Title: On a theorem of Erdős and Sárközy
Author(s): Yong-Gao Chen and Min Tang
Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1} \leqslant a_{2} \leqslant \cdots\right)$ be an infinite sequence of nonnegative integers, $k \geq 2$ be a fixed integer and denote by $R_{k}(n)$ the number of solutions of $a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{k}}=n$. In this paper, we prove that if $g(n)$ is a monotonically increasing arithmetic function with $g(n) \rightarrow+\infty$ and $g(n)=o\left(n(\log n)^{-2}\right)$, then for any $0<\varepsilon<1,\left|R_{k}(n)-g(n)\right|>([k / 2]!-\varepsilon) \sqrt{g(n)}$ holds for infinitely many positive integers n. We also prove that for a positive integer d, if $R_{k}(n) \geq d$ for all sufficiently large integers n, then $R_{k}(n) \geq d+2[k / 2]!\sqrt{d}+([k / 2]!)^{2}$ for infinitely many positive integers n.

Address:

Yong-Gao Chen
School of Mathematical Sciences
and Institute of Mathematics
Nanjing Normal University
Nanjing 210023
P. R. China

Address:

Min Tang
School of Mathematics
and Computer Science
Anhui Normal University
Wuhu 241003
P. R. China

