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On positive real zeros of theta and L-functions associated
with real, even and primitive characters

By STÉPHANE R. LOUBOUTIN (Marseille) and MARC MUNSCH (Marseille)

Abstract. Let D range over the positive fundamental discriminants. Let θ(t, χD),

t > 0, denote the theta function associated with the real, even and primitive Dirichlet

character of conductor D. On the one hand, we prove that there are infinitely many

positive discriminants D for which θ(t, χD) has at least one positive real zero. On

the other hand, we prove that for a given positive real number t0, there are at least

≫ X/ log13/2 X positive fundamental discriminants D ≤X for which θ(t0, χD) ̸= 0.

1. Introduction

Let χD range over the real, even and primitive Dirichlet characters of con-

ductors D > 1. Hence, D is a positive fundamental discriminant, i.e. either

D = d ≡ 1 (mod 4) is squarefree, or D = 4d with d ≡ 2 or 3 (mod 4) squarefree.

Conversely for such a D there is exactly one real, even and primitive Dirichlet

character of conductor D: it is given by the Kronecker’s symbol χD(n) =
(
D
n

)
.

Let

θ(t, χD) :=
∑
n≥1

χD(n)e−πn2t/D (t > 0)

be its associated theta series which is used, as in [Dav, Chapter 9], to prove the

functional equation of the associated Dirichlet L-series

L(s, χD) :=
∑
n≥1

χD(n)

ns
(ℜ(s) > 0).
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In fact, one first proves that

θ(1/t, χD) =
√
tθ(t, χD) (t > 0), (1)

which in using

(D/π)s/2Γ(s/2)L(s, χD) =

∫ ∞

0

θ(t, χD)ts/2
dt

t
(ℜ(s) > 1)

=

∫ ∞

1

θ(t, χD)(ts/2 + t(1−s)/2)
dt

t
(2)

yields the entire continuation of L(s, χD) to the complex plane together with the

following functional equation:

(D/π)s/2Γ(s/2)L(s, χD) = (D/π)(1−s)/2Γ((1− s)/2)L(1− s, χD). (3)

By (2), if θ(t, χD) has no positive real zero, then L(s, χD) > 0 for s > 0. However,

in Theorem 1 we will prove that θ(t, χD) has at least one positive real zero for

infinitely many positive fundamental discriminants D’s, but in Theorem 2 we

prove that for a given t0 > 0 there are infinitely many D’s for which θ(t0, χD) ̸= 0.

Conversely, in Theorem 4 we give an easy to check sufficient condition for θ(t, χD)

to have no positive real zero, and we will give several values of D for which this

is indeed the case. Finally, following [Ros], we will prove in Theorem 6 that if

θ(t, χD) has at most one real zero greater than or equal to 1 and if L(1/2, χD) > 0,

then L(s, χD) > 0 for s > 0 (an example of such a D being D = 53).

1.1. Real zeros of θ(t, χD). Since limt→+∞ eπt/Dθ(t, χD) = 1, it follows that

θ(t, χD) > 0 for t large enough. In fact, for t ≥ 1/6, we have

etθ(Dt/π, χD) ≥ 1−
∑
n≥2

e−(n2−1)t ≥ 1−
∑
n≥2

e−(n2−1)/6 > 0.

Hence, by (1), for t ≥ D/6π and 0 < t ≤ 6π/D we have θ(t, χ) > 0. In particular,

if D < 6π, i.e. if D ∈ {5, 8, 12, 13, 17}, then θ(t, χ) > 0 for t > 0. However,

since θ(1, χ53) = −0.11074 · · · < 0, there exists t0 > 1 such that θ(t0, χ53) = 0.

More generally, there are infinitely many positive fundamental discriminants D

for which θ(t, χD) has at least one positive real zero:

Theorem 1. If d > 1 is a square free integer in any one of the two arithmetic

progressions {53 + 120k; k ≥ 0} or {77 + 120k; k ≥ 0}, then θ(t, χd) has at least

one positive real zero.
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Proof. We could adapt [H]. We give a more explicit argument. Choose D

such that χD(n) = −1 for n ∈ E := {2, 3, 5}, i.e. choose D in any one of the two

considered arithmetic progressions. Then, for α > 0 we have

θ(αD/π, χD) =
∑
n≥1

χD(n)e−n2α ≤ fE(α) := −2
∑
n∈E

e−n2α +
∑
n≥1

e−n2α.

Now, we have fE(0.07) = −0.0746 · · · < 0, which yields the desired result. �

The main result of this paper is the following converse result:

Theorem 2. Fix t0 > 0 and an arithmetic progression {a + 4kb; k ≥ 0},
with 1 ≤ a < 4b, a ≡ 1 (mod 4) and gcd(a, b) = 1. Set

Ca,b :=
1

4b

∏
p≥3

gcd(p,b)=1

(
1− 1

p2

)
> 0. (4)

Then, θ(t0, χD) ̸= 0 for at least ≫ X/ log13/2X of the N(X) ∼ Ca,bX positive

fundamental discriminants D ≤ X of this arithmetic progression.

Proof. See Section 4. �

This should be compared with the results obtained in [Lou99] where, by

studying their second and fourth moments, we proved that θ(1, χp) ̸= 0 for at

least ≫ p/ log p of the (p− 1)/2 odd Dirichlet characters mod p a prime number.

See also [LM], for the explicit asymptotics for the second and fourth moments of

θ(1, χ) when χ ranges either over the (p − 1)/2 odd Dirichlet characters mod p

or over the (p − 3)/2 not trivial even Dirichlet characters mod p. A slight mod-

ification of the proofs in [LM] yields similar results for any t0 > 0, so that we

have θ(t0, χp) ̸= 0 for at least ≫ p/ log p of the (p− 1)/2 odd Dirichlet characters

mod p a prime number and for at least ≫ p/ log p of the (p − 3)/2 non trivial

even Dirichlet characters mod p a prime number. However, in [CZ] it is proved

that it may (seldom) happen that θ(1, χ) = 0 for complex characters (their two

(up to complex conjugation) examples of such characters are primitive characters

of composite conductors).

1.2. Real zeros of θ(t, χD) and the sign of L(s, χD) for s > 0. Let us first

recall S. Chowla’s elementary sufficient condition for an L-series to be positive

on positive real numbers (see [Chow]). Let χ be a (not necessarily primitive) non
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principal real character mod f > 1. Define inductively X0(n) = χ(n), n ≥ 0, and

Xr+1(n) =
∑n

k=0Xr(k), n ≥ 0. Then,

f(t, χ) :=
∑
n≥0

χ(n)e−nt = (1− e−t)r

(∑
n≥0

Xr(n)e
−nt

)
(t > 0). (5)

Since

Γ(s)L(s, χ) =

∫ ∞

0

f(t, χ)ts−1dt (ℜ(s) > 0),

we deduce that if there exists r ≥ 0 such that Xr(n) ≥ 0 for all n ≥ 0, then

L(s, χ) > 0 for s > 0. However, H. Heilbronn proved in [H] that there are

characters for which no such r exists. In fact, we have the following more explicit

result (see [BPW]):

Theorem 3. Let χ be a (not necessarily primitive) non principal real char-

acter mod f > 1 and assume that χ(2) = χ(3) = χ(5) = χ(7) = χ(11) = −1,

then there does not exist any r ≥ 0 such that Xr(n) ≥ 0 for all n ≥ 0.

Proof. By (5), if such an r exists then f(t, χ) > 0 for t > 0. Set E =

{2, 3, 5, 7, 8, 11, 12}. Then χ(n) = −1 for n ∈ E and

f(t, χ) ≤
∑
n≥1

e−nt − 2
∑
n∈E

e−nt =
e−t

1− e−t

(
1− 2(1− e−t)

∑
n∈E

e−(n−1)t

)
.

Hence, if PE(x) := 1 − 2(1 − x)(
∑

n∈E x
n−1) < 0 for some x ∈ (0, 1), then

f(t, χ) < 0 for t = − log x. Since PE(3/4) < 0, the desired result follows. �

In [Lou03] we proved that no such r exists if L(1, χ) is small enough, say if

L(1, χ) ≤ 1 − log 2 (see also [Lou04] for improvements), and by [CE] that there

are infinitely many such characters.

If t 7→ θ(t, χD) has no real zero in (1,+∞), then θ(t, χD) > 0 for t ≥ 1,

hence θ(t, χD) > 0 for t > 0 by (1), and L(s, χD) > 0 for s ≥ 1/2, by (2), hence

L(s, χD) > 0 for s > 0, by (3). We give a simple sufficient condition for this to

happen (notice that if χ mod f is even, then X1(f − 2) = −1.):

Theorem 4. Let D > 0 be a fundamental discriminant. Assume that

X1(n) :=
∑n

k=1 χD(k) ≥ 1 for 1 ≤ n ≤ ND := min{N ≥ 2; N2/ logN ≥ D/π}.
Then θ(t, χD) > 0 for t ≥ 1 and L(s, χD) > 0 for s > 0. Notice that ND is

asymptotic to
√

D
2π log

(
D
2π

)
.



On positive real zeros of theta and L-functions associated with real. . . 647

Proof. Set β(t, χD) := θ(Dt/π, χD) =
∑

n≥1 χD(n)e−n2t. By (1), we only

have to prove that β(t, χD) > 0 for t ≥ π/D. Now, we have

β(t, χD) =
N−1∑
n=1

X1(n)(e
−n2t − e−(n+1)2t) +X1(N)e−N2t +

∑
n>N

χD(n)e−n2t

≥
N−1∑
n=1

(e−n2t − e−(n+1)2t) + e−N2t −
∑
n>N

e−n2t = e−t −
∑
n>N

e−n2t.

The desired result follows from the last assertion in Lemma 5. �

Lemma 5. For N ≥ 1, set fN (t) := e−t −
∑

n>N e−n2t, t> 0. Then, fN (t) has

exactly one positive real zero tN , and tN is asymptotic to N−2 logN as N → ∞.

Moreover, fN (N−2 logN) > 0.

Proof. Since t 7→ etfN (t) increases with t > 0, it follows that fN (t) has

exactly one positive real zero tN . Now,

∑
n>N

e−(n/N)2 logN ≤
∫ ∞

N

e−(t/N)2 logNdt

=
N

2
√
logN

∫ ∞

logN

e−t dt√
t
≤ N

2 logN

∫ ∞

logN

e−tdt =
1

2 logN

yields fN (N−2 logN) ≥ e−N−2 logN − 1
2 logN > 0 for N ≥ 2. It remains to prove

that for any given α ∈ (0, 1) we have fN (αN−2 logN) < 0 for N ≥ Nα large

enough, which follows from

∑
n≥N

e−α(n/N)2 logN ≥
∫ ∞

N

e−α(t/N)2 logNdt

=
N

2
√
α logN

∫ ∞

α logN

e−t dt√
t
≥ 2

3

N1−α

2α logN

(use I(X) :=
∫∞
X
e−t dt√

t
= e−X

√
X

−
∫∞
X
e−t dt

2t
√
t
≥ e−X

√
X

− 1
2I(X) for X ≥ 1), which

proves that for a given α ∈ (0, 1) we have limN→∞ fN (αN−2 logN) = −∞. �

For example, for D = 17 we have X1(n) ≥ 1 for 1 ≤ n ≤ ND = 2 and

L(s, χ17) > 0 for s > 0. For various bounds B’s, we computed the following

Table, where N1(B) denotes the number of positive fundamental discriminants

less than or equal to a prescribed bound B and N2(B) denotes the number of
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such discriminants for which Theorem 4 applies:

B N1(B) N2(B) %(= 100N2(B)/N1(B))

102 30 16 53.33

103 302 124 41.06

104 3043 1025 33.68

105 30394 8798 28.95

106 303957 76670 25.12

107 3039653 682332 22.45

108 30396324 6165194 20.28

According to [BM, Corollary 3], N2(B)/N1(B) tends to 0 as B tends to +∞.

It has been checked numerically that ζK(s) < 0 for 0 < s < 1 for all the

imaginary quadratic number fields K of conductors fK ≤ 3 · 108 (see [Wat]),

which amounts to saying that L(s, χ) > 0 for 0 < s < 1 for all the odd and

quadratic Dirichlet characters χ mod f with f ≤ 3 · 108. In contrast, for non

trivial, even and quadratic characters there is no known efficient algorithm to

check the same result up to that large moduli. In fact, it has only been checked

that L(s, χ) > 0 for 0 < s < 1 for all the non trivial, even and quadratic Dirichlet

characters χ mod f with f ≤ 2 · 105 (see [Chua]).

Theorem 6. Let D be a positive fundamental discriminant. If θ(t, χD) has

exactly one real zero in [1,+∞) and if L( 12 , χD) > 0, then L(s, χD) > 0 for s > 0.

Proof. Our proof is similar to that of [Ros, Lemma 4, page 511], where

the case of negative fundamental discriminants is dealt with (by working on the

Dedekind zeta function of the imaginary quadratic field of negative discriminant).

Let a ≥ 1 be this zero. We may assume that a is a zero of odd multiplicity, which

implies that θ(t, χD) changes signs at t = a. We may assume that s ≥ 1/2, by

(3). Then,

∂

∂s

(
ts/2 + t(1−s)/2

as/2 + a(1−s)/2

)
=

(log t− log a)(1− (at)
1
2−s) + (log t+ log a)(a

1
2−s − t

1
2−s)

2(at)−s/2(as/2 + a(1−s)/2)2

is negative for t < a and positive for t > a. Since limt→+∞ eπt/Dθ(t, χD) = 1, we

have that θ(t, χD) < 0 for 1 ≤ t < a and θ(t, χD) > 0 for t > a. Hence,

∂

∂s

(
ts/2 + t(1−s)/2

as/2 + a(1−s)/2
θ(t, χD)

)
> 0
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for s ≥ 1/2 and t ̸= a. By (2), we deduce that

s 7→ (D/π)s/2Γ(s/2)L(s, χD)

as/2 + a(1−s)/2

increases with s ≥ 1/2 and the desired result follows. �

For example, a plot of their graphs leads us to suspect that if χ53 is the even,

real and primitive Dirichlet character mod 53, then θ(t, χ53) has exactly 1 real

zero in [1,+∞), whereas θ(χ197, t) has exactly 2 such zeros.

2. The mean value of θ(t0, χD)

For a given s ∈ (1/2, 1], R. Ayoub evaluated in [Ay] the mean value of

L(s, χD) over the fundamental discriminants. Our goal in this section is, for

a given t0 > 0, to evaluate the mean value of θ(t0, χD) over the fundamental

discriminants.

We fix a and b with 1 ≤ a < 4b, a ≡ 1 (mod 4) and gcd(a, b) = 1. We

let D ≡ 1 (mod 4) range over the positive fundamental discriminants of the

arithmetic progression {a+4kb; k ≥ 0}. Hence, D = d ranges over the squarefree

integers greater than one of this arithmetic progression. The number Na,b(X)

of positive fundamental discriminants D ≤ X in this arithmetic progression is

asymptotic to Ca,bX, where Ca,b > 0 is defined in (4). Throughout this paper,

we let
∗∑

1<D≤X
D≡a (mod 4b)

denote sums over the positive fundamental discriminants D ≤ X in such arith-

metic progressions, i.e. sums over the square-free integers d ≡ a (mod 4b) with

1 < d ≤ X.

Theorem 7. Fix t0 > 0 and an arithmetic progression {a + 4kb; k ≥ 0},
with 1 ≤ a < 4b, a ≡ 1 (mod 4) and gcd(a, b) = 1. It holds that

S1(t0, X) :=
∗∑

1<D≤X
D≡a (mod 4b)

θ(t0, χD) ∼ C1

t
1/4
0

X5/4,

where

C1 =
Γ(1/4)

5π1/4
Cb with Cb :=

1

4b

∏
p≥2

gcd(p,4b)=1

(
1− 2

p2
+

1

p3

)
.
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Hence, θ(t0, χD) > 0 for at least ≫ X3/4 of the N(X) ∼ Ca,bX positive funda-

mental discriminants D ≤ X of this arithmetic progression.

Proof. Let us first prove the last assertion. Let N>0(X) denote the number

of such fundamental discriminants. Since

|θ(t0, χD)| ≤
∑
n≥1

e−πn2t0/D ≤
∫ ∞

0

e−πu2t0/Ddu =
√
D/4t0,

we have S1(t0, X) ≤ N>0(X)
√
X/4t0 and the desired result follows. Let us now

prove the first assertion, We have

S1(t0, X) =
∗∑

1<D≤X
D≡a (mod 4b)

∑
n≥1

(
D

n

)
e−πn2t0/D.

We split this double sum into two parts. The first one

Ssq
1 (t0, X) :=

∗∑
1<D≤X

D≡a (mod 4b)

∑
m≥1

gcd(m,D)=1

e−πm4t0/D (6)

ranges over the indices n which are perfect squares, and the second one

Snsq
1 (t0, X) :=

∑
n≥1

n not a square

∗∑
1<D≤X

D≡a (mod 4b)

(
D

n

)
e−πn2t0/D (7)

ranges over the indices n which are not perfect squares. Using Propositions 10

and 17, the desired result follows. �

3. The mean square value of θ(t0, χD)

Theorem 8. Fix t0 > 0. Let
∑∗

1<D≤X denote sums over the positive fun-

damental discriminants D ≤ X. It holds that

S2(t0, X) :=
∗∑

1<D≤X

θ(t0, χD)2 ≪ X3/2 log13/2X.
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Proof. We have

S2(t0, X) =
∗∑

1<D≤X

∑
a≥1

∑
b≥1

(
D

ab

)
e−π(a2+b2)/D.

We split this double sum into two parts. The first one is over the indices a and

b for which ab is a perfect square, which amounts to asking that a = da′2 and

b = db′2 with d ≥ 1 and gcd(a′, b′) = 1, hence can be written

Ssq
2 (t0, X) :=

∗∑
1<D≤X

∑
d≥1

gcd(d,D)=1

∑
a,b≥1, gcd(a,b)=1

gcd(a,D)=gcd(b,D)=1

e−πd2(a4+b4)t0/D. (8)

The second one

Snsq
2 (t0, X) :=

∗∑
1<D≤X

∑
a,b≥1

ab not a square

(
D

ab

)
e−π(a2+b2)t0/D (9)

ranges over the indices a and b for which ab are not perfect squares. Using

Propositions 18 and 28, the desired result follows. �

4. Proof of Theorem 2

We use Theorems 7 and 8 and notice that, by the Cauchy–Schwarz inequal-

ity, it holds that θ(t0, χD) ̸= 0 for at least S1(t0, X)2/S2(t0, X) of the positive

fundamental discriminants D ≤ X of this arithmetic progression.

Remark 9. In fact, even though we could not prove it, we expect Snsq
2 (t0, X)

to be negligible compared with Ssq
2 (t0, X), i.e. we expect S2(t0, X) to be asymp-

totic to C2√
t0
X3/2 logX, with C2 as in Proposition 18. Hence, we expect that

θ(t0, χD) ̸= 0 for at least ≫ X/ logX of the N(X) ∼ Ca,bX positive fundamental

discriminants D ≤ X of this arithmetic progression.

The remaining of this paper is devoted to proving Theorems 7 and 8, by

studying the behaviors of (6) and (7), in Propositions 10 and 17, and by studying

the behaviors of (8) and (9), in Propositions 18 and 28.
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5. The behavior of Ssq
1 (t0, X)

By applying Lemmas 11, 12 and 13 below, we will prove:

Proposition 10. Fix t0 > 0 and an arithmetic progression {a+4kb; k ≥ 0},
with 1 ≤ a < 4b, a ≡ 1 (mod 4) and gcd(a, b) = 1. Then, Ssq

1 (t0, X), defined in

(6), is asymptotic to C1

t
1/4
0

X5/4, where C1 > 0 is given in Theorem 7.

Lemma 11. Fix t0 > 0 and ϵ > 0. Set

ΦD(t) :=
∑
m≥1

gcd(m,D)=1

e−πm4t/D (t > 0).

It holds that

ΦD(t0) =
Γ(1/4)

4(πt0)1/4
ϕ(D)

D
D1/4 +O (Dϵ) .

Hence,

Ssq
1 (t0, X) =

∗∑
1<D≤X

D≡a (mod 4b)

ΦD(t0) =
Γ(1/4)

4(πt0)1/4

∗∑
1<D≤X

ϕ(D)

D
D1/4 +O

(
X1+ϵ

)
.

Proof. We refer the reader to [Mel] or [Rad, Section 27] for properties of

Mellin’s transforms. The Mellin’s transform of ΦD(t) is

ΨD(s) :=MΦD(s) =

∫ ∞

0

ΦD(t)ts
dt

t
=

(
D

π

)s{∏
p|D

(
1− 1

p4s

)}
ζ(4s)Γ(s).

It has a simple pole at s = 1/4, and

ΦD(t0) =M−1ΨD(t0) =
1

2πi

∫ α+i∞

α−i∞
ΨD(s)t−s

0 ds (α > 1).

By moving the vertical line of integration ℜ(s) = α to the left to the vertical line

ℜ(s) = ϵ/2, ϵ ∈ (0, 1/4), we pick up one residue, at s = 1/4, and we obtain

ΦD(t0) =
Γ(1/4)

4(πt0)1/4
ϕ(D)

D
D1/4 +O

(
Dϵ/2

∏
p|D

(
1 +

1

p2ϵ

))
.

Since

ω(D) :=
∑
p|D

1 ≤ (1 + o(1))
logD

log logD
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(use D ≥ ω(D)! ≥ (ω(D)/e)ω(D)), we have∏
p|D

(1 + p−2ϵ) ≤ 2ω(D) = D(log 2)
ω(D)
log D = Do(1),

and the desired result follows. �
Lemma 12. Let Cb be as in Theorem 7. It holds that

F (X) :=

∗∑
1<D≤X

D≡a (mod 4b)

ϕ(D)

D
∼ CbX.

Proof. Set ad = ϕ(d)/d if 1 ≤ d ≡ a (mod 4b) and d is square-free, and

ad = 0 otherwise. Then, set F (s) =
∑

d≥1 add
−s, a Dirichlet series with nonneg-

ative coefficients. It suffices to prove that F (s) admits an analytic continuation

to ℜ(s) > 1/2, with only one pole, a simple pole of residue Cb at s = 1 (e.g., see

[Lang, Chapter 15, Section 3]). We have

F (s) =
1

ϕ(4b)

∑
χ mod 4b

χ(a)F (s, χ),

where

F (s, χ) :=
∑
d≥1

µ2(d)χ(d)
ϕ(d)

d

1

ds
=
∏
p≥2

(
1 +

(
1− 1

p

)
χ(p)

ps

)
= Πχ(s)L(s, χ),

where

Πχ(s) :=
∏
p≥2

(
1 +

(
1− 1

p

)
χ(p)

ps

)(
1− χ(p)

ps

)
is absolutely convergent and holomorphic for ℜ(s) > 1/2. If χ is not trivial, then

F (s, χ) is holomorphic for ℜ(s) > 1/2. Now, assume that χ is the trivial character

mod 4b. Then, L(s, χ) =
{∏

p|4b
(
1 − 1

p

)}
ζ(s) is meromorphic for ℜ(s) > 1/2,

with only one pole, a simple pole at s = 1 of residue ϕ(4b)
4b . Hence, F (s, χ) is

meromorphic for ℜ(s) > 1/2, with only one pole, a simple pole at s = 1 of residue
ϕ(4b)
4b Πχ(1), and F (s) is indeed meromorphic for ℜ(s) > 1/2, with only one pole,

a simple pole at s = 1 of residue 1
4bΠχ(1) = Cb. �

Lemma 13. If F (X) =
∑

1≤n≤X f(n) is asymptotic to cX for some c ̸= 0,

then S(X) :=
∑

1≤n≤X

f(n)nα logβ n is asymptotic to c
α+1X

α+1 logβ X for α > −1.

Proof. We may assume that X is a positive integer. Setting g(n):=f(n)−c,
it suffices to prove that if F (X) = o(X) then S(X) = o(Xα+1 logβ X), which

follows from S(X) =
∑

1≤n≤X−1

F (n)(nα logβ n−(n+1)α logβ(n+1))+F (X)Xα logβ X.

�
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6. The behavior of Snsq
1 (t0, X)

Lemma 14. Let ψ be a non trivial Dirichlet character mod f > 1. Then,

S(ψ, Y ) :=
∑

1≤m≤Y

µ2(m)ψ(m) ≪
√
Y
√
f log f,

where the implied constants do not depend neither on f nor on ψ.

Proof. Since µ(m)2 =
∑

d2|m µ(d), we obtain

S(ψ, Y ) =
∑

1≤d≤Y 1/2

µ(d)ψ(d2)
∑

1≤m≤Y/d2

ψ(m).

Since ∑
1≤m≤Z

ψ(n) ≪ Bf :=
√
f log f

(e.g., see [Apo, Th. 13.15]), for any H ≥ 1 we have

|S(ψ, Y )| ≪
∑

1≤d≤H

Bf +
∑

H<d≤Y 1/2

Y

d2
≤ HBf +

Y

H
.

By choosing H = [
√
Y/Bf ], we get the desired upper bound. �

Lemma 15. Fix an arithmetic progression {a+4kb; k ≥ 0}, with 1 ≤ a < 4b,

a ≡ 1 (mod 4) and gcd(a, b) = 1. It holds that

S(n, Y ) :=
∗∑

1<D≤Y
D≡a (mod 4b)

χD(n) ≪
√
Y
√
n log n

for any Y > 1 and any n > 1 which not a perfect square.

Proof. Write n = 2lm, with m ≥ 1 odd and l ≥ 0. Assume that n is not a

perfect square. Let ψ8 be the character mod 8 defined by ψ8(k) = (−1)(k
2−1)/8

if k is odd and ψ8(k) = 0 otherwise. Let ψm be the character mod m defined

by ψm(k) =
(

k
m

)
(Jacobi’s symbol). If 1 ≤ D ≡ 1 (mod 4) is a fundamental

discriminant, then

χD(n) = (−1)l(D
2−1)/8

(
D

m

)
= ψ8m(D),
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where ψ8m = ψl
8ψm is a Dirichlet character mod 8m. Moreover, since either l is

odd or m is not a perfect square, ψ8m is not trivial. Now,

S(n, Y ) =
∗∑

d≡a (mod 4b)
1<d≤Y

µ2(d)ψ8m(d)

=
1

ϕ(4b)

∑
χ mod 4b

χ(a)
∑

1<d≤Y

µ2(d)χ(d)ψ8m(d).

Since d 7→ χ(d)ψ8m(d) is a non trivial Dirichlet character mod f = 8bm ≤ 8bn,

the result follows, by Lemma 14. �

Lemma 16. Let α, β and γ be three given positive real numbers. As d ≥ 2

ranges over the positive integers, we have∑
n≥1

(logn)αnβe−γn2/d ≪ d(β+1)/2(log d)α.

Proof. Write n = a+ b[
√
d ] with 1 ≤ a ≤ [

√
d ] and b ≥ 0. Then,

n ≤ (b+ 1)
√
d, n2/d ≥ b2[

√
d ]2/d ≥ b2/4

and

(logn)/(log
√
d ) ≤ 1 + (log(b+ 1))/(log(

√
d )) ≤ 1 + (log(b+ 1))/(log(

√
2 )).

The desired bound follows. �

Proposition 17. Fix t0 > 0 and an arithmetic progression {a+4kb; k ≥ 0},
with 1 ≤ a < 4b, a ≡ 1 (mod 4) and gcd(a, b) = 1. It holds that

Snsq
1 (t0, X) = O

(
X9/8

√
logX

)
.

Proof. We may assume that X > 1 is a positive integer. We have

Snsq
1 (t0, X) :=

∑
n≥1

n not a square

∑
1<d≤X

(S(n, d)− S(n, d− 1))e−
πn2t0

d

=
∑
n≥1

n not a square

v

(
S(n,X)e−

πn2t0
X +

∑
1<d≤X−1

S(n, d)

(
e−

πn2t0
d − e−

πn2t0
d+1

))

=
∑
n≥1

n not a square

S(n,X)e−
πn2t0

X +
∑

1<d≤X−1

∑
n≥1

n not a square

πn2t0
(d+ θ)2

S(n, d)e−
πn2t0
d+θ ,
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where θ ∈ (0, 1) depends on n and d. Hence, by Lemma 15, we obtain

Snsq
1 (t0, X) ≪

√
X
∑
n>1

n1/4
√
log ne−

πn2t0
X +

∑
2<d≤X

∑
n>1

n9/4

d3/2

√
log ne−

πn2t0
d .

Summing over n ≥ 2 and using Lemma 16, we obtain the desired bound. �

7. The behavior of Ssq
2 (t0, X)

By applying Lemmas 13, 21 and 23, we will prove:

Proposition 18. Fix t0 > 0. Then, Ssq
2 (t0, X), defined in (8), is asymptotic

to C2√
t0
X3/2 logX, where

C2 :=
13Γ(1/4)2

96π5/2
C with C:=

1

4

∏
p≥3

(
1− 4

p(p+1)
+

3

p2(p+1)
− 1

p3(p+1)

)
.

Lemma 19. Set κ := Γ2(1/4)
16

√
π
. For δ1, δ2 > 0, set

Hδ1,δ2(s) :=
∑
a≥1
b≥1

1

(a4δ41 + b4δ42)
s

(ℜ(s) > 1/2).

Then, hδ1,δ2(s) := π−sΓ(s)Hδ1,δ2(s) admits a meromorphic continuation to the

vertical half-plane ℜ(s) > 1/4, with a unique pole, a simple pole at s = 1/2, and

in this half-plane we have:

hδ1,δ2(s) =
κ

δ1δ2

1

s− 1
2

+ c0(δ1, δ2) +O

(
s− 1

2

)
,

with c0(δ1, δ2) ≪ (1 + log δ1 + log δ2)/δ1δ2.

Proof. Since

Hδ1,δ2(s) :=
∑
a≥1
b≥1

1

(a4δ41 + b4δ42)
s
= −ζ(4s)

2δ4s1
+

1

2

∑
a≥1
b∈Z

1

(a4δ41 + b4δ42)
s

and

π−sΓ(s)α−s =

∫ ∞

0

e−απtts
dt

t
(α > 0),
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we have

hδ1,δ2(s) := π−sΓ(s)Hδ1,δ2(s) = −Γ(s)ζ(4s)

2πsδ4s1
+

1

2
Aδ1,δ2(s),

where

Aδ1,δ2(s) :=
∑
a≥1

∫ ∞

0

e−πta4δ41

(∑
b∈Z

e−πtb4δ42

)
ts
dt

t
.

Applying Poisson summation formula

∑
b∈Z

f(αb) =
1

α

∑
b∈Z

f̂(b/α)

with f(x) = e−πx4

and α = t1/4δ2 > 0, where

f̂(x) :=

∫ ∞

−∞
f(y)e−2iπxydy,

and noticing that f̂(−b/α) = f̂(b/α) (f is even) and that

f̂(0) =

∫ ∞

−∞
e−πy4

dy =
Γ(1/4)

2π1/4
,

we obtain ∑
b∈Z

e−πtb4δ42 =
Γ(1/4)

2(πt)1/4δ2
+

2

t1/4δ2

∑
b≥1

f̂(b/t1/4δ2).

Hence, we have

hδ1,δ2(s) = −Γ(s)ζ(4s)

2πsδ4s1
+

Γ(1/4)Γ(s− 1/4)ζ(4s− 1)

4πsδ4s−1
1 δ2

+Bδ1,δ2(s), (10)

where

Bδ1,δ2(s) :=
1

δ2

∑
a≥1

∫ ∞

0

e−πta4δ41

(∑
b∈Z

f̂(b/t1/4δ2)

)
ts−1/4 dt

t
.

Now, there exists c > 0 and c′ > 0 such that |f̂(x)| ≤ c exp(−c′x4/3) for x > 0

(see [CKK]). Since for α > 0 and β > 0 we have

S(α, β) :=
∑
n≥1

e−βnα

≤
∫ ∞

0

e−βxα

dx =
Cα

β1/α
,
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where Cα = Γ(1/α)/α, we have

∑
b≥1

∣∣∣f̂(b/t1/4δ2)∣∣∣ ≤ cS

(
4

3
,

c′

t1/3δ
4/3
2

)
≪ t1/4δ2

and

|Bδ1,δ2(s)| ≪
∑
a≥1

∫ ∞

0

e−πta4δ41 tσ
dt

t
=
ζ(4σ)Γ(σ)

πσδ4σ1
(σ := ℜ(s)).

Using (Γ′/Γ)(1/4) = −(γ + 3 log 2 + π/2), the desired result follows from (10),

with

c0(δ1, δ2) := − κ

δ1δ2

(
log(8π) +

π

2
− 3γ + 4 log δ1

)
− π2

12δ21
+Bδ1,δ2

(
1

2

)
.

Let us finally prove the last assertion. Since hδ1,δ2(s) = hδ2,δ1(s), we have

c0(δ1, δ2) = c0(δ2, δ1). Hence, we may assume that δ2 ≤ δ1, in which case the

last assertion is clear, for Bδ1,δ2(
1
2 ) ≪

1
δ21

≤ 1
δ1δ2

. Since our upper bound in this

last assertion remains unchanged when we exchange δ1 and δ2, we can drop our

restriction δ2 ≤ δ1. �

Lemma 20. Fix t0 > 0. Set κ := Γ2(1/4)
16

√
π

and

HD(s) :=
∑
a,b≥1

gcd(a,D)=gcd(b,D)=1

1

(a4+ b4)s
=
∑
δ1|D

∑
δ2|D

µ(δ1)µ(δ2)Hδ1,δ2(s) (ℜ(s)> 1/2).

Then

s 7→ FD(s) :=

(
D

πt0

)s
∏

p|D

(
1 +

1

p2s

)
−1

ζ(2s)

ζ(4s)
HD(s)Γ(s)

admits a meromorphic continuation to the vertical half-plane ℜ(s) > 1/4, with a

unique pole, at s = 1/2, a double pole whose residue c−1(D) satisfies

c−1(D) =
3κ

π2
√
t0

{∏
p|D

(1− 1/p)2

1 + 1/p

}
√
D logD +O

(√
D(log logD)3

)
.

Proof. We have

FD(s) =
3κ

π2

√
D

t0

{∏
p|D

(
1 +

1

p

)}−1
GD(s)(
s− 1

2

)2 ,
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where

GD(s) :=

(
D

t0

)s−1/2

×

{∏
p|D

1 + 1
p

1 + 1
p2s

}
2(s− 1

2 )ζ(2s)

ζ(4s)/ζ(2)

∑
δ1|D

∑
δ2|D

µ(δ1)µ(δ2)
s− 1

2

κ
hδ1,δ2(s).

Setting s = 1
2 + ϵ, we have:(

D

t0

)s−1/2

= 1 + ϵ log(D/t0) +O(ϵ2),

∏
p|D

1 + 1
p

1 + 1
p2s

= 1 + 2

(∑
p|D

log p

p+ 1

)
ϵ+O(ϵ2)

2(s− 1
2 )ζ(2s)

ζ(4s)/ζ(2)
= 1 + aϵ+O(ϵ2),

s− 1
2

κ
hδ1,δ2(s) =

1

δ1δ2
+
c0(δ1, δ2)

κ
ϵ+O(ϵ2).

Using ∑
p|D

log p

p
≪ log logD

we obtain(
D

t0

)s−1/2
{∏

p|D

1 + 1
p

1 + 1
p2s

}
2(s− 1

2 )ζ(2s)

ζ(4s)/ζ(2)
= 1 + (logD +O(log logD)) ϵ+O(ϵ2).

Using ∑
δ|D

|µ(δ)|
δ

≪ log logD,

∑
δ|D

|µ(δ)|
δ

log δ =
∑
δ|D

|µ(δ)|
δ

∑
p|δ

log p =
∑
p|D

log p

p

∑
δ|D/p

|µ(pδ)|
δ

≪ (log logD)2

and the last assertion of Lemma 19, we obtain

∑
δ1|D

∑
δ2|D

µ(δ1)µ(δ2)
s− 1

2

κ
hδ1,δ2(s) = c0(D) + c1(D)ϵ+O(ϵ2)
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where

c0(D) =
∑
δ1|D

∑
δ2|D

µ(δ1)µ(δ2)

δ1δ2
=
∏
p|D

(1− 1

p
)2,

and

c1(D) = O
(
(log logD)3

)
.

The desired result follows. �

Lemma 21 (Compare with Lemma 11). Fix t0 > 0 and ϵ > 0. Set

ΦD(t) :=
∑
d≥1

gcd(d,D)=1

∑
a,b≥1 gcd(a,b)=1

gcd(a,D)=gcd(b,D)=1

e−πd2(a4+b4)t/D (t > 0).

It holds that

ΦD(t0) =
3κ

π2
√
t0

{∏
p|D

(1− 1/p)2

1 + 1/p

}
√
D logD +O(

√
D(log logD)3).

Hence,

Ssq
2 (t0, X) =

∗∑
1<D≤X

ΦD(t0)

=
3κ

π2
√
t0

∗∑
1<D≤X

{∏
p|D

(1− 1/p)2

1 + 1/p

}
√
D logD +O

(
X3/2(log logX)3

)
.

Proof. The Mellin’s transform of

ΦD(t) =
∑
d≥1

gcd(d,D)=1

∑
δ≥1

gcd(δ,D)=1

µ(δ)
∑
a,b≥1

gcd(a,D)=gcd(b,D)=1

e−πd2δ4(a4+b4)t/D,

is

ΨD(s) =

∫ ∞

0

ΦD(t)ts
dt

t

=
∑
d≥1

gcd(d,D)=1

∑
δ≥1

gcd(δ,D)=1

µ(δ)
∑
a,b≥1

gcd(a,D)=gcd(b,D)=1

(
D

πd2δ4(a4 + b4)

)s

Γ(s)

=

(
D

π

)s
{∏

p|D

(
1 +

1

p2s

)}−1
ζ(2s)

ζ(4s)
HD(s)Γ(s).
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Hence,

ΦD(t0) =M−1ΨD(t0)=
1

2πi

∫ α+i∞

α−i∞
ΨD(s)t−s

0 ds=
1

2πi

∫ α+i∞

α−i∞
FD(s)ds (α > 1),

with FD(s) defined in Lemma 20. As in the proof of Lemma 11, by moving the

vertical line of integration ℜ(s) = α to the left to the vertical line ℜ(s) = 1/4+ϵ/2,

ϵ ∈ (0, 1/4), we pick up one residue, at s = 1/2, a double pole, and using Lemma

20, we obtain the desired result. �

Lemma 22. Set a = ±1. Let C > 0 be as in Proposition 18. It holds that

Ta(X) :=
∑

1<D≤X
D≡a (mod 4)

µ2(D)

{∏
p|D

(1− 1/p)2

1 + 1/p

}
∼ CX.

Proof. Let χ4 the non trivial character mod 4. We have

Ta(X) =
∑

1<d≤X
gcd(d,2)=1

µ2(d)
1 + aχ4(d)

2

∏
p|d

(1− 1/p)2

1 + 1/p
.

Set ba,d =
∏

p|d
(1−1/p)2

1+1/p if d ≡ a (mod 4) and d is square-free, and ba,d = 0

otherwise. Then, set Fa(s) =
∑

d≥1 ba,dd
−s, a Dirichlet series with nonnegative

coefficients. It suffices to prove that Fa(s) admits an analytic continuation to

ℜ(s) > 1/2, with only one pole, a simple pole of residue C at s = 1. We have

Fa(s) = F (s) + aG(s),

where

F (s) :=
1

2

∑
d≥1

gcd(d,2)=1

µ2(d)

ds

∏
p|d

(1− 1/p)2

1 + 1/p
=

1

2

∏
p≥3

(
1 +

(1− 1
p )

2

1 + 1
p

1

ps

)
= Π(s)ζ(s)

with

Π(s) :=
1

2

(
1− 1

2s

)∏
p≥3

(
1− 1

p+ 1

(
3

ps
− 1

ps+1
+

1

p2s−1
+

1

p2s+1
− 2

p2s

))

absolutely convergent and holomorphic for ℜ(s) > 1/2, and where

G(s) :=
1

2

∑
d≥1

gcd(d,2)=1

µ2(d)χ4(d)

ds

∏
p|d

(1− 1/p)2

1 + 1/p
= Πχ4(s)L(s, χ4),
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with

Πχ4(s) :=
1

2

∏
p≥3

(
1− 1

p+ 1

(
3χ4(p)

ps
− χ4(p)

ps+1
+

1

p2s−1
+

1

p2s+1
− 2

p2s

))

absolutely convergent and holomorphic for ℜ(s) > 1/2. Hence G(s) is holomor-

phic for ℜ(s) > 1/2 and gives no contribution into the sum. F (s) is meromorphic

for ℜ(s) > 1/2, with only one pole, a simple pole at s = 1 of residue C and so

is Fa(s). We conclude using Wiener–Ikehara tauberian theorem [MV, Chapter 8,

Corollary 8.8]. �

Lemma 23. It holds that

T (X) :=
∗∑

1<D≤X

{∏
p|D

(1− 1/p)2

1 + 1/p

}
∼ 13C

12
X

Proof. We split the sum into 4 sums: D ≡ 1 (mod 4), D = 4D′ with

D′ ≡ −1 (mod 4) and D = 8D′′ with D′′ ≡ ±1 (mod 4). Hence we obtain

T (X) = T1(X) +
1

6
T−1

(
X

4

)
+

1

6
T1

(
X

8

)
+

1

6
T−1

(
X

8

)
,

which gives the result using lemma 22. �

8. The behavior of Snsq
2 (t0, X)

Lemma 24 (See [Jut1] and [Jut2]). Set S(n,X) :=
∑∗

1<D≤X χD(n). It

holds that ∑
n≤N

n not a square

S(n,X)2 ≪ NX log10N.

Lemma 25. For n ≥ 1 an integer and for D > 0 and t0 > 0, we have

gD,t0(n) :=
∑
b|n

e−
πt0
D (n2/b2+b2) ≤ τ(n)e−2πnt0/D

and

0 < gD+1,t0(n)− gD,t0(n) ≤
2τ(n)

eD
e−πnt0/2D.
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Proof. The first assertion is straightforward, using α := πt0(n
2/b2 + b2) ≥

2πnt0. For the second assertion, for some θ ∈ (D,D + 1) we have

0 ≤ e−
α

D+1 − e−
α
D =

α

θ2
e−

α
θ =

( α
2θ
e−

α
2θ

) 2

θ
e−

α
2θ ≤ 1

e

2

D
e−

α
4D ≤ 2

eD
e−

πnt0
2D .

We get the result by summing over b. �

Lemma 26. Let α, β and γ be positive real numbers. Let an a sequence

of real numbers such that An(t) :=
∑

1≤n≤t an ≪ tα logβ t for t ≥ 2. As d ≥ 2

ranges overs the positive integers, we have∑
n≥1

ane
−γn/d =

γ

d

∫ +∞

1

An(t)e
−γt/ddt≪ dα logβ d.

Lemma 27. It holds that

S1 :=
∑

n not a square

S(n,X)gD,t0(n) ≪ X3/2 log13/2X

and

S2 :=
∑

n not a square

∗∑
1<D≤X

S(n,D) (gD,t0(n)− gD+1,t0(n)) ≪ X3/2 log13/2X.

Proof. Using Lemma 24, the Cauchy–Schwarz inequality and Lemmas 25

and 26, we obtain

S1 ≤

( ∑
n not a square

S(n,X)2e−2πnt0/X

)1/2(∑
n≥1

τ2(n)e−2πnt0/X

)1/2

≪ (X2 log10X)1/2(X log3X)1/2 ≪ X3/2 log13/2X.

By Lemmas 24 and 25 and the Cauchy–Schwarz inequality we obtain

S2 ≤
∗∑

1<D≤X

2

eD

∑
n not a square

|S(n,D)| τ(n)e−πnt0/2D

≤
∗∑

1<D≤X

2

eD

( ∑
n not a square

S(n,D)2e−πnt0/2D

)1/2(∑
n≥1

τ2(n)e−πnt0/2D

)1/2

≪
∗∑

1<D≤X

1

D
(D2 log10D)1/2(D log3D)1/2 ≪ X3/2 log13/2X,

as claimed. �
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Proposition 28. Fix t0 > 0. It holds that

Snsq
2 (t0, X) = O

(
X3/2 log13/2X

)
.

Proof. We may assume that X > 1 is a positive integer. We have

Snsq
2 (t0, X) :=

∗∑
1<D≤X

∑
a,b≥1

ab not a square

(
D

ab

)
e−π(a2+b2)t0/D

=
∑

n not a square

∗∑
1<D≤X

S(n,D)
∑
b|n

e−
πt0
D (n2/b2+b2)

=
∑

n not a square

∗∑
1<D≤X

S(n,D)gD,t0(n)

=
∑

n not a square

(
S(n,X)gX,t0(n) +

∗∑
1<D≤X

S(n,D) (gD,t0(n)− gD+1,t0(n))

)

Using lemma 27, we obtain the desired bound. �

References

[Apo] T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in
Mathematics, Springer–Verlag, New York – Heidelberg, 1976.

[Ay] R. Ayoub, On L-series with real characters, Illinois J. Math. 8 (1964), 550–555.

[Bal] R. Balasubramanian, A note on Dirichlet’s L-functions, Acta Arith. 38 (1980/81),
273–283.

[BL] A. D. Barry and S. Louboutin, On the fourth moment of theta functions at their
central point, Contemporary Math. 487 (2009), 1–7.

[BM] R. C. Baker andH. L. Montgomery, Oscillations of quadratic L-functions, in Analytic

Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman
(B. C. Berndt Ed.), Prog. Math. 85, 23–40, Birkhäuser, Boston, 1990.
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