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Sensitivity analysis of the solution map of parametric
operator equilibrium problems

By JÚLIA SALAMON (Miercurea Ciuc)

Abstract. The purpose of this paper is to study the parametric operator equi-

librium problems. By using new definitions of vector topological pseudomonotonicity

we give sufficient conditions for closedness of the solution map. The Hadamard well-

posedness of the parametric operator equilibrium problems is also analyzed.

1. Introduction

Domokos and Kolumbán [9] introduced the technique of working with op-

erator solutions instead of scalar or vector variables in field of variational inequal-

ities. Inspired by their work, Kum and Kim [12], [13] developed the scheme of

operator variational inequalities from the single-valued case into the multi-valued

one. The operator equilibrium problems were studied by Kazmi and Raouf [10],

Kum and Kim [14].

The equilibrium theory provides a unified, natural, innovative and general

framework for the study of a large variety of problems such as optimization prob-

lems, fixed points problems, variational inequalities, Nash equilibria, saddle point

problems and complementarity problems as special cases (see [3], [6], [15]). The

problems mentioned above often occur in mechanics, physics, finance, economics,

network analysis, transportation and elasticity.
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The behavior of the solutions resulted by the change of the problems data is

always of major concern. Sensitivity analysis examines the way how the solutions

of such problems change when the data of the problems are modified.

Kim, Kum and Lee introduced the parametric form of the generalized oper-

ator equilibrium problems in [11]. They analyzed the lower and upper semiconti-

nuity of the solution map. Our aim is to study the closedness of the solution map

of parametric operator equilibrium problems.

The paper is organized as follows. The notions of the vector topological pseu-

domonotonicity are introduced in Section 2. In Section 3 the closedness of the

solution map for parametric operator equilibrium problems is proved. The theo-

rems obtained extend the closedness results presented in [4] and [18]. In the final

section we investigate the generalized Hadamard well-posedness of parametric

operator equilibrium problems. We use similar technique as in [16].

2. Preliminaries

The problem under consideration is the following:

Let X and Y be Hausdorff topological vector spaces, L(X,Y ) be the space of

all continuous linear operators from X to Y and let D ⊂ L(X,Y ) be a nonempty

set. Let P , the set of parameters, be another Hausdorff topological space. Let

C : D → 2Y be a set-valued mapping such that for each f ∈ D, C(f) is a convex

open cone with nonempty interior and C (f) ̸= Y .

For a given p ∈ P the parametric operator equilibrium problem (OEP )p is

to find fp ∈ D such that

Fp(fp, g) /∈ −C(fp), ∀g ∈ D,

where Fp : D ×D → Y is a given function.

Let us denote by S(p) the set of the solutions for a fixed p. Suppose that

S(p) ̸= ∅, for all p ∈ P . For existence of solutions see [10].

We shall use the following notation. For any subset A of a topological space

Y , we denote by Ac the complement of A in Y . Denote by A the closure of A,

and ∂A the boundary of the set A.

In the following, we will introduce two new definitions of the vector topolog-

ical pseudomonotonicity. First, the definition of the suprema and the infima of

subsets of Y are given. Following [1], for a subset A of Y the suprema of A with

respect to an ordering cone C∗ is defined by

SupA =
{
y ∈ Ā : A ∩ (y + IntC∗) = ∅

}
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and the infima of A with respect to C∗ is defined by

Inf A =
{
y ∈ Ā : A ∩ (y − IntC∗) = ∅

}
.

For more details see [7].

Let (yi)i∈I be a net in Y . Let Ai = {yj : j ≥ i} for every i in the index set I.

The limit inferior and the limit superior of the net (yi), respectively, are given by

Liminf yi = Sup

(∪
i∈I

Inf Ai

)
and Limsup yi = Inf

(∪
i∈I

SupAi

)
.

Theorem 2.1 ([8] Theorem 2.1). Let (yi)i∈I be a net in Y convergent to y,

and let Ai = {yj : j ≥ i}.
i) If there is an index i0 such that, for every i ≥ i0, there exists j ≥ i with

Inf Aj ̸= ∅, then y ∈ Liminf yi.

ii) If there is an index i0 such that, for every i ≥ i0, there exists j ≥ i with

SupAj ̸= ∅, then y ∈ Limsup yi.

Now, we can introduce the new definitions of vector topological pseudomono-

tonicity which generalize the vector topological pseudomonotonicity notions given

by Definition 2.1 in [17] and Definition 3 in [18] respectively.

Let us denote by

K := ∩
f∈D

C (f) .

In what follows, IntK is assumed to be nonempty.

Definition 2.1. A mapping F : D ×D → Y is called A-vector topologically

pseudomonotone if for every g ∈ D, v ∈ C (f) and for each net (fi)i∈I in D

satisfying fi → f ∈ D with respect to the topology of pointwise convergence and

Liminf F (fi, f) ∩ (− IntK) = ∅,

then there is i0 in the index set I such that

{F (fj , g) : j ≥ i} ⊂ F (f, g) + v − C (fi) ,

for all i ≥ i0.

Definition 2.2. A mapping F : D ×D → Y is called B-vector topologically

pseudomonotone if for every g ∈ D, v ∈ C (f) and for each net (fi)i∈I in D

satisfying fi → f ∈ D with respect to the topology of pointwise convergence and

Liminf F (fi, f) = ∅ or Liminf F (fi, f) ∩ (− IntK)
c ̸= ∅
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then there is i0 in the index set I such that

{F (fj , g) : j ≥ i} ⊂ F (f, g) + v − C (fi) ,

for all i ≥ i0.

Remark 2.1. Every B-vector topologically pseudomonotone function is A-

vector topologically pseudomonotone.

The inverse relation is not necessarily true.

Example 2.2. Let X = [0, 1], Y = R2 and

D = {uc : X → Y : uc (x) = c (x, x) ,∀x ∈ X where c ∈ X} .

The function F : D ×D → Y is given by

F (ua, ub) = f (a, b) ,

where f : X ×X → Y is defined by

f(a, b) =

{
(a− b, 1− a) if a > 0

(b, 1) if a = 0.

Let C : D → 2Y be given by C (uc) = C∗ for every uc ∈ D, where the cone C∗ of

R2 is the third quadrant, i.e.

C∗ =
{
(a, b) ∈ R2 : a ≤ 0, b ≤ 0

}
.

The function f is A-vector topologically pseudomonotone, but it is not B-

vector topologically pseudomonotone. For proof see [18] Example 7.

The generalization of topological pseudomonotonicity introduced by Brézis

[5] was given by Kazmi and Raouf.

Definition 2.3. Let D ⊂ L(X,Y ) be a convex nonempty set. The mapping

F :D×D → Y is said to be B−C(f)-pseudomonotone, if for each net (fi)i∈I⊂D

and f, g ∈ D such that fi → f with respect to the topology of pointwise conver-

gence (w.r.t.p.c. for short) and

F (fi, (1− λ)f + λg) /∈ −C(fi), ∀λ ∈ [0, 1],∀fi,
we have

F (f, g) /∈ −C(f).
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The relation betweenA-vector topological pseudomonotonicity andB−C (f)-

pseudomonotonicity is given by the following proposition.

Proposition 2.3. Let X and Y be Hausdorff topological vector spaces, and

let D ⊂ L(X,Y ) be a convex nonempty set. Assume that F : D × D → Y is

A-vector topologically pseudomonotone, then F is B − C(f)-pseudomonotone.

Proof. Let (fi)i∈I be a net in D such that fi → f with respect to the

topology of pointwise convergence and f ∈ D. Assume that

F (fi, (1− λ)f + λg) /∈ −C(fi),∀λ ∈ [0, 1], ∀fi, (1)

where g ∈ D.

If λ = 0 then we have

F (fi, f) /∈ −C(fi), ∀fi ∈ I,

from where it follows that

F (fi, f) /∈ − ∩
i∈I

C(fi), ∀i ∈ I,

therefore

F (fi, f) /∈ − IntK.

Since (− IntK)
c
is a closed cone, we obtain that

Liminf F (fi, f) ∩ (− IntK) = ∅. (2)

We have to prove that

F (f, g) /∈ −C(f).

Let suppose the contrary, that F (f, g) = −v where v ∈ C (f). Since (2) holds,

from the definition of A-vector topological pseudomonotonicity of the mapping F

we obtain that there is i0 in the index set I such that

{F (fj , g) : j ≥ i} ⊂ F (f, g) + v − C (fi) = −C (fi)

for all i ≥ i0. This is a contradiction with

F (fi, g) /∈ −C(fi),∀fi,

relation obtained by taking λ = 1 in (1). Hence F (f, g) /∈ −C(f). �
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3. Closedness of the solution map

In this section the closedness of the solution mapping for parametric operator

equilibrium problems is analyzed.

First, we prove the following proposition.

Proposition 3.1. Let Y be a Hausdorff topological vector space and the

cones Ci be convex open and not equal with the space Y , for every index i in the

index set I. Let K := ∩
i∈I

Ci, such that IntK ̸= ∅. Then for all f, gi, fi ∈ Y , we

have

i) if f − g ∈ − IntK and f /∈ − IntK implies g /∈ − IntK;

ii) if fi − gi ∈ − IntK and gi ∈ −Ci for every i ∈ I implies fi ∈ −Ci,∀i ∈ I.

Proof. i) Assume the contrary, that g ∈ − IntK. From f − g ∈ − IntK it

follows that f ∈ g − IntK ⊂ − IntK contradicting f /∈ − IntK.

ii) Since fi − gi ∈ − IntK we have that fi ∈ gi − IntK. From the definition

of cone K we obtain that fi ∈ gi − IntK ⊂ −Ci − Ci = −Ci,∀i ∈ I. �

Next, we prove the following closedness result for (OEP )p.

Theorem 3.2. Let X and Y be Hausdorff topological vector spaces, and let

D ⊂ L(X,Y ) be a nonempty set and p0 ∈ P be fixed. Suppose that S(p) ̸= ∅ for

each p ∈ P and the following conditions hold:

i) For each net of elements (pi, fpi) ∈ GraphS, if pi → p0, fpi → f and for

every g ∈ D then

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩ (− IntK) ̸= ∅;

ii) Fp0 : D ×D → Y is A-vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0, i.e. for each net of elements

(pi, fpi) ∈ GraphS, pi → p0 and fpi → f imply (p0, f) ∈ GraphS.

Proof. Let (pi, fpi)i∈I be a net of elements (pi, fpi) ∈ GraphS, i.e.

Fpi
(fpi

, g) /∈ −C(fpi
), ∀g ∈ D (3)

such that fpi → f when pi → p0. By taking g = f , from the assumption i) we

obtain that

Liminf (Fpi (fpi , f)− Fp0 (fpi , f)) ∩ (− IntK) ̸= ∅.
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Since − IntK is an open cone, it follows that there exists a subnet (fpi),

denoted by the same indexes, such that

Fpi (fpi , f)− Fp0 (fpi , f) ∈ − IntK for all i ∈ I. (4)

By replacing g with f in (3) we get

Fpi (fpi , f) /∈ −C(fpi) for all i ∈ I,

therefore

Fpi (fpi , f) /∈ − IntK for all i ∈ I. (5)

By using Proposition 3.1 i), from (4) and (5) we obtain that

Fp0 (fpi , f) /∈ − IntK, for all i ∈ I.

Since (− IntK)
c
is closed, it follows

Liminf Fp0 (fpi , f) ∩ (− IntK) = ∅.

Now, we can apply ii) and we obtain that for every g ∈ D, v ∈ C(f), there

exists i0 ∈ I such that{
Fp0

(
fpj , g

)
: j ≥ i

}
⊂ Fp0(f, g) + v − C(fpi), ∀i ≥ i0. (6)

We have to prove that

Fp0 (f, g) /∈ −C(f), ∀g ∈ D.

Assume the contrary, that there exists g ∈ D such that

Fp0 (f, g) ∈ −C(f).

Let be Fp0 (f, g) = −v where v ∈ C(f). From (6) we obtain that there exists

i0 ∈ I such that{
Fp0

(
fpj , g

)
: j ≥ i

}
⊂ −v + v − C(fpi) = −C(fpi), ∀i ≥ i0. (7)

By using again the assumption i), it follows that there exists a subnet (fpi),

denoted by the same indexes, for which

Fpi (fpi , g)− Fp0 (fpi , g) ∈ − IntK, for all i ∈ I. (8)

By using Proposition 3.1 ii), from (7) and (8) it follows that

Fpi (fpi , g) ∈ −C(fpi), ∀i ≥ i0,

contradicting (3). Hence (p0, f) ∈ GraphS. �
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Remark 3.1. The condition i) can not be replaced by

i’) For each net of elements (pi, fpi) ∈ GraphS, if pi → p0, fpi → f and for

every g ∈ D then

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩
(
−K

)
̸= ∅.

The next example shores up this statement.

Example 3.3. Let P = N ∪ {∞}, p∞ = ∞. On P we consider the topology

induced by the mertic d given by d(m,n) = |1/m− 1/n|, d (n,∞) = d (∞, n) =

1/n, for m,n ∈ N, and d (∞,∞) = 0. Let X,Y,D,C and F∞ be the same

as F in Example 2.2. Let the vector functions Fn : D × D → Y be given by

Fn (ua, ub) = ua(1)− ub(1)− (1/n,−2), n ∈ N.
The function F∞ is A-vector topologically pseudomonotone. From Theo-

rem 2.1 it follows that

(0, 1 + 2a− b) ∈ Liminf (Fn (uan , ub)− F∞ (uan , ub)) ,

when an → a and b ∈ X. Since

(0, 1 + 2a− b) ∈ −K

the assumption i′) applies. We have (n, 1/n) ∈ GraphS for each n ∈ N, but
0 /∈ S(∞). Hence S is not closed at ∞.

If the subset D is convex then we can replace the A-vector topological pseu-

domonotonicity with B − C(f)-pseudomonotonicity.

Theorem 3.4. Let X and Y be Hausdorff topological vector spaces, and

let D ⊂ L(X,Y ) be a convex nonempty set and p0 ∈ P be fixed. Suppose that

S(p) ̸= ∅ for each p ∈ P and the following conditions hold:

i) For each net of elements (pi, fpi) ∈ GraphS, if pi → p0, fpi → f and g ∈ D

then

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩ (− IntK) ̸= ∅;

ii) Fp0 : D ×D → Y is B − C(f)-pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0.

Proof. Let (pi, fpi)i∈I be a net of elements (pi, fpi) ∈ GraphS, i.e.

Fpi (fpi , g) /∈ −C(fpi), ∀g ∈ D (9)
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such that fpi → f when pi → p0. By taking g = (1 − λ)f + λg, from the

assumption i) we obtain that

Liminf (Fpi (fpi , (1− λ)f + λg)− Fp0 (fpi , (1− λ)f + λg)) ∩ (− IntK) ̸= ∅

for all λ ∈ [0, 1].

Since − IntK is an open cone, it follows that there exists a subnet (fpi),

denoted by the same indexes, such that

Fpi (fpi , (1− λ)f + λg)

− Fp0 (fpi , (1− λ)f + λg) ∈ − IntK ∀λ ∈ [0, 1], ∀i ∈ I. (10)

By replacing g with (1− λ)f + λg in (9) we get

Fpi (fpi , (1− λ)f + λg) /∈ −C(fpi) ∀λ ∈ [0, 1], ∀i ∈ I. (11)

From (11) and (10) we obtain that

Fp0 (fpi , (1− λ)f + λg) /∈ −C(fpi), ∀λ ∈ [0, 1], ∀i ∈ I.

Since Fp0 is B − C(f)-pseudomonotone we obtain that

Fp0 (f, g) /∈ −C(f), ∀g ∈ D.

Hence (p0, f) ∈ GraphS. �

If we replace the assumption i) in Theorem 3.2 with a weaker condition, we

have to give a stronger term to assumption ii).

Theorem 3.5. Let X and Y be Hausdorff topological vector spaces, and let

D ⊂ L(X,Y ) be a nonempty set and p0 ∈ P be fixed. Suppose that S(p) ̸= ∅ for

each p ∈ P and the following conditions hold:

i) For each net of elements (pi, fpi) ∈ GraphS, if pi → p0, fpi → f and for

every g ∈ D then

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩
(
−K

)
̸= ∅;

ii) Fp0 : D ×D → Y is B-vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0.
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Proof. Let (pi, fpi)i∈I be a net of elements (pi, fpi) ∈ Graph S, i.e.

Fpi
(fpi

, g) /∈ −C (fpi
) , ∀g ∈ D

such that fpi → f when pi → p0. From where it follows that

Fpi (fpi , g) /∈ −K. (12)

By using assumption i) we obtain that

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩
(
−K

)
̸= ∅, ∀g ∈ D. (13)

In what follows we will prove that (12) and (13) imply

Liminf Fp0 (fpi , f) = ∅ or Liminf Fp0 (fpi , f) ∩ (− IntK)
c ̸= ∅.

We distinguish two cases:

Case 1. If Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩ (− IntK) ̸= ∅ in assumption

i), similar as in the proof of Theorem 3.2 we obtain that

Liminf Fp0 (fpi , f) ∩ (− IntK) = ∅.

Indeed, since − IntK is an open cone, it follows that there exists a subnet, denoted

by the same indexes, such that

Fpi (fpi , g)− Fp0 (fpi , g) ∈ − IntK, for all i ∈ I. (14)

By using Proposition 3.1 i), from (12) and (14) we obtain that

Fp0 (fpi , g) /∈ − IntK, for all i ∈ I.

Since (− IntK)
c
is closed, it follows

Liminf Fp0 (fpi , f) ∩ (− IntK) = ∅,
consequently

Liminf Fp0 (fpi , f) = ∅ or Liminf Fp0 (fpi , f) ∩ (− IntK)
c ̸= ∅.

Case 2. If Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩ (− IntK) = ∅ in assumption

i), then the single interesting case is when

Fpi (fpi , g)− Fp0 (fpi , g) ∈ (− IntK)
c
, ∀i ∈ I (15)
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and
Fp0

(fpi
, g) ∈ − IntK, ∀i ∈ I. (16)

Since Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ∩ (− IntK) = ∅, from (13) and (15)

it follows that, there exists a subnet (fpi) denoted by the same indexes for which

(Fpi (fpi , g)− Fp0 (fpi , g))i∈I converges to− ∂K. (17)

Indeed, otherwise it must exist i0 ∈ I such that

{Fpi
(fpi

, g)− Fp0
(fpi

, g) : i ≥ i0} ⊂
(
−K

)c
,

then from the definition of the limit inferior, we obtain that

Liminf (Fpi (fpi , g)− Fp0 (fpi , g)) ⊂
(
−K

)c
,

which is in contradiction with assumption i).

From (16) and (17) we obtain that there exists a subnet, denoted by the

same indexes, such that

(Fp0 (fpi , g))i∈I converges to an element on − ∂K. (18)

To prove this statement, let us suppose the contrary, that

{Fp0 (fpi , g) : i ∈ I} ⊂ − IntK.

Then by the convexity of the cone −K and (17) we obtain that

Fpi (fpi , g) converges to an element in− IntK,

from where it follows that there exists i1 ∈ I such that

Fpi (fpi , g) ∈ − IntK, for all i ≥ i1

contradicting (12).

By applying Theorem 2.1 to the subnet in (18) we obtain that

Liminf Fp0
(fpi

, g) ∩
(
−∂K

)
̸= ∅,

or there exists i2 ∈ I such that

Inf {Fp0 (fpi , g) : i ≥ i2} = ∅.
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This implies that

Liminf Fp0
(fpi

, g) ∩ (− IntK)
c ̸= ∅ or Liminf Fp0

(fpi
, g) = ∅.

So, in both cases, we can apply ii) and we obtain that for every g ∈ D, v ∈
C (f), there exists j0 ∈ I such that

{Fp0 (fpi , g) : i ≥ j} ⊂ Fp0(f, g) + v − C (fpi) , ∀j ≥ j0. (19)

We have to prove that

Fp0 (f, g) /∈ −C (f) , ∀g ∈ D.

Assume the contrary, that there exists g ∈ D such that

Fp0 (f, g) ∈ −C (f) .

Let be Fp0 (f, g) = −v where v ∈ C (f). From (19) we obtain that there exists

j0 ∈ I such that

{Fp0 (fpi , g) : i ≥ j} ⊂ −v + v − C (fpi) = −C (fpi) , ∀j ≥ j0. (20)

By using again the assumption i), it follows that one of the next cases, corre-

sponding to (14) and (17) respectively, holds:

there exists a subnet (fpi) denoted by the same indexes such that

Fpi (fpi , g)− Fp0 (fpi , g) ∈ − IntK, ∀i ∈ I (21)

or there exists a subnet (fpi) denoted by the same indexes for which

(Fpi (fpi , g)− Fp0 (fpi , g))i∈I converges to an element in − ∂K. (22)

By applying Proposition 3.1 ii), from (20) and (21) it follows that there exists

j1 ∈ I such that

Fpi (fpi , g) ∈ −C (fpi) , i ≥ j1 ≥ j0.

From (22) and the definition of the cone K, we obtain that for every i ∈ I

(Fpi (fpi , g)− Fp0 (fpi , g))i∈I converges to a point in − C (fpi). (23)

Since C (fpi) is open convex cone for every i ∈ I and the conditions (20) and (23)

hold we get

Fpi (fpi , g) converges to a point in − C (fpi) .
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Hence there exists j2 ∈ I such that

Fpi (fpi , g) ∈ −C (fpi) , i ≥ j2 ≥ j0.

But on the other side (pi, fpi) ∈ GraphS, and

Fpi (fpi , g) /∈ −C(fpi)

which is a contradiction. Hence (p0, f) ∈ GraphS. �

Remark 3.2. The Theorem 3.5 extends the Theorem 15 of [18] given for para-

metric vector equilibrium problems and Theorem 2 of [4] stated for parametric

equilibrium problems.

The following examples show how the assumptions of the theorems can be

verified.

Example 3.6. Let X,Y,D, P and C be the same as in Example 3.3. Let the

vector functions Fn : D × D → Y be given by Fn (ua, ub) = ua(1) − ub(1) +

(3,−1/n), n ∈ N, and the function F∞ be defined by F∞ (ua, ub) = ua(1) −
2ub(1) + (2,−2).

The function F∞ is A-vector topologically pseudomonotone since it is con-

tinuous. Only the assumption i) of Theorem 3.2 has to be verified. Let an, b, a ∈
[0, 1], and an → a. From Theorem 2.1 it follows that

(1 + b, 2 + b) ∈ Liminf (Fn (uan , ub)− F∞ (uan , ub)) .

Since S (n) = [0, 1/n] ̸= ∅ for every n ∈ N and (1 + b, 2 + b) ∈ − IntK we obtain

that the assumption i) holds. By applying Theorem 3.2 it follows that the function

S is closed at ∞.

Example 3.7. Let X, Y , D, P and C be the same as in Example 3.3. Let the

functions Fn : D ×D → Y be given by Fn (ua, ub) = ua(1) − ub(1) + (−1/n, 2),

n ∈ N and the function F∞ be defined by

F∞(ua, ub) =

{
ua(1)− ub(1) + (0, 1) if a > 0

−ub(1) if a = 0.

The function F∞ is B-vector topologically pseudomonotone. Indeed, if a > 0,

the function F∞ is continuous therefore it is B-vector topologically pseudomono-

tone. Let us study the case when a = 0.
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If an ̸= 0, n ∈ N we have

Liminf F∞ (uan , u0) = Liminf {(an, 1 + an) : an ∈ ] 0, 1] and an → 0} ,

from Theorem 2.1 it follows that

(0, 1) ∈ Liminf F∞ (uan , u0) ,

therefore

Liminf F∞ (uan , ua) ∩ (− IntK)
c ̸= ∅.

We have to prove that there exists n0 ∈ N such that

{F∞ (uan , ub) : n ≥ n0} ⊂ F∞ (u0, ub) + v −K

⇔ {(an − b, 1 + an − b) : n ≥ n0} ⊂ (−b,−b) + v −K,

where v ∈ K. This is true, since{
an − b ≥ −b

1 + an − b ≥ −b
for all an, b ∈ ]0, 1].

If an = 0, n ∈ N , then F∞(uan , u0) = F∞(u0, u0) = (0, 0) ∈ (− IntK)
c
. Since

F∞ (u0, ub) ⊂ F∞ (u0, ub) + v − K we obtain that the function F∞ is B-vector

topologically pseudomonotone.

Now we verify the assumption i). Let an, b ∈ [0, 1] and an → a. One has

Liminf (Fn (uan , ub)− F∞ (uan , ub)) ∩
(
−K

)
̸= ∅

that is

Liminf {(−1/n, 1) , n ≥ 1} ∩
(
−K

)
̸= ∅, when an ̸= 0;

Liminf {(−1/n, 2) , n ≥ 1} ∩
(
−K

)
̸= ∅, when an = 0

which is true, since from Theorem 2.1 we have

(0, 1) ∈ Liminf (Fn (uan , ub)− F∞ (uan , ub)) ;

(0, 2) ∈ Liminf (Fn (uan , ub)− F∞ (uan , ub)) .

By applying Theorem 3.5 it follows that the function S is closed at ∞.
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4. Hadamard well-posedness

By using the relations between the notions of closedness, upper semi-conti-

nuity and Hadamard well-posedness, we obtain the Hadamard well-posedness of

the parametric operator equilibrium problems.

Let X, Y be topological spaces. The map T : X → 2Y is said to be upper

semi-continuous at u0 ∈ domT := {u ∈ X|T (u) ̸= ∅} if for each neighborhood V

of T (u0), there exists a neighborhood U of u0 such that T (U) ⊂ V .

Closedness and upper semi-continuity of a multifunction are closely related.

Proposition 4.1 ([2] Proposition 1.4.8, 1.4.9). Let X, Y be Hausdorff topo-

logical spaces.

i) If T : X → 2Y has closed values and is upper semi-continuous then T is

closed;

ii) If Y is compact and T is closed at x ∈ X then T is upper semi-continuous

at x ∈ X.

Now we recall the notion of generalized Hadamard well-posedness.

Definition 4.1. The problem (OEP )p is said to be Hadamard well-posed

(briefly H-wp) at p0 ∈ P if S(p0) = {fp0} and for any fp ∈ S(p) one has fp → fp0 ,

as p → p0. The problem (OEP )p is said to be generalized Hadamard well-posed

(briefly gH-wp) at p0 ∈ P if S(p0) ̸= ∅ and for any fp ∈ S(p), if p → p0, (fp)

must have a subsequence converging to an element of S(p0).

With the help of the next result we are able to establish the relationship

between upper semi-continuity and Hadamard well-posedness.

Proposition 4.2 ([19] Theorem 2.2). Let X and Y be Hausdorff topological

spaces and T : X → 2Y be a set valued map. If T is upper semi-continuous at

x ∈ X and T (x) is compact, then T is gH-wp at x. If more, T (x) = {y∗}, then T

is H-wp at x.

In the following we prove that the solution map of (OEP )p has closed value

at p0.

Proposition 4.3. If D is closed with respect to pointwise convergence (for

short w.r.t.p.c) and Fp0 : D×D → Y is A-vector topologically pseudomonotone,

then S (p0) is closed.

Proof. Let S (p0) ̸= ∅ and fi ∈ S (p0), with fi → f . Since D is closed

w.r.t.p.c, we have that f ∈ D. From fi ∈ S (p0) it follows that

Fp0 (fi, f) /∈ −C(fi), ∀i ∈ I,
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therefore

Fp0 (fi, f) /∈ − IntK, ∀i ∈ I.

Since (− IntK)
c
is closed, we get

Liminf Fp0 (fi, f) ∩ − IntK = ∅.

By using the A-vector topological pseudomonotonicity we obtain that for every

g ∈ D and v ∈ C (f) there is i0 in the index set I such that

{Fp0 (fj , g) : j ≥ i} ⊂ Fp0 (f, g) + v − C(fi), for all i ≥ i0. (24)

We have to prove that f ∈ S (p0), i.e.

Fp0 (f, g) /∈ −C(f), ∀g ∈ D.

Assume the contrary, that there exists g ∈ D such that

Fp0 (f, g) ∈ −C(f).

Let Fp0 (f, g) = −v where v ∈ C (f) . From (24) we obtain that

{Fp0
(fj , g) : j ≥ i} ⊂ −v + v − C(fi) = −C(fi), ∀i ≥ i0

which is a contradiction to fi ∈ S (p0). Thus f ∈ S (p0). �

It can be easily verified the next proposition.

Proposition 4.4. If D is convex, closed and Fp0 : D×D → Y is B−C(f)-

pseudomonotone, then S (p0) is closed.

Now we can formulate the following results.

Corollary 4.5. Let X and Y be Hausdorff topological vector spaces, and P

be a Hausdorff topological space. Let D be a compact subset of L (X,Y ). If the

hypotheses of Theorem 3.2 are satisfied, then (OEP )p is generalized Hadamard

well-posed at p0. Furthermore, if S(p0) = {fp0} (singleton), then (OEP )p is

Hadamard well-posed at p0.

Proof. From Theorem 3.2 we obtain that the solution map S is closed at p0.

By using Proposition 4.1 ii) it follows that S is upper semi-continuous at p0. The

set S(p0) is closed by Proposition 4.3, hence it is compact. The conclusion follows

from Proposition 4.2. �
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Similarly as Corollary 4.5 we can prove the following result.

Corollary 4.6. Let X and Y be Hausdorff topological vector spaces, and P

be a Hausdorff topological space. Let D be a convex, compact subset of L (X,Y ).

If the hypotheses of Theorem 3.4 are satisfied, then (OEP )p is gH-wp at p0.

Furthermore, if S(p0) = {ap0
}, then (OEP )p is H-wp at p0.

The following corollary is an immediate consequence of Remark 2.1 and

Corollary 4.5.

Corollary 4.7. Let X and Y be Hausdorff topological vector spaces, and

P be a Hausdorff topological space. Let D be a compact subset of L (X,Y ).

If the hypotheses of Theorem 3.5 are satisfied, then (OEP )p is gH-wp at p0.

Furthermore, if S(p0) = {fp0}, then (OEP )p is H-wp at p0.

Example 4.8. Since D in Example 3.6 and Example 3.7 is compact, from

Corollary 4.5 and Corollary 4.7 it follows that both problems are Hadamard well-

posed.

5. Conclusions

In this paper we introduced two new definitions of vector topological pseu-

domonotonicity. We gave the relations between these notions and the already

existing B − C (f) pseudomonotonicity. If the domain of the map is a convex,

nonempty set, then every B-vector topologically pseudomonotone map is A-vector

topologically pseudomonotone, and every A-vector topologically pseudomonotone

map is B − C (f) pseudomonotone.

The main result of this paper gives sufficient conditions for closedness of

the solution map for parametric operator equilibrium problems. The theorems

obtained extend the closedness results obtained by Bogdan and Kolumbán [4],

Salamon and Bogdan [18].

The notions of closedness, upper semi-continuity and Hadamard well-posed-

ness are closely related. If the domain of the given functions is compact, we

obtain results for upper semi-continuity of the solution map and the Hadamard

well-posedness of the parametric operator equilibrium problems.
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