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Abstract. In this article, we prove a Gauss–Bonnet–Chern formula for Finsler

metrics on a smooth orbifold. The main idea is that the intrinsic proof of the Gauss–

Bonnet formula for Riemmanina manifolds of S. S. Chern is applicable to the very broad

class of Finsler metrics on the very generalized orbifolds.

1. Introduction

In this paper we shall present a Gauss–Bonnet–Chern formula for Finsler

metrics on an orbifold. The Gauss–Bonnet–Chern formula is one of the most

important results in differential geometry. It discloses the intrinsic relation bet-

ween the curvature, which is a geometric quantity, and the Euler characteristic

number, which is a topological invariants. The intrinsic proof of Chern ([5], [6])

is of great significance in that it can be applied to a much larger class of metrics

or spaces. For example, in 1949, Lichnerowich [11] proved a Gauss–Bonnet

formula for Finsler metrics on a smooth manifold, using the Cartan connection

on the Cartan–Berwald spaces. This formula was generalized to the more general

class of Landsberg spaces by Bao–Chern in [3]. The essence of Bao–Chern’s
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proof in [3] is exactly Chern’s idea in [5], [6]. See also [15] and [10] for other

forms of the Gauss–Bonnet–Chern formulas for Finsler metrics.

The notion of an orbifold is a generalization of manifolds. It was first intro-

duced by I. Satake in [16] and [17], where it is called a V -manifolds. The study

of V -manifolds was revalidated by W. Thurston in [18] where the terminology

“orbifold” first appeared. The Gauss–Bonnet–Chern formula was generalized to

Riemannian metrics on orbifolds by Satake [17] and for Riemannian metrics on

orbifolds with boundary in [13] or [14]. It is interesting that Chern’s method in

[5] is also applicable in such generalized cases.

In this paper we will prove that the Gauss–Bonnet–Chern formula holds for

some types of Finsler metrics on orbifolds. The main idea of the proof is adopted

from the intrinsic proof of Chern for Riemannian metrics on closed manifolds

([5], [6]) and Bao–Chern’s treatment for Landsberg metrics ([3]).

In Section 2, we recall the definitions and fundamental properties on orbi-

folds and Finsler manifolds. Section 3 deals with Finsler metrics on orbifolds. In

Section 4, we prove the main results of this paper. Finally, in Section 5, we discuss

orbifolds with boundary and show that certain forms of the Gauss–Bonnet–Chern

formula holds for orbifolds with boundary.

Notation Conventions. Throughout the article, we assume the Einstein sum-

mation convention. Lower case Latin indices run from 1 to m and lower case

Greek indices run from 1 to m− 1.

2. Preliminareis

In this section, we recall some definitions and facts of smooth orbifold struc-

tures and Finsler manifolds; see [1], [2] and [16], [17] for more details on orbifold

structures, and [3], [4] for Finsler metrics on manifolds.

Let M be a Hausdorff space. We say that {Ũ , G, ϕ} is a C∞ orbifold chart

or local uniformizing system over a uniformized open subset U ⊂ M if it satisfies

the following properties:

(i) Ũ is a connected open subset of Rm,

(ii) G is a finite group of C∞ transformation of Ũ , whose set of fixed points has

dimension ≤ m− 2,

(iii) ϕ : Ũ → U is a continuous map such that ϕ ◦ σ = ϕ for all σ ∈ G, and the

induced map between Ũ/G −→ U is a homeomorphism.

Given a chart {Ũ , G, ϕ}, if there exists an element g ∈ G, g 6= 1, such

that gx = x, ∀x ∈ Ũ , we say that G acts ineffectively on Ũ ; otherwise, G acts
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effectively, then the orbifold is called to be effective. In this paper, we always

assume that each orbifold chart of M is effective.

Let {Ũ , G, ϕ} and {Ũ ′, G′, ϕ′} be two orbifold charts for U and U ′, respec-
tively, and suppose U ⊂ U ′. An injection λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′} is a C∞

isomorphism λ from Ũ onto an open subset of Ũ ′ such that for any σ ∈ G there

exists σ′ ∈ G′ such that λ ◦ σ = σ′ ◦ λ and ϕ = ϕ′ ◦ λ.
Definition 2.1 (orbifold). A C∞ orbifold consists of a connected Hausdorff

topological space M and a family F of C∞ orbifold charts for open subsets in M

satisfying the following conditions:

(i) Each point x ∈ M is contained in an open subset U ⊂ M for which there

exists an orbifold chart {Ũ , G, ϕ} ∈ F such that ϕ(Ũ) = U . If x ∈ U1 ∩ U2,

then there is a uniformized open subset U3 ⊂ U1 ∩ U2 such that x ∈ U3.

(ii) If {Ũ , G, ϕ}, {Ũ ′, G′, ϕ′} ∈ F and ϕ(Ũ) = U ⊂ U ′ = ϕ′(Ũ ′), then there

exists a C∞ injection λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′}.
Moreover, an orbifold is called orientable if all the injections in (ii) are orientation

preserving, i.e., det
(∂x̃′

j

∂x̃j

)
> 0 for any injection λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′}, where

(x̃i) and (x̃′i) are coordinates of Ũ and Ũ ′, respectively.

The notion of an orbifold N with boundary can be defined similarly. We

just need define the orbifold chart with boundary, and require that the boundary

be preserved under the action of the finite group. The boundary ∂N is also an

orbifold with the structure inherited from N .

A map f : M1 → M2 between orbifolds is called C∞, if for any local orbifold

chart Ũ1 the map f |Ũ1
◦ϕ1 between Ũ1({Ũ1, G1, ϕ1} ∈ F1) and Ũ2({Ũ2, G2, ϕ2} ∈

F2) is C
∞. Since R can be considered an orbifold with F = {R, {1}, id}, one can

define a C∞ function on an orbifold M to be a C∞ map f : M → R.
For each point x ∈ U ⊂ M , there is an orbifold chart {Ũ , G, ϕ} ∈ F such

that x ∈ ϕ(Ũ) = U . Fix a point x̃ ∈ Ũ such that ϕ(x̃) = x and denote by Gx̃ the

isotropy subgroup of x̃. Then Gx̃ depends only on x. So we call Gx̃ the isotropy

group of x and denote as Gx. If Gx 6= 1, then x is called a singular point of M ;

otherwise, it is a nonsingular point.

Orbifold vector bundles are orbifolds which are locally of the form Ũ × Rk

where the groupG acts as bundle isomorphisms. In general, the fiber of an orbifold

vector bundle is not always a vector space. A section of an orbifold vector bundle

is a collection of locally G-equivariant sections on orbifold charts.

In particular, the orbifold tangent bundle π : TM → M of an orbifold M

is defined locally as the quotient T Ũ/G, with the action of G given by g(x̃, ỹ) =

(gx̃, dgx̃(ỹ)) for each (x̃, ỹ) ∈ T Ũ .
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For x ∈ M , denote by TxM the maximal vector space of π−1(x). The

elements of TxM are called the tangent vectors at x.

The orbifold cotangent T ∗M can be defined in the same manner (see [17],

p. 474, for details). For an orientable orbifolds M , one can define the integral∫
M

ω of an m-form ω in the following way.

If the support of ω is contained in a uniformized open set

U = ϕ(Ũ)({Ũ , G, ϕ} ∈ F), then we define

∫

U

ω =
1

|G|
∫

Ũ

ωŨ

If the orbifold M is paracompact, then it admits a C∞ partition of unity {ψi}
on M subordinate to a cover consisting of uniformized open subsets (see [7] or

[8]). Then one can define the integral of the m-form ω by

∫

M

ω =
∑

i

∫

M

ψiω.

It can be checked that the above integral does not depend on the specific partition

of unity. From now on we always assume that the orbifold M is paracompact.

Let X be a vector field on the orbifold M with an isolated zero x. Let

{Ũ , G, ϕ} ∈ F , x̃ ∈ Ũ be an orbifold chart such that x ∈ ϕ(Ũ) and ϕ(x̃) = x.

Let X̃ be a corresponding vector field on Ũ . Then X̃ has a zero at x̃. The index

Ix(X) of X at x is given by

Ix(X) =
1

|Gx̃|Ix̃(X̃),

where |Gx̃| is the order of the isotropy of Gx̃. The index Ix(X) is uniquely

determined by the vector field X and x and need not be an integer (see [17]).

Now we recall the notion of Euler characteristic number χV (M) of an or-

bifold M . Let M be an m-dimensional orbifold and X be a vector field on M

with isolated zero points x1, x2, . . . , xs (the existence of such a vector field can be

proved easily, see [17]). Then we define

χV (M) = (−1)m
∑

k

Ixk
(X).

The number χV (M) is called the Euler characteristic number of M as an orbi-

fold. This notion was introduced by Satake in [17], where it is called the Euler

characteristic number of M as a V -mainfold. Note that χV (M) need not be an

integer.
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Next, we give some definitions and results on Finsler metrics on a manifold.

Let (Ũ , F ) be a Finsler manifold. Given x̃ ∈ Ũ , let ỹi be the global coordinates

with the canonical coordinate base
(

∂
∂x̃i

)
on the tangent space Tx̃Ũ . By removing

the origin ỹ = 0, the punctured linear space Tx̃Ũ\0 becomes a Riemannian ma-

nifold when equipped with the following metric: ds2
Ũ
= gij(x̃, ỹ)dỹ

i ⊗ dỹj , where

gij =
1
2 (F )2ỹiỹj

.

The volume element of Tx̃Ũ\0 is√gdỹ1∧dỹ2∧· · ·∧dỹm, where our convention

is dỹ∧dz̃ = dỹ⊗dz̃−dz̃⊗ ỹ. Let Sx̃Ũ := {ỹ ∈ Tx̃Ũ | F (x̃, ỹ) = 1}. The indicatrix
Sx̃Ũ is an (m−1)-dimensional submanifold of the punctured manifold Tx̃Ũ\0 and

hence inherits a Riemannian structure hx̃ from the metric ds2
Ũ
.

Since ~nout = ỹi ∂
∂x̃i is the outward-pointing unit normal field of Sx̃Ũ , the

volume element of hx̃ is

dV =
√
g

m∑

j=1

(−1)j−1ỹjdỹ1 ∧ · · · ∧ dỹj−1 ∧ dỹj+1 ∧ · · · ∧ dỹm

where the ỹi’s are the elements satisfying F (x̃, ỹ) = 1.

We consider the volume function

Vol(x̃) := Vol(Sx̃Ũ , hx̃) =

∫

Sx̃Ũ

dV. (1)

Now we define the covariant differential of the Cartan tensor A = Aijkdx̃
i ⊗

dx̃j ⊗ dx̃k by

∇A = (dAijk−Asjkω
s
i−Aiskω

s
j−Aijsω

s
k)dx̃

i⊗dx̃j⊗dx̃k := (∇A)ijkdx̃
i⊗dx̃j⊗dx̃k,

where Aijk = F
4 [F

2]ỹiỹj ỹk(x̃, ỹ).

Denote (∇A)ijk = Aijk|sdx̃s +Aijk;s
δỹs

F and define

Ȧ = Ȧijkdx̃
i ⊗ dx̃j ⊗ dx̃k,

where Ȧijk := Aijk|s ỹs

F .

Definition 2.2. If Ȧ = 0, then (Ũ , F ) is called a Landsberg manifold.

Proposition 2.3 ([3]). If (Ũ , F ) is a Landsberg space, then the volume

function Vol(x̃) is a constant.

The second formal Christoffel symbols on Ũ is defined by

γi
jk :=

1

2
gis

(
∂gsj
∂x̃k

− ∂gjk
∂x̃s

+
∂gks
∂x̃j

)
.
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We also define the quantities N i
j by

N i
j = γi

jkỹ
k − 1

F
Ai

jkγ
s
krỹ

rỹs.

Set
δ

δx̃i
:=

∂

∂x̃i
−N i

j

∂

∂ỹi
,

and

δỹi := dỹi +N i
jdx̃

j .

Then
{

δ
δx̃i , F

∂
∂ỹi

}
and

{
dx̃i, δỹi

F

}
are natural local bases for the tangent bundle

TSŨ and cotangent bundle T ∗(SŨ) of SŨ , respectively.

Recall that SŨ has a natural Sasaki type metric (which is a Riemannian

metric) defined by

gijdx̃
i ⊗ dx̃j + gij

δỹi

F
⊗ δỹj

F
.

With respect to this metric we have an orthonormal basis {êa, êm+a} for TSŨ

and its dual frame {ωa, ωm+a} for T ∗SŨ , where êa = ũi
a

δ
δx̃i , êm+a = ũi

aF
∂

∂x̃i ,

ωa = ṽai dx̃
i and ωm+a = ṽai

δỹi

F (see [4], p. 35).

Theorem 2.4 ([4]). Let (Ũ , F ) be a Finsler manifold. Then there exists a

unique connection on the pull back bundle π∗T Ũ , called the Chern connection,

whose connection forms are characterized by the structure equations:

dωa = ωb ∧ ωa
b , ωab + ωba = −2Aabcω

m+c.

where ωab=ωc
aδcb, and Aabc=

1
4F (F 2)ỹiỹj ỹk ũi

aũ
j
bũ

k
c . In particular, ωmb +ωbm=0.

Note that in the above theorem we have ωm+m = d(logF ) (see [4], p. 36,

Exercise 2.15 (a)), and ωα
m = ωm+α (see [4], p. 43, Exercise 2.4.7 (c)).

3. Finsler metrics on orbifolds

In this section we consider Finsler metrics on orbifolds. We will define the

Chern connection forms on orbifolds, which will be useful in our study of the

Gauss–Bonnet–Chern formula.

Let M be an orbifold with an orbifold charts family F as in Section 2. For

each {Ũ , G, ϕ} ∈ F , let T Ũ be the tangent vector bundle. Let SŨ be the quotient

of TŨ \ 0 under the following equivalence relation: (x̃, ỹ) ∼ (x̃, ỹ′) if and only if

there exists a positive constant a such that ỹ = aỹ′. For each injection
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λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′}, let λ∗ : SŨ → SŨ ′ be the corresponding bundle

map. Let ϕ∗ be the restriction to SŨ of the bundle map T Ũ → TM . Set

SM =
⋃
ϕ∗(SŨ). Then we obtain an orbifold SM with an orbifold charts family

F∗ = ({SŨ,G∗, ϕ∗}). We call SM the projective orbifold sphere bundle and

denote the projection of SM onto M by π.

Definition 3.1 ([8], the pull back orbifold tangent bundle). Let Pr : TM →
M be the orbifold tangent bundle over an orbifold M and π : SM → M be the

C∞ projective orbifold sphere bundle. By a pull back orbifold tangent bundle

π∗TM over SM via π we mean an orbifold vector bundle π̃ : E → SM with

a C∞ map f : E → TM such that each local lifting of f is an isomorphism

restricted to each fiber, and f covers the C∞ map π between SM and M .

The notions related to the dual π∗T ∗M can be defined similarly.

The fiber of π∗TM at a point (x, [y]) ∈ SM is defined by

π∗TM |(x,[y]) = {(x, [y], v) | v ∈ π̃−1(x, [y])} ∼= Pr−1(x).

Let {Ũ , G, ϕ} ∈ F be a local orbifold chart over a uniformized open subset U of

M and (x̃1, . . . , x̃m) = (x̃i) : Ũ → Rm be a local coordinate system on the open

subset Ũ . Let ( ∂
∂x̃i ) and dx̃i be a coordinate bases for the tangent space Tx̃Ũ and

cotangent space T ∗
x̃ Ũ , respectively. The nature local coordinate (x̃i, ỹi) of T Ũ is

given by

ỹ = ỹi
∂

∂x̃i
.

A Finsler metric on U is defined to be a G∗−invariant Finsler metric on Ũ ,

i.e., a Finsler metric F Ũ satisfying the condition

F Ũ (x̃, ỹ) = F Ũ (σ(x̃), dσx̃(ỹ)),

for any σ ∈ G and for any point (x̃, ỹ) ∈ TŨ .

Definition 3.2 (Finsler metric on orbifold). A Finsler metric F on an orbifold

M is a C∞ function F : TM → [0,+∞) such that for any uniformized open subset

U ⊂ M , the restriction of F to TŨ is a Finsler metric on U .

According to the definition, to give a Finsler metric F on an orbifold M is

to define a Finsler metric F Ũ on each Ũ such that

F Ũ (x̃, ỹ) = F Ũ ′
(λx̃, dλx̃ỹ),

for any (x̃, ỹ) ∈ TŨ and for any injection

λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′}.
Following the idea of [2], we now prove



52 Jifu Li and Shaoqiang Deng

Lemma 3.3. There always exists a Finsler metric on any orbifold.

Proof. Let {Ui} be a locally finite covering of an orbifold M , and

{Ũi, Gi, ϕi} ∈ F be the corresponding orbifold charts such that ϕi : Ũi/Gi → Ui

is a homeomorphism. Let TŨi be the tangent bundle over Ũi and suppose that

F ′Ũi is a Finsler metric on T Ũi.

Define

F ∗Ũi

(x̃, ỹ) =
1

|Gi|
∑

σ∈Gi

F ′Ũi

(σx̃, dσx̃ỹ).

Let

F Ũi

(x̃, ỹ) =
∑

j

F ∗Ũi(x̃ij , λij ỹ), x̃ ∈ Ũi, ỹ ∈ Tx̃Ũi,

where the sum is taken over all the indices j such that ϕ−1
j ◦ ϕi(x̃) 6= φ, here

x̃ij ∈ ϕ−1
j ◦ ϕi(x̃), and λij are defined by λij = (λi)∗(λ−1

j )∗, where ϕi(x̃) ∈ U ⊂
Ui

⋂
Uj , {Ũ , G, ϕ} ∈ F , and (λi)∗ : TŨ → T Ũi|λi(U), (λj)∗ : TŨ → T Ũj |λj(U).

Now suppose {ψi} is a partition of unity subordinated to the covering {Ui} and

define F =
∑

i ψiF
Ũi . Then it is easy to check that F is a Finsler metric onM . ¤

Lemma 3.4. Let M be an orbifold. Define

g = gijdx̃
i ⊗ dx̃j , A = Aijkdx̃

i ⊗ dx̃j ⊗ dx̃k.

Then g is a Riemannian metric on the pull back orbifold tangent bundle π∗TM
and A is a symmetric section of π∗TM ⊗ π∗TM ⊗ π∗TM .

Proof. Let {Ui} be a locally finite covering of M , and {Ũi, Gi, ϕi} ∈ F
be the corresponding orbifold charts on M . Since F is a Finsler metric on the

orbifold, we have

F Ũ (x̃, ỹ) = F Ũ ′
(λ(x̃), dλx̃(ỹ)) = F Ũ ′

(x′, y′),

for any injection λ : {Ũ , G, ϕ} → {Ũ ′, G′, ϕ′}, where λ(x̃) = x′, dλx̃y = y′. Thus

F Ũ
ỹi(x̃, ỹ) = F Ũ ′

x̃s (x′, y′)
∂x̃′s

∂ỹi
+ F Ũ ′

ỹ′s(x′, y′)
∂ỹ′s

∂ỹi
= F Ũ ′

ỹ′s(x′, y′)
∂x̃′s

∂x̃i
.

Similarly, it is easy to check that

F Ũ
ỹiỹj (x̃, ỹ) = F Ũ ′

ỹ′sỹ′t(x′, y′)
∂x̃′s

∂x̃i

∂x̃′t

∂x̃j
,

and that

F Ũ
ỹiỹj ỹk(x̃, ỹ) = F Ũ ′

ỹ′sỹ′tỹ′n(x′, y′)
∂x̃′s

∂x̃i

∂x̃′t

∂x̃j

∂x̃′n

∂x̃k
.
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Equivalently, we have

gŨij(x̃, ỹ) = gŨ
′

st (λ(x̃), dλx(ỹ))
∂x̃′s

∂x̃i

∂x̃′t

∂x̃j
,

and

AŨ
ijk = AŨ ′

stn

∂x̃′s

∂x̃i

∂x̃′t

∂x̃j

∂x̃′n

∂x̃k
.

Therefore we have

gŨij(x̃, ỹ)dx̃
i ⊗ dx̃j = gŨ

′
st (λ(x̃), dλx(ỹ))dx̃

′s ⊗ dx̃′t,
and

AŨ
ijk(x̃, ỹ)dx̃

i ⊗ dx̃j ⊗ dx̃k = AŨ ′
stn(λ(x̃), dλx(ỹ))dx̃

′s ⊗ dx̃′t ⊗ dx̃′n.

This proves the lemma. ¤

Corollary 3.5 ([7], [8], [17]). There always exists a Riemannian metric on

any orbifold.

Remark. Similarly as in classical Finsler geometry, we call g and A the fun-

damental tensor and Cartan tensor of the Finsler metric, respectively.

At any point p = (x, [y]) ∈ SM , choose (SŨ,G∗, ϕ∗) ∈ F∗ such that p̃ =

(x̃, [ỹ]) ∈ SŨ , ϕ∗(p̃) = p. Let

`SŨ = `p̃ =
ỹk

F (x̃, ỹ)

∂

∂x̃k
:= ũk

m

∂

∂x̃k
.

Then `SŨ is a section of the uniformized subset SU . In fact, let λ∗ : {SŨ,G∗, ϕ∗}→
{SŨ ′, G∗′, ϕ∗′} be an injection. Then one verifies easily that

`SŨ ′ = `(x̃′,ỹ′) = `(λx̃, dλx̃ỹ) =
ỹ′k

F (x̃′, ỹ′)
∂

∂x̃′k

=
ỹ′k

F (x̃, ỹ)

∂x̃j

∂x̃′k
∂

∂x̃j
=

ỹj

F (x̃, ỹ)

∂

∂x̃j
= `(x̃,ỹ) = `SŨ .

Thus ` =
∑

i ψi`SŨi is a globally defined section of SM , where {ψi} is a partition

of unity subordinated to the covering {Ui}.
For the pull back tangent bundle π∗T Ũ , define an orthonormal basis {e1, e2,

. . . , em} with em = `SŨ = ũk
m

∂
∂x̃k and ec = ũk

c
∂

∂x̃k , where ũk
c are locally defined

functions on SŨ .

Let (ṽck) = (ũk
c )

−1, we can define a 1-form {ωc
SŨ

} over SŨ by

ωc
SŨ

= ṽckdx̃
k.



54 Jifu Li and Shaoqiang Deng

It follows from the equality ωc
SŨ

(em) = δcm that ṽmk = Fỹk , that is, ωm
SŨ

=

Fỹidx̃i. Let λ∗ : {SŨ,G∗, ϕ∗} → {SŨ ′, G∗′, ϕ∗′} be an injection. For p̃ ∈ SŨ , let

p̃∗ = (p̃; e1, e2, . . . , em) and

λ∗(p̃∗) = (λ(p̃); dλp̃e1, dλp̃e2, . . . , dλp̃em),

let {x̃′i} be a coordinate system in Ũ ′ and denote e′j = ũ′i
j

∂
∂x̃i , (ṽ

′j
i ) = (ũ′i

j )
−1.

Then we have ωc
SŨ ′(λ

∗(p̃∗)) = ṽ′ck dx̃
′k = ṽ′ck

∂x̃′k
∂x̃j dx̃

j = ṽcjdx̃
j . Denote ωc =∑

i ψiω
c
SŨi

, where {ψi} is defined as above. Then {ωc} defines a dual coframe

over SM .

Let ωb
Ũa

be the Chern connection forms on the Finsler manifold (Ũ , F Ũ ).

From the equalities ωa(λ∗·) = ωa, A(λ∗·) = A and the uniqueness of the forms

ωb
Ũa

by Theorem 2.4, it follows that ωb
Ũa

(λ∗·) = ωb
Ũ ′a

. Using the partition of unity,

one can prove that on a Finsler orbifold, there always exists a unique connection

whose connection forms ωb
a verify the same structural equations as that of the

Chern connection of a Finsler metric on a manifold. We will call this connection

the Chern connection in the following.

According to the above remark, we can define Ȧ to be the covariant differen-

tial of the Cartan tensor A on orbifolds as in section 2. In the following sections

we will denote Ȧ the covariant differential of the Cartan tensor A on orbifolds.

Similarly to Definition 2.2, we give

Definition 3.6. If Ȧ = 0, then the Finsler orbifold (M,F ) is called a Lands-

berg orbifold.

From Proposition 2.3 and Lemma 3.3, we conclude that

Proposition 3.7. If M is a Landsberg orbifold, then the function V (x̃)

defined by (1) is a constant on each orbifold chart of M .

Similarly as in the case of a Finsler manifold, we have a Sasaki type metric

on SM defined by

δabω
a ⊗ ωb + δabω

m+a ⊗ ωm+b.

The curvature two-forms Ωb
a of the Chern connection can also be defined by

the following structure equations:

Ωb
a = dωb

a − ωc
a ∧ ωb

c.

Taking the exterior differentiation, one obtains the second Bianchi identity

dΩb
a = Ωcb ∧ ωc

a − Ωc
a ∧ ωcb.
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Theorem 3.8. The Chern curvature two-forms Ωb
a on the orbifold SM can

be written as

Ωb
a =

1

2
Rb

a cdω
c ∧ ωd + P b

a cdω
c ∧ ωm+d.

Proof. For the case of Finslerian manifold, see [4]. The proof for the general

case is similar. ¤

4. The Gauss–Bonnet–Chern formula for a compact

Finsler orbifold surface

In this section, we turn our attention to orientable Finsler orbifold surfaces

without boundary. Let (M,F ) be a Finsler orbifold surface. Let SM be the

projective orbifold sphere bundle of (M,F ). By section 3, we know that the pull

back orbifold tangent bundle π∗TM has a global section

` =
ỹ1

F (x̃, ỹ)

∂

∂x̃1
+

ỹ2

F (x̃, ỹ)

∂

∂x̃2

and a natural Riemannian metric

g = gijdx̃
i ⊗ dx̃j .

By Euler’s theorem, we have g(`, `) = 1 .

Fix a positively oriented g−orthonormal frame {e1, e2} for π∗TM , such that

e2 = `, that is,

e1 =
Fỹ2√
g

∂

∂x̃1
− Fỹ1√

g

∂

∂x̃2
, e2 =

ỹ1

F

∂

∂x̃1
+

ỹ2

F

∂

∂x̃2
,

where g = det(gij). Let {ω1, ω2} be the dual base of {e1, e2}. Then one easily

checks that

ω1 =

√
g

F
(ỹ2dx̃1 − ỹ1dx̃2), ω2 = Fỹ1dx̃1 + Fỹ2dx̃2.

Let ω3 = ω1
2 =

√
g

F 2 (ỹ
2δỹ1 − ỹ1δỹ2). It is easily seen that ω1, ω2, ω3 are globally

defined on the projective orbifold sphere bundle SM .

The three-dimensional projective orbifold sphere bundle SM has a natural

Sasaki type metric

ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3,
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Let A = Aabcω
a ⊗ωb ⊗ωc. By Euler’s theorem, we have Aabc = 0, whenever

one of the a, b, c is two, i.e., Aab2 = 0. Then the Landsberg tensor becomes

Ȧ = Ȧ(e1, e1, e1)ω
1 ⊗ ω1 ⊗ ω1.

Denote I := A111 = A(e1, e1, e1). It follows from the equations

ωab + ωba = −2Aabcω
m+c

of Theorem 2.4 that

ω11 = −Iω3, ω12 + ω21 = 0, ω22 = 0.

Moreover, we have

ω21 = ωc
2δc1 = ω1

2 = ω3.

So the Chern connection matrix becomes

(
ω11 ω12

ω21 ω22

)
=

(
ω1
1 ω2

1

ω1
2 ω2

2

)
=

(
−Iω3 −ω3

ω3 0

)
.

It is easily seen that

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3, dω2 = −ω1 ∧ ω3.

Let

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3 + Pω2 ∧ ω3.

Taking the exterior differential of dω2 = −ω1 ∧ ω3, we obtain

Pω1 ∧ ω2 ∧ ω3 = 0.

Thus P = 0 and dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3. On the other hand, similarly as

Exercise 4.4.7(d) of [4], one can prove that J = Ȧ111. This implies that if J = 0,

then (M,F ) is a Landsberg orbifold surface. In particular, from Proposition 3.7

we have

Proposition 4.1. If J = 0, then the volume function Vol(x̃) defined by (1)

is a constant.

We denote by L = Vol(x̃) the Riemannian arc length of the indicatrix.

Theorem 4.2. Let (M,F ) be a compact, connected, oriented Landsberg

orbifold surface without boundary. Then

1

L

∫

M

Kω1 ∧ ω2 = χV (M).
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Proof. We follow the idea of [3], [4]. Let U be a vector field on the orbifold

surface M , with zeros at xi, i = 1, 2, . . . , p. Denote by Ixi the index of U at xi,

i = 1, 2, . . . , p.

Let Sε,xi
be a geodesic circle of sufficiently small radius ε centered at xi.

Remove from M the interior of Sε,xi
, and denote the resulting orbifold with

boundary by Mε. Let

V =
U

F (U)
: Mε → V (Mε) ⊂ SM, x 7−→ U(x)

F (U(x))
.

Recall that for a Finsler orbifold surface, we have

−Ω2
1 = −dω2

1 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

It can be checked that K = R1
212 is the Gauss curvature of the orbifold charts. We

integrate the above formula over the two dimensional orbifold V (Mε). Applying

Strokes’s theorem and taking the limit as ε → 0, we obtain

∫

M

V ∗(−Kω1 ∧ ω2 + Jω1 ∧ ω3) =

p∑

i=1

lim
ε→0

∫

V (Sε,xi)

ω2
1 ,

here the boundary cycle of each V (Sε, xi) is in a clockwise manner.

On the other hand, we have

∫

V (Sε,xi)

ω2
1 → −Ixi

∫

S̃x̃i

ω2
Ũi1

, as ε → 0,

here the circles Sxi are given in a counter clockwise orientation, and S̃x̃i
are

the corresponding circles in the orbifold charts. In fact, let {Ũi, Gi, ϕi} ∈ F ,

x̃i ∈ Ũ be an orbifold chart such that xi ∈ ϕi(Ûi) and ϕi(x̃i) = xi. Let Ṽ be the

corresponding unit vector field on Ũi. Then x̃i are zeros of Ṽ . From the degree

theorem, we have

∫

V (Sε,xi)

ω2
1 =

1

|Gx̃i
|
∫

Ṽ (S̃ε,x̃i)

ω2
Ũi1

→ − Ix̃i

|Gx̃i
|
∫

S̃x̃i

ω2
Ũi1

= −Ixi

∫

S̃x̃i

ω2
Ũi1

, as ε → 0.

Moreover, we have

∫

M

V ∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) =

p∑

i=1

Ixi

∫

S̃x̃i

ω2
Ũi1

.
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Note that

ω2
Ũi1

=

√
g

F

(
ỹ1

δỹ2

F
− ỹ2

δỹ1

F

)
,

where δỹi = dỹi + N i
jdx̃

j . Meanwhile, as ε → 0, the circle S̃ε,x̃i
shrinks to x̃i.

Therefore the dx̃ terms in the above integral do not contribute. Hence

lim
ε→0

∫

V (Sε,xi)

ω2
1 = lim

ε→0

∫

V (Sε,xi)

√
g

F

(
ỹ1

δỹ2

F
− ỹ2

δỹ1

F

)

= −Ixi

∫

S̃x̃i

√
g

F

(
ỹ1

dỹ2

F
− ỹ2

dỹ1

F

)
= −Ixi

Vol(x̃i).

Therefore we have

∫

M

V ∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) =

p∑

i=1

(Ixi Vol(x̃i)).

Since M is a Landsberg orbifold surface, we have J = 0. Thus Vol(x̃i) = L is a

constant by Proposition 4.1, and the above integral becomes

∫

M

V ∗(Kω1 ∧ ω2) =

p∑

i=1

(Ixi Vol(x̃i)) = L

p∑

i=1

Ixi = L · χV (M).

Moreover,

Kω1 ∧ ω2 = K
√
gdx̃1 ∧ dx̃2 = −dω2

1 .

Taking the exterior differentiation of the above equation on SM , one gets

∂

∂ỹi
(K

√
g) = 0.

This means that K
√
g lives on the orbifold M . Consequently we obtain the

Gauss–Bonnet–Chern Formula in the orbifold case:

1

L

∫

M

Kω1 ∧ ω2 = χV (M).

This completes the proof of the theorem. ¤

Next we generalize the above Gauss–Bonnet–Chern theorem to m (m > 2)

dimensional Finsler orbifold M with the volume function Vol(x̃) being constant,

following the idea of [3]. We consider the following polynomials on the projective
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orbifold sphere bundle SM :

Φk = εα1...αm−1Ωα1α2 ∧ · · · ∧ Ωα2k−1α2k
∧ ωm

α2k+1
∧ ωm

α2k+2
∧ · · · ∧ ωm

αm−1
,

(
0 ≤ k ≤

[
m− 1

2

])
,

Ψk = (2k + 2)εα1...αm−1Ωα1α2
∧ · · · ∧ Ωα2k−1α2k

∧ Ωm
α2k+1

∧ ωm
α2k+2

∧ · · · ∧ ωm
αm−1

,
(
0 ≤ k ≤

[
m

2

]
− 1

)
,

Ψ−1 = 0.

By taking exterior differential and using the equations ωab +ωba = −2Aabcω
m+c,

we have

dΦk = Ψk−1 +
m− 2k − 1

2k + 2
Ψk +Qk,

where Q0 = 0 and

Qk = kεα1...αm−1 [Ωα1α2 ∧ (ωα1α1 − ωα2α2) + Ωα2α2 ∧ (ωα1α2 + ωα2α1)

+ (k − 1)Ωα2α3 ∧ (ωα1α3 + ωα3α1)

+ (m− 2k − 1){Ωα2α2k+1
∧ (ωα1α2k+1

+ ωα2k+1α1)

+
1

k
Ωα1α2 ∧ (ωα2k+1α2k+1

)}] ∧ Ωα3α4 ∧ . . .

∧ Ωα2k−1α2k
∧ ωm

α2k+1
∧ ωm

α2k+2
∧ · · · ∧ ωm

αm−1
.

Define

Π =





1

πp2p

p−1∑

k=0

(−1)k

1 · 3 · · · · (2p− 2k − 1)k!2k
Φk, m = 2p,

1

πq22q+1q!

q∑

k=0

(−1)k+1Ck
qΦk, m = 2q + 1

and

Ω =





(−1)p−1

22pπpp!
εi1···imΩi1i2 ∧ · · · ∧ Ωim−1im , m = 2p,

0, m = 2q + 1,

where Ck
q is the binomial coefficient given by q!

k!(q−k)! . Then a direct computation

shows that

dΠ = Ω+Q,
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where

Q =





1

πp2p

p−1∑

k=0

(−1)k

1 · 3 · · · · · (2p− 2k − 1)k!2k
Qk, m = 2p,

1

πq22q+1q!

q∑

k=0

(−1)k+1Ck
qQk, m = 2q + 1.

Similarly as Theorem 4.2, we can prove

Theorem 4.3. Let (M,F ) be a compact, connected, oriented boundaryless

m-dimensional Finsler orbifold. Suppose the volume function Vol(x̃) = L defined

by (1) is a constant. Then for any unit vector field V on M , we have

−Vol(Sm−1)

L

∫

M

V ∗(Ω +Q) = χV (M),

where Vol(Sm−1) is the Riemannian volume of m− 1 dimensional sphere Sm−1.

5. The case of an orbifold with boundary

Let N be an orbifold with boundary ∂N . Let X : ∂N 7−→ SN be a unit

vector field on N with finite number of zeros in the interior of N such that the

restriction of X to ∂N is the inner unit Finslerian normal vector field on ∂N .

Similarly as the proof of the Theorem 4.2, we have

Theorem 5.1. Let (N,F ) be a compact, connected, oriented Finsler orbifold

with boundary ∂N . Suppose the volume function V (x̃) = L defined as above is a

constant. Then for any unit vector field X on N which coincides with the inner

normal vector field on ∂N , we have

−
∫

N

X∗(Ω +Q) =
L

Vol(Sm−1)
χ′(N)−

∫

∂N

(X)∗(Π),

where the orientation of ∂N is induced with respect to the outer normal vector

field on N and Vol(Sm−1) the Riemannian volume of m − 1 dimensional unit

sphere Sm−1.

Note that χ′(N) is called the inner orbifold Euler characteristic of N by

Satake [17], and χ′(N) can be given by the triangulation in the interior of N

(see [17]).

In particular, when (N,F ) is two dimensional Landsberg orbifold with bo-

undary, we have



The Gauss–Bonnet–Chern formula for Finslerian orbifolds 61

Theorem 5.2. Let (N,F ) be a compact, connected, oriented Landsberg

orbifold surface with boundary. Let X : ∂N 7−→ SN be a unit vector field on N

with finite number of zeros in the interior of N such that the restriction of X to

∂N is the inner unit Finslerian normal vector field on ∂N .Then

1

L

∫

N

Kω1 ∧ ω2 = χ′(N)− 1

L

∫

∂N

(X)∗(ω2
1).

Where L = V (x̃) is the Riemannian arc length of the indicatrix and ∂N is the

induced orientation with respect to the outer normal vector field on N .

Remark. When the orbifold N is two-dimensional, the boundary ∂N become

a curve. In this case, we can extend Theorem 5.2 to nonconstant indicatrix volume

with regular piecewise C∞ curve using the method of [9], [12].
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