Q(x, r) being arbitrary, we obtain the reverse inequality of (2.1). ¤

Here and below A . B means that A ≤ CB for some constant C > 0

depending only on parameters. We also write A ∼ B to indicate A . B . A.

In view of Proposition 2.1 we obtain (1) of Theorem 1.2. Let us now assume

ϕ = ϕ† to satisfy (1.1). Once we make this change, a similar argument in [40,

Proposition 1.1] works to prove Theorem 1.2. For the sake of convenience, we pro-

vide the detail. Let 1 < k1 ≤ k2. Then the inclusion Mp,ϕ(k1, µ) ↪→ Mp,ϕ(k2, µ)

is obvious by that fact that ϕ satisfies (1.1). Let us show the reverse inclusion.

Let f ∈ Mp,ϕ(k2, µ) and Q = Q(x, r) ∈ Q(µ) be fixed. Then we have to estimate

I :=
1

ϕ(x, k1r)

(
1

µ(Q(x, k1r))

∫

Q

|f(y)|p dµ(y)
) 1

p

.

A simple geometric observation shows that there exists a collection of N cubes

Q1 = Q(x1, s), Q2 = Q(x2, s), . . . , QN = Q(xN , s) with the same sidelength such

that

Q(x, r) ⊂
N⋃

i=1

Q(xi, s), Q(xi, k2s) ⊂ Q(x, k1r) (i = 1, 2, . . . , N)

and that the number N of cubes has a bound

N .
(
k2 − 1

k1 − 1

)d

.

Using this covering and the fact that ϕ = ϕ†, we easily obtain

Ip ≤
N∑

i=1

1

ϕ(x, k1r)pµ(Q(x, k1r))

∫

Q(xi,s)

|f(y)|p dµ(y)

≤
∑

i:Q(xi,s)∈Q(µ)

1

ϕ(x, k2r)pµ(Q(x, k2r))

∫

Q(xi,s)

|f(y)|p dµ(y)
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≤
∑

i:Q(xi,s)∈Q(µ)

1

ϕ(xi, k2s)pµ(Q(xi, k2s))

∫

Q(xi,s)

|f(y)|p dµ(y)

≤ N(‖f‖Mp,ϕ(k2,µ))
p.

Thus, Theorem 1.2 is proved.

Remark that the proof of Theorem 1.5 is identical to that of Theorem 1.2.

So we omit the proof.

In view of the proof of Theorem 1.2 we see that the definition of Morrey

spaces can be made with cubes replaced by balls and that the Morrey norms are

equivalent. Denote by B(µ) the set of all open balls with positive µ-measure and

for B = B(x, r) ∈ B(µ) and k > 0, where B(x, r) denotes the open ball centered

at x and of radius r > 0, define kB := B(x, kr). We repeat Theorem 1.2 in

terms of the definition by open balls. The next observation is sometimes helpful

in Section 3.

Theorem 2.2. Let k > 1, 1 ≤ p < ∞ and ϕ : Rd × (0,∞) → (0,∞] be a

function. Define

‖f‖Mp,ϕ(k,µ)cube
:= sup

Q(x,r)∈Q(µ)

1

ϕ(x, kr)µ(Q(x, kr))1/p
‖f‖Lp(Q(x,r))

‖f‖Mp,ϕ(k,µ)ball
:= sup

B(x,r)∈B(µ)

1

ϕ(x, kr)µ(B(x, kr))1/p
‖f‖Lp(B(x,r)).

(1) There exists a function ϕ† : Rd+1
+ → (0,∞] such that

ϕ†(x, r)µ(B(x, r))1/p ≥ ϕ†(y, s)µ(B(y, s))1/p (2.2)

for all (x, r), (y, s) ∈ Rd+1
+ with B(x, r) ∈ B(µ) and B(x, r) ⊃ B(y, s) and

that the norms ‖f‖Mp,ϕ† (k,µ)ball
and ‖f‖Mp,ϕ(k,µ)ball are equivalent.

(2) Let ϕ : Rd × (0,∞) → (0,∞] be a function satisfying (1.1). Assume also

that, for every 1 < k < ∞, there exist κ ∈ (1/k,∞) and C > 0 such that

ϕ(x, r)µ(B(x, r))1/p ≤ Cϕ(x, κr)µ(Q(x, κr))1/p. (2.3)

Then the norms ‖f‖Mp,ϕ(k,µ)cube
and ‖f‖Mp,ϕ(k,µ)ball are equivalent.

For example, if ϕ(x, t) ≡ t−1/u with some u ∈ (p,∞), then the assumption

is satisfied. Hence, if (2.3) holds, then in (1.2) one may replace cubes with balls

to obtain equivalent norms.
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Proof. The proof of (1) is analogous to that of Theorem 1.2, since we can

arrange that B(x, r) ∈ B(µ) and B(x, r) ⊂ B(y, s) imply

µ(B(x, r))1/pϕ(x, r) ≤ µ(B(y, s))1/pϕ(y, s)

whenever (x, r) and (y, s) ∈ Rd+1
+ satisfy B(x, r) ∈ B(µ) and B(x, r) ⊂ B(y, s).

A geometric observation shows

‖f‖Mp,ϕ(
√
dk,µ)cube

= sup
Q(x,r)∈Q(µ)

1

ϕ(x,
√
dkr)µ(Q(x,

√
dkr))1/p

‖f‖Lp(Q(x,r))

≤ sup
B(x,r)∈B(µ)

1

ϕ(x,
√
dkr)µ(B(x,

√
dkr))1/p

‖f‖Lp(B(x,
√
dr))

= ‖f‖Mp,ϕ(k,µ)ball
.

Meanwhile, by (2.3),

‖f‖Mp,ϕ(k,µ)ball
:= sup

B(x,r)∈B(µ)

1

ϕ(x, kr)µ(B(x, kr))1/p
‖f‖Lp(B(x,r))

. sup
Q(x,r)∈Q(µ)

1

ϕ(x, kκr)µ(Q(x, kκr))1/p
‖f‖Lp(Q(x,r)) = ‖f‖Mp,ϕ(kκ,µ)cube

.

Since ϕ satisfies (1.1), we obtain

‖f‖Mp,ϕ(k,µ)ball
. ‖f‖Mp,ϕ(kκ,µ)cube

∼ ‖f‖Mp,ϕ(
√
dk,µ)cube

≤ ‖f‖Mp,ϕ(k,µ)cube
.

This is the desired result. ¤

3. Boundedness of the modified maximal operators

Until the end of this paper, we consider a class Φ: Denote by Φ the set of

all functions ϕ : Rd × (0,∞) → (0,∞] satisfying (2.2) and (2.3) with ϕ† replaced

by ϕ as well as

ϕ(y, s) & ϕ(x, r)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). Note

that t−1/v ∈ Φ for v > p ≥ 1. Here and below we do not distinguish the norms

‖ · ‖Mp,ϕ(2κ−1,µ)cube
and ‖ · ‖Mp,ϕ(2κ−1,µ)ball

and we denote them simply by

‖ · ‖Mp,ϕ(µ). Also, we abuse a notation: ϕ(Q) = ϕ(Q(x, r)) := ϕ(x, r), where

Q = Q(x, r) ∈ Q(µ).
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Based now upon Theorems 1.2 and 1.5, we denote Mp,ϕ(µ) := Mp,ϕ(2, µ)

and WMp,ϕ(µ) := WMp,ϕ(2, µ), where the norms are both based on cubes.

For the sake of convenience, we assume (2.3) in the remaining part of the

present paper.

For κ > 1 we define the modified maximal operator Mκ by

Mκf(x) := sup
Q∈Q(µ;{x})

1

µ(κQ)

∫

Q

|f(y)| dµ(y),

where we definedQ(µ;E) as the set of all cubes inQ(µ) that contain a set E ⊂ Rd.

Proposition 3.1 ([33], [45]). If κ > 1 and 1 < p ≤ ∞, then

‖Mκf‖Lp(µ) . ‖f‖Lp(µ),

where the implicit constant depend on d, p and κ.

Remark 3.2. Remark that, according to [33], the “so called” growth condition

µ(B(x, r)) ≤ crn, (x ∈ supp(µ), r > 0)

is not necessary.

The following boundedness of Mκ will be used in the proof of the main

theorem of this section.

Theorem 3.3. Let 1 < p, κ < ∞ and ϕ1, ϕ2 ∈ Φ. Assume in particular that

ϕ1(y, s) & ϕ1(x, r) (3.1)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). If

ϕ1(Q) . ϕ2(Q) (3.2)

for all Q ∈ Q(µ), then Mκ is bounded from Mp,ϕ1(µ) to Mp,ϕ2(µ) and from

M1,ϕ1(µ) to WM1,ϕ2(µ).

Here and below we denote by χE the indicator function of a set E.

Proof. We can assume that ϕ1=ϕ2 because we have embedding Mp,ϕ1(µ)⊂
Mp,ϕ2(µ) by (3.2). For simplicity, we let κ = 3. We omit the proof of the weak

boundedness, that is, the fact that M3 is bounded from M1,ϕ1(µ) to WM1,ϕ1(µ):

The proof is similar to the boundedness of M3 from Mp,ϕ1(µ) to Mp,ϕ1(µ).
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Let us now prove that M3 is actually bounded on Mp,ϕ1
(µ) = Mp,ϕ1

(10/9, µ)

to Mp,ϕ1(µ) = Mp,ϕ1(10, µ), which is sufficient by virtue of Theorem 1.2. Let Q

be a fixed cube. Then, since f = χ3Qf + χRd\3Qf , we have

‖M3f‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p
≤ ‖M3(χ9Qf)‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p
+

‖M3(χRd\9Qf)‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p

by the triangle inequality. As for the first term we use Proposition 3.1 and (3.2)

to obtain

‖M3(χ9Qf)‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p
.

‖f‖Lp(9Q)

ϕ1(10Q)µ(10Q)1/p
. ‖f‖Mp,ϕ1 (10/9,µ)

(3.3)

A geometric observation shows that

M3(χRd\9Qf)(x) ≤ sup
Q′∈Q(µ;2Q)

1

µ(2Q′)

∫

Q′
|f(y)| dµ(y) (3.4)

on Q. Hence we have

‖M3(χRd\9Qf)‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p
≤ µ(Q)1/p

ϕ1(10Q)µ(10Q)1/p
sup

Q′∈Q(µ;2Q)

1

µ(2Q′)

∫

Q′
|f(y)| dµ(y).

Now let Q′ ∈ Q(µ; 2Q) and we distinguish two cases.

Case 1. 10
9 Q′ ⊂ 10Q.

Case 2. 2Q′ engulfs 10Q.

Note that at least one of (Case 1) and (Case 2) holds.

Let us consider Case 1. We recall that

ϕ1(10Q)µ(10Q)1/p . ϕ1

(
10

9
Q′

)
µ

(
10

9
Q′

)1/p

.

Thus, we have

µ(Q)1/p

ϕ1(10Q)µ(10Q)1/p
× 1

µ(2Q′)

∫

Q′
|f(y)| dµ(y)

. µ(Q)1/p

ϕ1(
10
9 Q′)µ( 109 Q′)1/p

× 1

µ(2Q′)

∫

Q′
|f(y)| dµ(y)

≤ 1

ϕ1(
10
9 Q′)

× 1

µ(2Q′)

∫

Q′
|f(y)| dµ(y) ≤ ‖f‖M1,ϕ1 (

10
9 ,µ) ≤ ‖f‖Mp,ϕ1 (

10
9 ,µ).
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When we deal with Case 2, we use ϕ1(10Q) ≥ ϕ1(2Q
′) (see (3.1)) to have

µ(Q)1/p

ϕ1(10Q)µ(10Q)1/p
× 1

µ(2Q′)

∫

Q′
|f(y)|dµ(y) . 1

ϕ1(2Q′)
× 1

µ(2Q′)

∫

Q′
|f(y)|dµ(y)

≤ ‖f‖M1,ϕ1 (2,µ)
≤ ‖f‖Mp,ϕ1 (2,µ)

.

Hence from Case 1 and Case 2, we obtain

‖M3(χRd\9Qf)‖Lp(Q)

ϕ1(10Q)µ(10Q)1/p
. ‖f‖Mp,ϕ1

(10/9,µ) (3.5)

Using (3.2) and (3.4), we can estimate the second term. Thus, in view of (3.3)

and (3.5) the proof is complete. ¤

Remark 3.4. If we reexamine the proof and we use Proposition 3.1, then we

see that Mκ with κ > 1 is bounded.

Here and below in the rest of the present paper, we let M = M3 for defini-

teness.

4. Singular integral operators

Here and below, we assume that µ is a (positive) Radon measure on Rd

satisfying the growth condition;

µ(B(x, `)) ≤ c0 `
n for all x ∈ supp(µ) and ` > 0, (4.1)

where c0 and n, 0 < n ≤ d, are some fixed numbers.

4.1. Main results. We employ the definition of singular integral operators due

to Nazarov, Treil and Volberg [32].

Definition 4.1. Let µ and n be as above. The singular integral operator S is a

bounded linear operator from L2(µ) to L2(µ) for which there exists a measurable

function K : Rd × Rd → C that satisfies three properties listed below.

(1) There exists C > 0 such that |K(x, y)| ≤ C
|x−y|n for all x 6= y.

(2) There exist ε > 0 and C > 0 such that

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ C
|x− z|ε

|x− y|n+ε
,

if |x− y| ≥ 2|x− z| with x 6= y.
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(3) If f ∈ L2(µ) is a bounded µ-measurable function with a compact support,

then we have

Sf(x) =

∫

Rd

K(x, y)f(y) dµ(y) for all x /∈ supp(f).

As for this singular integral operator S, the following result is due to Naza-

rov, Treil and Volberg.

Proposition 4.2 ([32]). In Definition 4.1, S extends to a bounded linear

operator on Lp(µ) for 1 < p < ∞ and S extends to a bounded linear operator

from L1(µ) to WL1(µ).

In this section we prove;

Theorem 4.3. Assume that a pair (ϕ1, ϕ2) ∈ Φ× Φ satisfies

∫ ∞

r

ϕ1(x, 2t)µ(B(x, 2t))1/p

tn/p
dt

t
≤ ϕ2(x, 2r)µ(B(x, 2r))1/p

rn/p
(4.2)

for all x ∈ Rd and r > 0. Assume in particular that

ϕ1(y, s) & ϕ1(x, r) (4.3)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). Assume

in addition that T is a sublinear operator satisfying

|Tf(x)| .
∫

Rd\B

|f(y)|
|x− y|n dµ(y) (µ− a.e.x ∈ B) (4.4)

for all balls B ∈ B(µ) and all functions f ∈ L∞(µ) with compact support in

Rd \B.

(1) Let 1 < p < ∞ and assume in addition that T is Lp(µ)-bounded. Then T

extends to a bounded sublinear operator from Mp,ϕ1(µ) to Mp,ϕ2(µ).

(2) Assume in addition that T is weak-L1(µ)-bounded. Then T extends to a

bounded sublinear operator from M1,ϕ1(µ) to WM1,ϕ2(µ).

Note that this condition is proposed in [25], [26].

Remark 4.4.

(1) In view of Proposition 4.2, singular integral operators defined in Definition

4.1 are examples of the operators of Theorem 4.3.

(2) The assumption (4.4) appears in [20], [21], [22]. In the case dµ(x) = dx,

Theorem 4.3 was proved in [10], [11].
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4.2. Proof of Theorem 4.3. To prove Theorem 4.3, we need the following

lemma.

Lemma 4.5. Let T be as above with p > 1. Then we have

‖Tf‖Lp(B) . r
n
p

∫ ∞

2r

t−
n
p ‖f‖Lp(B(x0,t))

dt

t

for all balls B = B(x0, r) ∈ B(µ).
Proof. Let B = B(x0, r) be a fixed ball. Then we have

‖Tf‖Lp(B) ≤ ‖T (χ2Bf)‖Lp(B) + ‖T (χRd\2Bf)‖Lp(B)

. ‖f‖Lp(2B) + µ(B)1/p
∫

Rd\2B

|f(y)|
|x0 − y|n dµ(y)

= ‖f‖Lp(2B) + µ(B)1/p
(∫ ∞

0

n

`n+1

∫

B(x0,`)

χRd\2B(y)|f(y)| dµ(y)
)
d`

. ‖f‖Lp(2B) + rn/p
(∫ ∞

2r

1

`n−n/p+1

(∫

B(x0,`)

|f(y)|p dµ(y)
)1/p)

d`.

Observe that

‖f‖Lp(2B) . rn/p
(∫ 3r

2r

1

`n−n/p+1

(∫

B(x0,`)

|f(y)|p dµ(y)
)1/p)

d`

and hence

‖Tf‖Lp(B) . rn/p
(∫ ∞

2r

1

`n−n/p+1

(∫

B(x0,`)

|f(y)|p dµ(y)
)1/p)

d`

for all B(x0, r). This is the desired result. ¤

Proof of Theorem 4.3. We freeze a ball B = B(x0, r) and we let p > 1.

Then we have

‖Tf‖Lp(B)

ϕ2(2B)µ(2B)1/p
. r

n
p

ϕ2(2B)µ(2B)1/p

∫ ∞

2r

t−
n
p ‖f‖Lp(B(x0,t))

dt

t

.
r

n
p ‖f‖Mp,ϕ1 (µ)

ϕ2(2B)µ(2B)1/p

∫ ∞

2r

ϕ1(B(x0, 2t))µ(B(x0, 2t))
1/p

tn/p
dt

t
. ‖f‖Mp,ϕ1 (µ)

.

The ball B being arbitrary, this is the desired result.
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The case when p = 1 can be proven similarly. Indeed, fixing λ > 0 arbitrarily,

we just use

λµ{y ∈ B : |Tf(y)| > λ}
ϕ2(2B)µ(2B)

≤
λµ{y ∈ B : |T (χ 3

2B
f)(y)| > λ/2}

ϕ2(2B)µ(2B)
+

λµ{y ∈ B > |T (χRn\ 3
2B

f)(y)| > λ/2}
ϕ2(2B)µ(2B)

≤
λµ{y ∈ B : |T (χ 3

2B
f)(y)| > λ/2}

ϕ2(2B)µ(2B)
+

‖T (χRn\ 3
2B

f)‖L1(B)

ϕ2(2B)µ(2B)

.
‖f‖L1(B)

ϕ2(2B)µ(2B)
+

rn

ϕ2(2B)µ(2B)

∫ ∞

2r

t−n‖f‖L1(B(x0,t))
dt

t

. rn

ϕ2(2B)µ(2B)

∫ ∞

2r

t−n‖f‖L1(B(x0,t))
dt

t
.

Thus, the proof is complete. ¤

Remark 4.6. In the case dµ(x) = dx, Lemma 4.5 was proved in [6], [7], see

also [8].

5. Boundedness of fractional integral operators

Now, assuming that µ satisfies the growth condition (4.1), we shall consider

the boundedness of Iα, which is given by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dµ(y)

for all positive µ-measurable functions f . Remark that Iα extends to a bounded

linear operator from Lp(µ) and Lq(µ) if 1 < p < q < ∞ and 1
q = 1

p − α
n [14].

5.1. Main results. Here we shall prove the following theorems.

Theorem 5.1 (Adams–Ding type result). Let the parameters p, q, α, b

satisfy

1 < p < ∞, 1 ≤ q < ∞, −1

p
≤ b < −α

n
< 0, q =

bnp

α+ bn
. (5.1)

Assume in particular that

ϕ(y, s) & ϕ(x, r) (5.2)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). If the

function ϕ ∈ Φ is surjective and satisfies the inequality ϕ(x, t) ≤ tbn, then Iα is

bounded from Mp,ϕ1/p(µ) to Mq,ϕ1/q (µ).
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Theorem 5.2 (Adams–Guliyev type result). Let 1 ≤ p < ∞, 0 < α < n
p ,

q > p and let ϕ ∈ Φ satisfy conditions

∫ ∞

r

ϕ(x, t)
1
p
dt

t
. ϕ(x, r)

1
p , (5.3)

and ∫ ∞

r

tα ϕ(x, t)
1
p
dt

t
. r−

αp
q−p . (5.4)

Assume in particular that

ϕ(y, s) & ϕ(x, r) (5.5)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). Then the

operator Iα extends to a bounded linear operator from Mp,ϕ1/p(µ) to Mq,ϕ1/q (µ)

for p > 1. Furthermore, for p = 1, the operator Iα extends to a bounded linear

operator from M1,ϕ(µ) to WMq,ϕ1/q (µ).

The following is a result of Spanne type.

Theorem 5.3. Let 0 < α < n and 1 < p < n
α . Define q by 1

q = 1
p − n

α .

Assume that ϕ1, ϕ2 ∈ Φ satisfy

r
n
q

∫ ∞

r

ϕ1(x, 2t)µ(B(x, 2t))1/q

ϕ2(x, 2r)µ(B(x, 2r))1/q
t−

n
q −1 dt . 1 (x ∈ Rn). (5.6)

Assume in particular that

ϕ1(y, s) ≥ ϕ1(x, r) (5.7)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). Then Iα
extends to a bounded linear operator from Mp,ϕ1(µ) to Mq,ϕ2(µ).

There is another variant of the Adams–Gunawan theorem. See [15] for the

case of the Lebesgue measure.

Theorem 5.4. Let 1 < p ≤ q < ∞ and 0 < α < n
p . Assume that ω ∈ Φ

satisfies

rαω(x, r) +

∫ ∞

r

tαω(x, t)
dt

t
. ω(x, r)

p
q (x ∈ Rn) (5.8)

and that ω(x, ·) : (0,∞) → (0,∞] is surjective. Assume in particular that

ω(y, s) ≥ ω(x, r) (5.9)

for all x, y ∈ Rn and r > 0 such that Q(x, r) ⊃ Q(y, s), Q(y, s) ∈ Q(µ). Then Iα
extends to a bounded linear operator from Mp,ω(µ) to Mq,ωp/q (µ).
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Remark 5.5. In the case dµ(x) = dx, Theorem 5.2 was proved in [12]. In the

case ϕ(x, t) ≡ tλ−n, 0 < λ < n from Theorem 5.2 we get the Adams theorem [1].

Remark 5.6. In the case dµ(x) = dx, Theorem 5.3 and Lemma 5.7 were

proved in [6], [7], see also [8] and Theorem 5.4 was established in [8]. In the case

ϕ(x, t) ≡ tλ−n, 0 < λ < n from Theorem 5.4 we get the Adams theorem [1].

5.2. Proof of Theorems 5.1, 5.2 and 5.4.

Proof of Theorem 5.1. First, let us remark again that we have the fol-

lowing maximal operator estimate

‖(Mf)p/q‖M
q,ϕq/p (µ) = (‖Mf‖Mq,ϕ(µ))

p/q . (‖f‖Mp,ϕ(µ))
q/p (5.10)

in view of the conditions (1.1), (3.2) and (5.2).

We rewrite

|Iαf(x)| 5 (n− α)

∫ ∞

0

(∫

B(x,`)

|f(y)| dµ(y)
)

d`

`n−α+1
(5.11)

by using the Fubini theorem. Then we notice that

|Iαf(x)| .
∫ ∞

0

(∫

B(x,`)

|f(y)| dµ(y)
)

d`

`n−α+1
. (5.12)

We decompose (5.12) into two parts;

|Iαf(x)| .
∫ `0

0

(∫

B(x,`)

|f(y)| dµ(y)
)

d`

`n−α+1

+

∫ ∞

`0

(∫

B(x,`)

|f(y)| dµ(y)
)

d`

`n−α+1
, (5.13)

where `0 is a constant specified by (5.16) later. Notice that

1

`n−α+1

(∫

B(x,`)

|f(y)| dµ(y)
)

. `α−1Mf(x) (5.14)

and that

1

`n−α+1

(∫

B(x,`)

|f(y)| dµ(y)
)

. ϕ(x, 2`)

`−α+1
‖f‖M

p,ϕ1/p (µ) .
‖f‖M

p,ϕ1/p (µ)

`−bn−α+1
. (5.15)
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Now choose `0 > 0 so that

`0
−bn =

‖f‖M
p,ϕ1/p (µ)

Mf(x)
(5.16)

An arithmetic shows that

Mf(x)`0
α = Mf(x)

(‖f‖M
p,ϕ1/p (µ)

Mf(x)

)− α
bn

= Mf(x)1+
α
bn ‖f‖M

p,ϕ1/p (µ)
− α

bn .

If we insert (5.15), (5.16) to (5.13), then we have

|Iαf(x)| . Mf(x)1+
α
bn ‖f‖M

p,ϕ1/p (µ)
− α

bn . (5.17)

If we use (5.10) and (5.16), then we obtain the desired result. ¤

Proof of Theorem 5.2. First, we remark again that we have the following

maximal operator estimate

‖(Mf)
p
q ‖M

q,ϕq/p (µ) .
(‖f‖Mp,ϕ(µ)

)q/p
(5.18)

in view of the conditions (1.1), (3.2) and (5.5).

Let f ∈ Mp,ϕ(µ). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball

centered at x0 and of radius r. We represent f as

f = f1 + f2, where f1 := f · χ2B , f2 := f − f1. (5.19)

We use

|Iαf(x)| ≤ |Iαf1(x)|+ |Iαf2(x)|.
The estimate of Iαf1 is simple. Just recall that µ satisfies the growth condition

and use a crude estimate

|Iαf1(x)| ≤
∫

2B

|f(y)|
|x− y|n−α

dµ(y) =

∞∑

j=1

∫

2−j+2B\2−j+1B

|f(y)|
|x− y|n−α

dµ(y)

.
∞∑

j=1

1

(2−jr)n−α

∫

2−j+2B\2−j+1B

|f(y)| dµ(y) . rαMf(x).

Here the equality above is valid because µ does not charge a point x by virtue of

the growth condition (4.1).

For Iαf2(x) we have

∣∣∣∣Iαf2(x)
∣∣∣∣ ≤

∫

Rd\B(x,2r)

|x− y|α−n|f(y)| dµ(y)
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.
∫

Rd\B(x,2r)

(∫ ∞

|x−y|
tα−n−1dt

)
|f(y)| dµ(y)

.
∫ ∞

2r

(∫

2r<|x−y|<t

|f(y)| dµ(y)
)
tα−n−1dt

.
∫ ∞

r

tα−
n
p −1‖f‖Lp(B(x,t))dt. (5.20)

Then from conditions (5.3) and (5.4) we get

|Iαf(x)| . rα Mf(x) +

∫ ∞

r

tα−
n
p −1‖f‖Lp(B(x,t))dt

≤ rα Mf(x) + ‖f‖Mp,ϕ(µ)

∫ ∞

r

tαϕ(x, t)
1
p
dt

t

. rα Mf(x) + r−
αp
q−p ‖f‖M

p,ϕ1/p (µ). (5.21)

Hence choosing r =
(‖f‖M

p,ϕ1/p (µ)

Mf(x)

) q−p
αq

for each given x ∈ Rn, we have

|Iαf(x)| . (Mf(x))
p
q ‖f‖1−

p
q

M
p,ϕ1/p (µ)

.

Hence, the theorem follows in view of (5.3), (5.18) and Theorem 3.3, that is, the

boundedness of the maximal operator M in Mp,ϕ1/p(µ). Indeed,

‖Iαf‖M
q,ϕ1/q (µ) = sup

x∈Rn, t>0
ϕ(x, t)−

1
q µ(B(x, 2t))−

1
q ‖Iαf‖Lq(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ1/p (µ)

sup
x∈Rn, t>0

ϕ(x, t)−
1
q µ(B(x, 2t))−

1
q ‖Mf‖

p
q

Lp(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ1/p (µ)

‖Mf‖
p
q

M
p,ϕ1/p (µ)

. ‖f‖M
p,ϕ1/p (µ),

if 1 < p < q < ∞ and

‖Iαf‖WM
q,ϕ1/q (µ) = sup

x∈Rn, t>0
ϕ(x, t)−

1
q µ(B(x, 2t))−

1
q ‖Iαf‖WLq(B(x,t))

. ‖f‖1−
1
q

M1,ϕ(µ) sup
x∈Rn, t>0

ϕ(x, t)−
1
q µ(B(x, 2t))−

1
q ‖Mf‖

1
q

WL1(B(x,t))

. ‖f‖1−
1
q

M1,ϕ(µ)‖Mf‖
p
q

WM
1,ϕ1/p (µ)

. ‖f‖M1,ϕ(µ),

if 1 = p < q < ∞. ¤
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To prove Theorem 5.3 we need the following lemma.

Lemma 5.7. Let 0 < α < n and 1 < p < n
α . Define q by 1

q = 1
p − n

α . Then

we have

‖Iαf‖Lq(B(x,r)) . r
n
q

∫ ∞

r

t−
n
q −1‖f‖Lp(B(x,t)) dt

for all positive µ-measurable functions f .

Proof. We proceed as follows:

‖Iαf‖Lq(B(x,r))

. ‖Iα(χB(x,2r)f)‖Lq(B(x,r)) +

∞∑

j=1

‖Iα(χB(x,2j+1r)\B(x,2jr)f)‖Lq(B(x,r))

. ‖f‖Lp(B(x,2r)) +

∞∑

j=1

2−jn+jα

rn−α
µ(B(x, r))

1
q r−n+α‖f‖L1(B(x,2j+1r))

. ‖f‖Lp(B(x,2r))+

∞∑

j=1

2−jn+jα

rn−α
µ(B(x, r))

1
q µ(B(x, 2j+1r))1−

1
p ‖f‖Lp(B(x,2j+1r)).

If we use the growth condition (4.1), then we have

‖Iαf‖Lq(B(x,r)) . ‖f‖Lp(B(x,2r)) + r
n
q

∫ ∞

r

t−
n
q −1‖f‖Lp(B(x,t)) dt

. r
n
q

∫ ∞

r

t−
n
q −1‖f‖Lp(B(x,t)) dt.

Thus, the proof is complete. ¤

Proof of Theorem 5.3. By Lemma 5.7 and (5.6), we have

‖Iαf‖Lq(B(x,r))

ϕ2(x, 2r)µ(B(x, 2r))1/q
. r

n
q

∫ ∞

r

t−
n
q −1‖f‖Lp(B(x,t))

ϕ2(x, 2r)µ(B(x, 2r))1/q
dt

. ‖f‖Mp,ϕ1 (µ)
r

n
q

∫ ∞

r

ϕ1(x, 2t)µ(B(x, 2t))1/q

ϕ2(x, 2r)µ(B(x, 2r))1/q
t−

n
q −1 dt . ‖f‖Mp,ϕ1 (µ)

.

Thus, the proof is complete. ¤

To prove Theorem 5.4, we need the following pointwise estimate:

Lemma 5.8. Let 1 ≤ p < ∞. Then

|Iαf(x)| .
(∫ R

0

µ(B(x, 2t))

tn−α+1
dt

)
Mf(x) +

∫ ∞

R

tα−n/p−1‖f‖Lp(B(x,t)) dt

for all R > 0 and x ∈ supp(µ).
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Proof. Just use (5.11) and

1

`n−α+1

∫

B(x,`)

|f(y)| dµ(y) . min

(
µ(B(x, 2`))

`n−α+1
Mf(x),

1

`n/p−α+1
‖f‖Lp(µ)

)
. ¤

Now we refer back to the proof of Theorem 5.4.

Proof of Theorem 5.4. By virtue of Lemma 5.8 with R = ω(x, r) and

(5.8) we have

Iαf(x) . ω(x, r)p/q−1Mf(x) + ω(x, r)p/q‖f‖Lp(B(x,r)).

Since ω(x, ·) is surjective for all x ∈ Rd, if we optimize this inequality, then we

obtain

Iαf(x) . Mf(x)
p
q ‖f‖1−

p
q

Lp(B(x,r)).

and Theorem 3.3. This is the desired result. ¤

Remark 5.9. When dµ(x) = dx, then ω(x, t) is a doubling function with

respect to t and the doubling constant can be taken uniformly over x. Therefore,

we do not need to assume that ω(x, ·) is surjective for all x and we can modify

the argument above.

6. Boundedness of commutators generated by RBMO functions

Finally we shall consider the boundedness of commutators generated by

RBMO functions.

6.1. Main results. Now to describe the definition of commutators we recall the

definition of RBMO due to Tolsa [45].

Definition 6.1 ([45, Sections 2.2 and 2.3]).

(1) Given two cubes Q,R ∈ Q(µ) with Q ⊂ R, one defines

KQ,R := 1 +

NQ,R∑

k=1

µ(2kQ)

`(2kQ)n
,

where NQ,R is the least integer k ≥ 1 such that 2kQ ⊃ R.

(2) One says that Q is a doubling cube if µ(2Q) ≤ 2d+1µ(Q). One denotes by

Q(µ, 2) the set of all doubling cubes.
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(3) Given Q ∈ Q(µ), we set Q∗ as the smallest doubling cube R of the form

R = 2jQ with j ∈ N0 := {0} ∪ N.
(4) One says that f ∈ L1

loc(µ) is an element of RBMO if it satisfies

sup
Q∈Q(µ)

1

µ
(
3
2Q

)
∫

Q

|f(y)−mQ∗(f)| dµ(y)

+ sup
Q⊂R

Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
KQ,R

< ∞, (6.1)

where mE(f) := 1
µ(E)

∫
E
f(x) dµ(x) denotes the average of the function f

over a µ-measurable set E. Denote this quantity (6.1) by ‖f‖∗.
Commutators in Morrey spaces with non-doubling measures are investigated

in [35], [38], [41]. Also, mutlicommutators are investigated in [18], [19], [24], [38].

Here we shall prove the following result.

Theorem 6.2. Let 1 < p < ∞. Assume that a pair (ϕ1, ϕ2) ∈ Φ×Φ satisfies

∫ ∞

r

ϕ1(x, 2t) log

(
2 +

t

r

)
µ(B(x, 2t))1/p

tn/p
dt

t
≤ ϕ2(x, 2r)µ(B(x, 2r))1/p

rn/p
(6.2)

for all x ∈ Rd and r > 0. Assume in addition that there exists a ∈ RBMO such

that

|Tf(x)| .
∫

Rd\B

|(a(x)− a(y))f(y)|
|x− y|n dµ(y) (µ− a.e.x ∈ B)

for all balls B ∈ B(µ). Assume in addition that T is Lp(µ)-bounded. Then T

extends to a bounded sublinear operator from Mp,ϕ1(µ) to Mp,ϕ2(µ).

Proposition 6.3 ([45, Theorem 9.1]). Suppose that a ∈ RBMO. Let 1 <

p < ∞ and T be a singular integral operator with associated kernel K. Then

[a, T ]f(x) := lim
ε→0

∫

|x−y|>ε

(a(x)− a(y))K(x, y)f(y) dµ(y)

defines a bounded operator on Lp(µ).

Remark 6.4.

(1) Proposition 6.3 is an example of the operator T in Theorem 6.2.

(2) In the case dµ(x) = dx, Theorem 6.2 and Lemma 6.6 was covered

in [10], [11].
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6.2. Proof of Theorem 6.2. To prove Theorem 6.2, we need lemmas. We first

record the John–Nirenberg lemma for RBMO due to Tolsa.

Lemma 6.5 ([45, Corollary 3.5]). For all 1 ≤ r < ∞ and a ∈ RBMO,

sup
Q∈Q(µ)

(
1

µ

(
3
2Q

)
∫

Q

|a(y)−mQ∗(a)|r dµ(y)
) 1

r

. ‖a‖∗.

Lemma 6.6. Under the condition of Theorem 6.2, we have

‖Tf‖Lp(B) . r
n
p

∫ ∞

r

log

(
1 +

t

r

)
t−

n
p ‖f‖Lp(B)

dt

t
(6.3)

when 1 < p < ∞.

Proof. We shall prove (6.3) first. The proof is similar to the one for T . Fix

a ball B = B(x0, r) ∈ B(µ). We just use

∫

Rd\2B

|a(x)− a(y)|
|x− y|n |f(y)| dµ(y)

=

∫ ∞

0

n

`n+1

(∫

B(x0,`)\2B
|(a(x)− a(y))f(y)| dµ(y)

)
d`

.
∫ ∞

r

(∫

B(x0,`)

|(a(x)−mB(a))f(y)|+ |(mB(a)− a(y))f(y)| dµ(y)
)

d`

`n+1

. |a(x)−mB(a)|r
n
p

∫ ∞

2r

log

(
1 +

t

r

)
t−

n
p ‖f‖Lp(B(x0,t))

dt

t

+

∫ ∞

r

1

tn+1

(∫

B(x0,t)

|f(y)|p dµ(y)
)1/p

×
(∫

B(x0,t)

|mB(a)− a(y)|p′
dµ(y)

)1/p′

dt. (6.4)

By the John–Nirenberg inequality (see Lemma 6.5) and the growth condition

(4.1), we have

∫ ∞

r

1

tn+1

(∫

B(x0,t)

|f(y)|p dµ(y)
)1/p(∫

B(x0,t)

|mB(a)− a(y)|p′
dµ(y)

)1/p′

dt

. ‖a‖∗
∫ ∞

r

log

(
2 +

t

r

)
1

tn/p+1

(∫

B(x0,t)

|f(y)|p dµ(y)
)1/p

dt. (6.5)
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Putting toghther Lemma 6.5, (6.4) and (6.5), we obtain

∫

B

(∫

Rd\2B

|a(x)− a(y)|
|x− y|n |f(y)| dµ(y)

)p

dµ(x)

. ‖a‖∗r
n
p

∫ ∞

2r

log

(
1 +

t

r

)
t−

n
p ‖f‖Lp(B(x0,t))

dt

t

+ ‖a‖∗µ(B)1/p
∫ ∞

r

log

(
2 +

t

r

)
1

tn/p+1

(∫

B(x0,t)

|f(y)|p dµ(y)
)1/p

dt

. ‖a‖∗r
n
p

∫ ∞

r

log

(
2 +

t

r

)
t−

n
p ‖f‖Lp(B(x0,t))

dt

t
.

Thus, (6.3) is proved. ¤

We can prove Theorem 6.2 by using (6.2) analogously to Theorem 4.3, once

Lemma 6.6 is proven.
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