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The Sobolev inequality on the torus revisited

By ÁRPÁD BÉNYI (Bellingham) and TADAHIRO OH (Edinburgh)

Abstract. We revisit the Sobolev inequality for periodic functions on the d-di-

mensional torus. We provide an elementary Fourier analytic proof of this inequality

which highlights both the similarities and differences between the periodic setting and

the classical d-dimensional Euclidean one.

1. Introduction: motivation and preliminaries

The Sobolev spaces are ubiquitous in harmonic analysis and PDEs, where

they appear naturally in problems about regularity of solutions or well-posedness.

Tightly connected to these problems are certain embedding theorems that relate

the norms of Lebesgue and Sobolev spaces for appropriate indices. These theor-

ems are known under the name of Sobolev inequalities; they are stated rigorously

in Proposition 1.1 and Corollary 1.2; see also Subsection 2.2. In this note, we use

tools from classical Fourier analysis and provide an elementary approach to such

inequalities for periodic functions on the d-dimensional torus.

The appeal of Sobolev spaces is due to the simplicity of their definition which

captures both the regularity and size of a distribution. If k is a positive integer

and 1 ≤ p ≤ ∞, let Lp
k(Rd) denote the space of all u ∈ Lp(Rd) such that the weak

derivativesDαu ∈ Lp(Rd) for all |α| ≤ k. In the PDE literature, this space is often

denoted by W k,p(Rd). For non-integer values of s > 0, the complex interpolation

of the integer order spaces Lp
k(Rd) yields the inhomogeneous (fractional) Sobolev

spaces, or as they are also commonly referred to, inhomogeneous Bessel potential
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spaces. We denote them by Lp
s(Rd), s ∈ R+. In fact, on the Fourier side, these

spaces can be defined for all s ∈ R. As such, they are Banach spaces, endowed

with the norm

‖u‖Lp
s(Rd) =

∥∥(〈ξ〉sû(ξ))∨∥∥
Lp(Rd)

.

Here, 〈ξ〉 = (1 + 4π2|ξ|2) 1
2 , û denotes the Fourier transform defined by

û(ξ) =

∫

Rd

u(x)e−2πix·ξdx,

and u∨ denotes the inverse Fourier transform of u defined by u∨(x) = û(−x).

We can also define the fractional inhomogeneous Sobolev spaces W s,p(Rd) by

applying the real interpolation method to the integer order spaces W k,p(Rd). It is

worth pointing out, however, that, due to the different methods of interpolation

used (real and complex, respectively), we have W s,p(Rd) 6= Lp
s(Rd) unless s is

an integer or p = 2. The spaces W s,p(Rd) can also be characterized by the

Lp-modulus of continuity, analogous to (1.13). See the books by Bergh and

Löfström [3], Stein [12], and Tartar [15] for more detailed discussions on

Lp
s(Rd) and W s,p(Rd).

The homogeneous Sobolev spaces L̇p
s(Rd) are defined in a similar way, by

replacing 〈 · 〉 with | · | in the definition above1:

‖u‖L̇p
s(Rd) =

∥∥(|ξ|sû(ξ))∨
∥∥
Lp(Rd)

.

When p = 2, we simply write Hs(Rd) = L2
s(Rd) or Ḣs(Rd) = L̇2

s(Rd).

Let now Td = Rd/Zd denote the d-dimensional torus. In analogy with the

definition of the Sobolev spaces on the d-dimensional Euclidean space Rd, the

inhomogeneous Sobolev (or Bessel potential) spaces Hs(Td) and Lp
s(Td) on the

torus Td are defined via the norms

‖u‖Hs(Td) =

( ∑

n∈Zd
〈n〉2s|û(n)|2

) 1
2

, (1.1)

‖u‖Lp
s(Td) =

∥∥(〈n〉sû(n))∨∥∥
Lp(Td). (1.2)

Here, u denotes a periodic function on Td and û(n), n ∈ Zd, are its Fourier

coefficients defined by

û(n) =

∫

Td
u(x)e−2πin·xdx.

1Strictly speaking, the homogeneous spaces L̇p
s(Rd) are defined only for the equivalence classes

modulo polynomials (corresponding to the distributions supported at the origin on the Fourier

side).
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The fact that Hs(Td) = L2
s(Td) is a simple consequence of Plancherel’s identity.

Clearly, we can define the homogeneous Sobolev spaces on the torus in a similar

way:

‖u‖Ḣs(Td) =

( ∑

n∈Zd\{0}
|n|2s|û(n)|2

) 1
2

, (1.3)

‖u‖L̇p
s(Td) =

∥∥(|n|sû(n))∨
∥∥
Lp(Td). (1.4)

The periodic Sobolev inequality is part of the mathematical analysis folklore.

It is essentially stated in Strichartz’ paper [14], albeit with no proof. Due to

the geometric and topological structure of the torus, the Sobolev inequality on Td

can be viewed as a particular case of a Sobolev inequality on a compact manifold;

see, for example, [1] and [8]. However, our goal here is to provide what we believe

is a very natural and elementary proof of this inequality via Fourier analysis which

emphasizes the periodic nature of the Sobolev spaces involved; to the best of our

knowledge, this argument is missing from the literature. It is plausible that one

can infer other proofs of the Sobolev inequality on Td from corresponding ones

on Rd (such as the ones implied by the fundamental solution of the Laplacian or

by isoperimetric inequalities). Our hope is that the expository and self-contained

nature of this presentation makes it accessible to a large readership.

The Sobolev inequality on the torus can be understood as an embedding of

a periodic Sobolev space into a periodic Lebesgue space. More precisely, we have

the following.

Proposition 1.1. Let u be a function on Td with mean zero. Suppose that

s > 0 and 1 < p < q < ∞ satisfy

s

d
=

1

p
− 1

q
. (1.5)

Then, we have

‖u‖Lq(Td) . ‖u‖L̇p
s(Td). (1.6)

Here, and throughout this note, we use A . B to denote an estimate of the form

A ≤ cB for some c > 0 independent of A and B. Similarly, we use A ∼ B to

denote A . B and B . A.

An immediate consequence of Proposition 1.1 is the same inequality for the

inhomogeneous Sobolev spaces Lp
s(Td) with the natural condition on the indices.

Corollary 1.2. Let u be a function on Td. Suppose that s > 0 and 1 < p <

q < ∞ satisfy
s

d
≥ 1

p
− 1

q
. (1.7)
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Then, we have

‖u‖Lq(Td) . ‖u‖Lp
s(Td). (1.8)

Perhaps unsurprisingly, the appearance of Sobolev spaces on the torus is fre-

quent in works that investigate, for example, nonlinear PDEs in periodic setting.

Let us briefly discuss some applications of these spaces and of the periodic Sobolev

inequality in the study of the Kortweg-de Vries (KdV) equation:

ut + uxxx + uux = 0, (x, t) ∈ T× R. (1.9)

By the classical energy method, Kato [10], [11] proved local-in-time well-posed-

ness of (1.9) in Hs(T) for s > 3/2. This 3/2 critical regularity arises from the

Sobolev embedding theorem on T (see (2.1) for the continuous version) applied

to the ux term in the nonlinearity, since for each fixed t:

‖ux(·, t)‖L∞(T) . ‖u(·, t)‖Hs(T) for s > 3/2.

In the seminal paper [2], Bourgain improved Kato’s result and proved well-

posedness of (1.9) in L2(T) by introducing a new weighted space-time Sobolev

space Xs,b(T× R) whose norm is given by

‖u‖Xs,b(T×R) = ‖〈n〉s〈τ − n3〉bû(n, τ)‖L2
τ `

2
n
, s, b ∈ R.

Ever since [2], this so-called Bourgain space Xs,b and its variants have played a

central role in the analysis of nonlinear (dispersive) PDEs and led to a significant

development of the field. Let S(t) = e−t∂3
x denote the linear semigroup for (1.9).

Then, the Xs,b-norm of a function u on T×R can be written as the usual space-

time Sobolev Hb
tH

s
x-norm of its interaction representation S(−t)u:

‖u‖Xs,b = ‖S(−t)u‖Hb
tH

s
x
. (1.10)

Now, in view of (1.10), the periodic Sobolev inequality (1.8) leads to the following

estimate:

‖u‖L2
t (R;L

p
x(T)) . ‖u‖Xs,0(T×R)

for 0 ≤ s < 1/2 and 2 ≤ p ≤ 2/(1 − 2s). Such estimates are widely used

in multilinear estimates appearing in the I-method developed by Colliander,

Keel, Staffilani, Takaoka, and Tao; see, for example, [4, Section 8].

Lastly, we present a heuristic argument indicating the connection between

Bourgain’s periodic L4-Strichartz inequality:

‖u‖L4
x,t(T×R) . ‖u‖X0,1/3(T×R) (1.11)
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and the Sobolev inequality. On the one hand, by the continuous Sobolev inequa-

lity (2.6) and (1.8), we have

‖u‖L4
x,t(T×R) . ‖u‖X1/4,1/4(T×R). (1.12)

On the other hand, in view of the linear part of the equation (1.9), ut+uxxx = 0,

we can formally view the three spatial derivatives as “equivalent” to one tem-

poral derivative. Then, by formally moving the spatial derivative s = 1/4 in

(1.12) to the temporal side, we obtain the temporal regularity b = 1/3 in (1.11),

since 1/3 = 1/4 + (1/3)(1/4). Of course, this is merely a heuristic argument

showing why b = 1/3 is the natural regularity in (1.11) and the actual proof is

more complicated, see [2]. For various relations among the Lp
tL

q
x spaces and Xs,b

spaces by the Sobolev inequality, the periodic L4-and L6-Strichartz inequalities

and interpolation, the reader is referred to [5, Section 3].

Having discussed the usefulness of the Sobolev inequality in periodic sett-

ing, the next natural question that arises is how it differs from its Euclidean

counterpart. We postpone the answer to this question to the following section.

However, in anticipation of this answer, we provide the reader with the following

insight: the periodic Sobolev spaces are intrinsically more delicate in nature than

the non-periodic ones, and thus the proofs in the periodic case require a more

careful analysis. In order to justify this claim, let us take a closer look at the dif-

ference (and analogy) between the homogeneous Bessel potential spaces Ḣs(Rd)

and Ḣs(Td).

We begin by recalling the following characterization of the Ḣs(Rd) norm by

the L2-modulus of continuity; see Hörmander’s monograph [9]:

‖u‖2
Ḣs(Rd)

= c

∫

Rd

|ξ|2s|û(ξ)|2dξ = c

∫

Rd

∫

Rd

|u(x)− u(y)|2
|x− y|d+2s

dxdy. (1.13)

The proof of (1.13) goes as follows. By the change of variables x 7→ x + y, the

double integral in (1.13) is

∫

Rd

∫

Rd

|u(x+ y)− u(y)|2
|x|d+2s

dxdy =

∫

Rd

∫

Rd

|e2πix·ξ − 1|2
|x|d+2s

dx |û(ξ)|2dξ,

where we used the fact that, for fixed x, the Fourier transform of u(x+ y)− u(y)

as a function of y is given by (e2πix·ξ − 1)û(ξ). Now, define A(ξ) by

A(ξ) = |ξ|−2s

∫

Rd

|e2πix·ξ − 1|2
|x|d+2s

dx = |ξ|−2s

∫

Rd

sin2(πx · ξ)
4|x|d+2s

dx. (1.14)
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Then, by the change of variables x 7→ tx, we have A(tξ) = A(ξ). Hence, A(ξ) = A

is independent of ξ. Moreover, with ξ = (1, 0, . . . , 0), we have

A =

∫

Rd

sin2(πx1)

4|x|d+2s
dx.

Noting that sin2(πx1)
|x|d+2s . |x|−d+2(1−s) near the origin and sin2(πx1)

|x|d+2s ≤ |x|−d−2s near

infinity, we have A < ∞. Hence, (1.13) follows from (1.14) by choosing c = A.

Remark 1.1. Given u ∈ Lp(Rd), ωp(t) = ‖u(x + t) − u(x)‖LP
x

is called the

Lp-modulus of continuity. Hence, we can view (1.13) as the characterization of

the Ḣs(Rd)-norm by the L2-modulus of continuity. There is an analogous result

for the characterization of the Ẇ s,p(Rd)-norm by the Lp-modulus of continuity;

see Stein’s book [12, p. 141].

We note immediately that the double integral expression in (1.13) is not

quite meaningful for periodic functions on Td even if we only integrate over Td.

Nonetheless, we have an analogue of (1.13) for Ḣs(Td), but the details of the

proof are already a little more delicate.

Proposition 1.3. Let 0 < s < 1. Then, for u ∈ Ḣs(Td), we have

‖u‖2
Ḣs(Td) ∼

∫

Td

∫

[− 1
2 ,

1
2 )

d

|u(x+ y)− u(y)|2
|x|d+2s

dxdy. (1.15)

Proof. As before, we have

∫

Td

∫

[− 1
2 ,

1
2 )

d

|u(x+ y)− u(y)|2
|x|d+2s

dxdy =
∑

n∈Zd\{0}

∫

[− 1
2 ,

1
2 )

d

|e2πix·n − 1|2
|x|d+2s

dx |û(n)|2.

It remains to show that B(n) given by

B(n) = |n|−2s

∫

[− 1
2 ,

1
2 )

d

|e2πix·n − 1|2
|x|d+2s

dx = |n|−2s

∫

[− 1
2 ,

1
2 )

d

sin2(πx · n)
4|x|d+2s

dx (1.16)

is bounded both from above and below uniformly in n ∈ Zd\{0}. Note that, in this

case, we can not use a change of variables to show that B(n) is independent of n.

Of course, by extending the integration to Rd, we have B(n) ≤ A(n) = A < ∞,

where A(n) is, as in (1.14), independent of n.

Next, we show that B(n) is bounded below by a positive constant, indepen-

dent of n = (n1, n2, . . . , nd). Rearrange nj such that n1, . . . , nm are non-zero
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and nm+1 = · · · = nd = 0. By symmetry, assume that n1 is positive and that

n1 = max(n1, |n2|, . . . , |nd|). Now, we restrict the integral in (1.16) to

D =

{
x ∈

[
−1

2
,
1

2

]d
: |x| < 1

2|n| , njxj > 0, j = 1, . . . ,m

}

∩ {|x1| = max |xj |} ⊂
[
−1

2
,
1

2

)d

.

We have n1x1 ≤ n · x ≤ 1
2 on D. Since 2y ≤ sinπy for y ∈ [0, 1

2 ], we have

sin2(πx · n) & (n1x1)
2 & |n|2|x|2,

where the last inequality follows from |n1| & |n| and |x1| & |x|. Then, by integra-

tion in the polar coordinates, we obtain

B(n) & |n|2−2s

∫

D

|x|−d+2−2sdx & |n|2−2s

∫

|x|< 1
2|n|

|x|−d+2−2sdx

∼ |n|2−2s

∫ 1
2|n|

0

r1−2sdr & 1.

This completes the proof of (1.15). ¤

2. The Sobolev inequality

This section is devoted to a discussion of the Sobolev inequality on the d-

dimensional torus. As already pointed out in the previous section, the inequality

is widely used for periodic PDEs.

2.1. Sobolev’s embedding theorem. Sobolev’s embedding theorem states

that, for sp > d,

‖u‖L∞(Rd) . ‖u‖Lp
s(Rd). (2.1)

Notice that the condition sp > d is equivalent to s
d > 1

p = 1
p − 1

∞ ; compare

this also with (1.5). When p ≤ 2, (2.1) follows from Hölder’s inequality and

Hausdorff–Young’s inequality. Indeed,

|u(x)| ≤
∫

Rd

|û(ξ)|dξ ≤
(∫

Rd

〈ξ〉−psdξ

) 1
p

‖〈ξ〉sû(ξ)‖Lp′ (Rd)

.
∥∥(〈ξ〉sû(ξ))∨∥∥

Lp(Rd)
= ‖u‖Lp

s(Rd).
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This argument, in particular, shows that û ∈ L1(Rd). Hence, it follows from

Riemann–Lebesgue lemma that u is uniformly continuous on Rd, vanishing at

infinity. The same argument yields the corresponding result on Td.

When p > 2, we need to proceed differently. We borrow some ideas from the

nice exposition in Grafakos’ books [6], [7]. Define Gs by

Gs(x) =
(〈ξ〉−s)∨(x). (2.2)

Note that Gs is the convolution kernel of the Bessel potential Js = (I −∆)−
s
2 of

order s, i.e. Js(f) = f ∗ Gs. Then, the following estimates hold for Gs (see [7,

Proposition 6.1.5]):

Gs(x) ≤ C(s, d)e−
|x|
2 for |x| ≥ 2, (2.3)

while for |x| ≤ 2, we have

Gs(x) ≤ c(s, d)





|x|s−d + 1 +O(|x|s−d+2), for 0 < s < d,

log
2

|x| + 1 +O(|x|2), for s = d,

1 +O(|x|s−d), for s > d.

(2.4)

When s ≥ d, Gs ∈ Lp′
(Rd), while when s < d, we have Gs ∈ Lp′

(Rd) (near the

origin) if and only if sp > d. Thus, by Young’s inequality, we obtain

‖f ∗Gs‖L∞(Rd) . ‖f‖Lp(Rd). (2.5)

This proves (2.1) since (2.5) is equivalent to it. Note also that Young’s inequality

implies that u = f ∗Gs is uniformly continuous on Rd.

We will briefly describe an argument for p > 2 on Td at the end of the next

subsection.

2.2. The Sobolev inequality. Let s > 0 and 1 < p < q < ∞ satisfy (1.5).

Sobolev’s inequality on Rd states that for all such s, p, q we have

‖u‖Lq(Rd) . ‖u‖L̇p
s(Rd). (2.6)

This is equivalent to the following Hardy–Littlewood–Sobolev inequality:

‖Is(f)‖Lq(Rd) . ‖f‖Lp(Rd), (2.7)

where s > 0 and 1 < p < q < ∞ satisfy (1.5), and Is = (−∆)−
s
2 denotes the

Riesz potential of order s.
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Using [6, Theorem 2.4.6], we have

(|ξ|z)∨ = π− 2z+d
2

Γ(d+z
2 )

Γ(−z
2 )

|x|−z−d, (2.8)

where the equality holds in the sense of distributions (indeed, when Re z < 0, the

expression in (2.8) is in L1
loc(Rd) and can be made sense as a function). Now,

(2.8) allows us to write

Is(f)(x) = 2−sπ− d
2
Γ(d−s

2 )

Γ( s2 )

∫

Rd

f(x− y)|y|−d+sdy. (2.9)

See Subsection 6.1.1 in [7]. Then, one can prove (2.7) by an argument on the phy-

sical side, using (2.9); see [7, Theorem 6.1.3], and also the proof of Proposition 1.1

below. We note in passing that, having established (2.9), one may view (2.7) as

the “endpoint” case of Young’s inequality. Indeed, by a simple application of

Young’s inequality, one would obtain

‖Is(f)‖Lq(Rd) .
∥∥|x|−d+s

∥∥
L

d
d−s (Rd)

‖f‖Lp(Rd),

where the first factor on the right-hand side is infinite since |x|−d+s barely misses

to be in L
d

d−s (Rd).

We arrive at last to the Sobolev inequality for periodic functions on Td stated

in Proposition 1.1, which we prove next. As before, (1.6) is equivalent to the

following Hardy–Littlewood–Sobolev inequality on Td:

‖Is(f)‖Lq(Td) . ‖f‖Lp(Td), (2.10)

where f has mean zero.

The proof of (2.10) follows along the same lines as the proof of (2.7) on

Rd (c.f. [7, Theorem 6.1.3]) once we obtain a formula analogous to (2.8) relating

|n|−s and |x|−d+s for n ∈ Zd and x ∈ Td. Indeed, our argument has a simple

structure. First, we see that the operator Is is realizable as a convolution with

the distribution on Td whose Fourier series is given by
∑

n∈Zd\{0} |n|−se2πin·x.
Then, a refinement of the Poisson summation formula, based on some smooth

cut-off techniques, gives that, modulo an additive smooth function on Td, this

distribution behaves like a constant multiple of |x|−d+s. While this is a known

fact, see Stein and Weiss [13, Theorem 2.17, p. 256], for the convenience of

the reader we err on the side of a longer and different argument than in [13] by

providing full details of the careful analysis required here. Finally, we notice that

the (Lp, Lq) mapping property of the convolution operator Is can be reduced to

that of the convolution operator with |x|−d+s which roughly follows as in the

d-dimensional Euclidean case once we do a correct splitting of the d-dimensional

torus.
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2.3. Proof of Proposition 1.1. We start by recalling the Poisson summation

formula.

Lemma 2.1 (Theorem 3.1.17 in [6]). Suppose that f, f̂ ∈ L1(Rd) satisfy

|f(x)|+ |f̂(x)| ≤ C(1 + |x|)−d−δ

for some C, δ > 0. Then, f and f̂ are continuous and, for all x ∈ Rd, we have
∑

n∈Zd
f̂(n)e2πin·x =

∑

n∈Zd
f(x+ n). (2.11)

Let now η be a smooth function on Rd such that η(ξ) = 1 for |ξ| ≥ 1
2 and

η(ξ) = 0 for |ξ| ≤ 1
4 . For 0 < Re s < d, define g(x) =

(
η(ξ)|ξ|−s

)∧
(x). Then, it

is known (see [6, Example 2.4.9]) that g decays faster than the reciprocal of any

polynomial at infinity. Let

h(x) = g(x)−G(x), where G(x) = πs− d
2
Γ(d−s

2 )

Γ( s2 )
|x|s−d. (2.12)

Then, h ∈ C∞(Rd). We would like to apply now Lemma 2.1 to g and ĝ =

η(ξ)|ξ|−s. However, the decay of ĝ at infinity is not fast enough (since (1.5)

implies s < d) and we have ĝ /∈ L1(Rd). Hence, Lemma 2.1 is not applicable.

Fix φ ∈ S(Rd) supported on [− 1
2 ,

1
2 )

d such that
∫
Rd φ(x)dx = 1, and let

φε(x) = ε−dφ(ε−1x), ε > 0. The family {φε} is an approximation of the identity.

If we now let gε = g ∗ φε, then ĝε(ξ) = ĝ(ξ)φ̂ε(ξ) = φ̂ε(ξ)η(ξ)|ξ|−s satisfies

the desired decay |ĝε(ξ)| ≤ C(1 + |ξ|)−d−δ for some δ > 0. Clearly, |gε(x)| ≤
C(1 + |x|)−d−δ near infinity thanks to the rapid decay of g at infinity. Also, gε is

bounded near the origin since |x|s−d is integrable near the origin (and thus, gε is

a C∞ function.)

Let x ∈ [− 1
2 ,

1
2 )

d. By Lemma 2.1 we have

∑

n∈Zd\{0}

φ̂ε(n)e
2πin·x

|n|s =
∑

n∈Zd

φ̂ε(n)η(n)e
2πin·x

|n|s

=
∑

max |nj |≤1

gε(x+ n) +
∑

n∈Zd
max |nj |≥2

gε(x+ n). (2.13)

Note that, for x, y ∈ [− 1
2 ,

1
2 )

d and n ∈ Zd, we have

|x− y + n| ≥ 1, if max |nj | ≥ 2,

|x− y + n| ≤ 3
√
d, if max |nj | ≤ 1.
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Let r ≥ 1. Since g(x) is a smooth rapidly decreasing function on |x| ≥ 1, we have

∥∥∥∥
∑

n∈Zd
max |nj |≥2

gε(x+ n)

∥∥∥∥
Lr([− 1

2 ,
1
2 )

d)

=

∥∥∥∥
∑

n∈Zd
max |nj |≥2

∫

[− 1
2 ,

1
2 )

d

g(x− y + n)φε(y)dy

∥∥∥∥
Lr([− 1

2 ,
1
2 )

d)

≤ ‖φε‖L1([− 1
2 ,

1
2 )

d)‖g(x)‖Lr(|x|≥1) = ‖g(x)‖Lr(|x|≥1) < ∞.

Also, since h in (2.12) is a smooth function, we have

∥∥∥∥
∑

max |nj |≤1

h ∗ φε(x+ n)

∥∥∥∥
Lr([− 1

2 ,
1
2 )

d)

=

∥∥∥∥
∑

max |nj |≤1

∫

[− 1
2 ,

1
2 )

d

h(x− y + n)φε(y)dy

∥∥∥∥
Lr([− 1

2 ,
1
2 )

d)

≤ ‖φε‖L1([− 1
2 ,

1
2 )

d)‖h(x)‖Lr(|x|≤3
√
d) = ‖h(x)‖Lr(|x|≤3

√
d) < ∞.

Motivated by these two estimates, we let

Hε(x) =
∑

n∈Zd
max |nj |≥2

gε(x+ n) +
∑

max |nj |≤1

h ∗ φε(x+ n).

Then, Hε is smooth on [− 1
2 ,

1
2 )

d and

‖Hε‖Lr([− 1
2 ,

1
2 )

d) ≤ C < ∞, (2.14)

where the constant C is independent of ε > 0.

Moreover, from (2.13), we have

∑

n∈Zd\{0}

φ̂ε(n)e
2πin·x

|n|s =
∑

max |nj |≤1

G ∗ φε(x+ n) +Hε(x), (2.15)

for x ∈ [− 1
2 ,

1
2

)d
, where Hε is smooth, satisfying (2.14).

We are now ready to prove (2.10). Let ε > 0. We will first prove

‖φε ∗ Is(f)‖Lq(Td) . ‖f‖Lp(Td) (2.16)
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for smooth f with mean zero on Td, where the implicit constant is independent

of ε > 0. In the following, we often view f as a periodic function defined on Rd.

By (2.15), we have

φε ∗ Is(f)(x) = (2π)−s
∑

n∈Zd\{0}
f̂(n)φ̂ε(n)|n|−se2πin·x

= (2π)−s

∫

Td
f(y)

∑

n∈Zd\{0}
φ̂ε(n)|n|−se2πin·(x−y)dy

∼
∑

max |nj |≤1

∫

Td
f(y)

(
G ∗ φε

)
(x− y + n)dy +

∫

Td
f(y)Hε(x− y)dy

=: I (x) + II(x) (2.17)

for x ∈ [− 1
2 ,

1
2 )

d. Here, for fixed x ∈ [− 1
2 ,

1
2

)d
, y ranges over x+

(− 1
2 ,

1
2

]d
such

that x− y ∈ [− 1
2 ,

1
2

)d
. By Young’s inequality with 1

r = 1 + 1
q − 1

p , we have

‖II‖Lq(Td) ≤ ‖Hε‖Lr(Td)‖f‖Lp(Td) . ‖f‖Lp(Td), (2.18)

where the implicit constant is independent of ε > 0 thanks to (2.14).

Next, we estimate I . First, note that for x − y ∈ [ − 1
2 ,

1
2

)d
, max |nj | ≤ 1,

and |z| > 2
√
d, we have x − y + n − z /∈ [ − 1

2 ,
1
2

)d
. Then, recalling (2.12) and

changing the order of integration, we have

| I (x)| .
∣∣∣∣

∑

max |nj |≤1

∫

x+(− 1
2 ,

1
2 ]

d

f(y)

∫

|z|≤2
√
d

|z|s−dφε(x− y + n− z)dzdy

∣∣∣∣

.
∫

|z|≤2
√
d

|z|s−d
∑

max |nj |≤1

∫

x+(− 1
2 ,

1
2 ]

d

|f(y)|φε(x− y − z + n)dydz

.
∫

|z|≤2
√
d

|z|s−dFε(x− z)dz,

where Fε is defined by

Fε(z) =
∑

max |nj |≤1

∫

Rd

|f(y)|φε(z − y + n)dy. (2.19)

Here, we are viewing f as a periodic function defined on Rd. Although the domain

of integration in (2.19) is Rd, the actual integration is over a bounded domain
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since φε is supported on
[ − 1

2 ,
1
2

)d
. Making a change of variables in (2.19) and

using the periodicity of f , we have

Fε(z) =
∑

max |nj |≤1

∫

Rd

|f(y + n)|φε(z − y)dy = c

∫

z−y∈[− 1
2 ,

1
2 )

d

|f(y)|φε(z − y)dy

= c

∫

[− 1
2 ,

1
2 )

d

|f(z − y)|φε(y)dy.

As such, the expression defining Fε(z) is now periodic in z. Going now back to

the estimate on | I (x)|, we divide it into two parts:

| I (x)| .
∫

|z|≤R

|z|s−dFε(x− z)dz +

∫

R<|z|≤2
√
d

|z|s−dFε(x− z)dz

=: J1(Fε)(x) + J2(Fε)(x),

where R = R(x) > 0 is to be chosen later.

Note that J1 is given by a convolution with |z|s−dχ|z|≤R(z), which is radial,

integrable, and symmetrically decreasing about the origin. Hence, it can be bo-

unded from above by the uncentered Hardy–Littlewood maximal function M(Fε)

(see [6, Theorem 2.1.10]):

J1(Fε)(x) ≤ M(Fε)(x)

(∫

|z|≤R

|z|s−ddz

)
= cRsM(Fε)(x). (2.20)

We recall that M(f)(x) is defined as the supremum of the averages of |f | over all
balls B(y, δ) := {z ∈ Rd : |z − y| < δ} that contain the point x, that is

M(f)(x) = cd sup
δ>0

|x−y|<δ

1

δd

∫

|z−y|<δ

|f(z)| dz.

By Hölder’s inequality followed by Minkowski’s integral inequality, we have

J2(Fε)(x) ≤
(∫

|z|>R

|z|(s−d)p′
dz

) 1
p′
(∫

|z|≤2
√
d

(
Fε(x− z)

)p
dz

) 1
p

. R− d
q ‖f‖Lp(Td) (2.21)

for x ∈ [− 1
2 ,

1
2 )

d. Note also that here we use the condition (1.5) on the indices s,

p, q, in particular the fact that (s− d)p′ = −d− dp′

q . From (2.20) and (2.21), we

obtain

| I (x)| . RsM(Fε)(x) +R− d
q ‖f‖Lp(Td). (2.22)
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Choose now R = R(x) > 0 that minimizes (2.22). With

R = c‖f‖
p
d

Lp(Td)
(
M(Fε)(x)

)− p
d , (2.23)

we have2

| I (x)| . (
M(Fε)(x)

) p
q ‖f‖1−

p
q

Lp(Td). (2.24)

By taking the Lq-norm of both sides and then using the boundedness of the

Hardy–Littlewood maximal operator M(Fε) on Lp(Td) (see [6, Theorem 2.1.6]),

we obtain ‖I‖Lq(Td) . ‖f‖Lp(Td). Combining this with (2.18), we get (2.16).

Finally, (2.10) follows from (2.16) by taking ε → 0. This completes the proof of

Proposition 1.1.

2.4. Proof of (2.1) on Td. In the remainder of this section, we briefly describe

the proof of (2.1) for p > 2 in the periodic setting. As pointed out at the beginning

of Subsection 2.1, the proof of (2.1) for p ≤ 2 is identical to the one on Rd.

If s > d
2 and p ≥ 2, then from (2.1) (for p = 2) and Lp(Td) ⊂ L2(Td), we

have

‖u‖L∞(Td) . ‖u‖Hs(Td) ≤ ‖u‖Lp
s(Td).

Now, consider the case s ≤ d
2 and p > 2. With Gs as in (2.2), it follows from

(2.3) and (2.4) that

Gs(x) . |x|s−d, for |x| ≤ 2
√
d. (2.25)

As in the proof of Proposition 1.1, the main point is to transfer the relation

Ĝs(ξ) = 〈ξ〉−s to the periodic domain Td. This is done by Poisson’s summation

formula, Lemma 2.1. However, the decay of 〈ξ〉−s at infinity is not fast enough,

i.e. 〈ξ〉−s /∈ L1(Rd), and thus, Lemma 2.1 is not directly applicable, Hence, we

need to go through a similar modification as before. We omit this part of the

argument. Once we do that, the main objective is to estimate the expression I

in (2.17) with Gs in place of G:

| I (x)| ≤
∫

|z|≤2
√
d

Gs(z)Fε(x− z)dz.

Since sp > d, we have (s− d)p′ + d = p′(s− d
p ) > 0. Thus, using (2.25), Hölder’s

inequality and Minkowski’s integral inequality, we get

| I (x)| .
(∫

|z|≤2
√
d

|z|(s−d)p′
dz

) 1
p′
(∫

|z|≤2
√
d

(
Fε(x− z)

)p
dz

) 1
p

2If R ≥ 2
√
d in (2.23), then there is no contribution from J2(Fε)(x). In this case, (2.22) becomes

| I (x)| . RsM(Fε)(x). Since s > 0, setting R = 2
√
d yields (2.24).
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. ‖f‖Lp(Td) for x ∈ [−1

2
,
1

2
)d.

Hence, we obtain ‖ I‖L∞(Td) . ‖f‖Lp(Td). As pointed out in the proof of Proposit-

ion 1.1, the estimate ‖II‖L∞(Td) . ‖f‖Lp(Td) is rather straightforward. Combining

these two estimates, we obtain (2.1).
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[3] J. Bergh and J. Löfström, Interpolation Spaces: an Introduction, Springer–Verlag, Ber-
lin – New York, 1976.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well–
posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc. 16, no. 3 (2003),
705–749.

[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates
for periodic KdV equations, and applications, J. Funct. Anal. 211, no. 1 (2004), 173–218.

[6] L. Grafakos, Classical Fourier Analysis, Vol. 249, Second edition. Graduate Texts in
Mathematics, Springer, New York, 2008.

[7] L. Grafakos, Modern Fourier Analysis, Vol. 250, Second edition. Graduate Texts in Ma-
thematics, Springer, New York, 2009.

[8] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American
Mathematical Society, 1999.

[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution the-
ory and Fourier analysis, Springer-Verlag, Berlin, 2003.

[10] T. Kato, On the Korteweg-de Vries equation, Manuscripta Math. 28 (1979), 88–99.

[11] T. Kato, Quasi-linear equations of evolution, with application to partial differential equa-
tions, Vol. 448, Lecture notes in Math., Springer–Verlag, 1975, 25–70.

[12] E. Stein, Singular Integrals and Differentiability Properties of Functions, Vol. 30, Princeton
Mathematical Series, Princeton University Press, Princeton, N.J., 1970.

[13] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Vol. 32,
Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1972.
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