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Dedicated to Professor Lajos Tamássy on the occasion of his 90th birthday

Abstract. In this paper we would like to prove some reduction theorems for R-

quadratic, Ricci-quadratic, W -quadratic, Douglas, and S(n) spaces (in which the stretch

tensor vanishes). Moreover, a new, special type of Finsler spaces, the so-called GRH

(generalized Ricci-quadratic) space is defined. Finally, in the second part of this paper

we develop the theory of quasi-autoparallel mappings.

0. Introduction

Let Fn(Mn, L) be an n-dimensional Finsler space, where Mn is a connected

differentiable manifold of dimension n and L(x, y), where yi = ẋi, is the funda-

mental function defined on the manifold TM \ {0} of nonzero tangent vectors. In

the following we assume that L is positive and that the fundamental metric tensor

gij = 1
2L

2
(i)(j) ((i) = ∂/∂yi) is positive definite. In the first part of the present

paper we shall use the terminology and definitions described in Matsumoto’s

monograph [1]1.

The system of differential equations for geodesic curves xi(t) of Fn with

Mathematics Subject Classification: 53B40.
Key words and phrases: Finsler space, Douglas space, Randers space, R-quadratic space, Ricci-

quadratic space, W -quadratic space.
1Numbers in brackets refer to the references at the end of the paper.
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respect to the canonical parameter t is given by d2xi

dt2 = −2Gi(x, y), where

Gi =
1

4
giα(yβ(∂L2(α)/∂xβ)− ∂2L2/∂xα).2

The Berwald connection coefficients Gi
j(x, y), G

i
jk(x, y) can be derived from

the function Gi, namely Gi
j = Gi

(j), G
i
jk = Gi

j(k). The Berwald covariant deriva-

tive with respect to the Berwald connection can be written as

T i
j‖k = ∂T i

j/∂x
k − T i

j(α)G
α
k − T i

αG
α
jk. (0.1)

We denote by H = Hh
ijk the h-curvature tensor, where H is defined by

Hh
ijk = ∂kG

h
ij −Gh

ij(α)G
α
k +Gα

ijG
h
αk − ∂jG

h
ik +Gh

ik(α)G
α
j −Gh

ikG
h
αj , (0.2)

where ∂k = ∂/∂xk. From (0.2) we obtain the v(h) torsion tensor

Hh
αjky

α = Hh
ojk = Rh

jk (0.3)

and

Hh
αβky

αyβ = Hh
ook = Rh

k . (0.4)

Let us consider two Finsler spaces Fn(Mn, L) and F̄n(Mn, L̄) on a common

underlying manifold Mn. A Finsler space is said to be projectively equivalent

to F̄n if it has the same geodesics as Fn as point sets. In this case the change

L → L̄ of the metrics is called projective. The Douglas tensor

Dh
ijk =

(
Gh − 1

n+ 1
Gα

(α)y
h

)

(i)(j)(k)

, (0.5)

and the Weyl tensor

Wh
ijk = Wh

jk(i), (0.6)

where

Wh
jk = Rh

jk +
1

n+ 1

{
yhHjk + δhj (nHαk +Hkα)y

α/(n− 1)
}

− 1

n+ 1

{
yhHkj + δhk (nHαj +Hjα)y

α/(n− 1)
}
,

are invariant under projective changes.

We introduce some sets of special kinds of n-dimensional Finsler spaces

(n > 2):

2The Roman and the Greek indices run over the range 1, 2, . . . , n; the Roman indices are free

but the Greek indices denote summation.
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B(n) . . . Berwald spaces (Gh
ijk = 0),

L(n) . . . Landsberg spaces (yαG
α
ijk = 0),

D(n) . . . Douglas spaces (Dh
ijk = 0) [3],

S(n) . . . spaces with vanishing stretch tensor (Σhijk = yαH
α
hjk(i) = 0) [1],

Hx(n) . . . spaces with H depending on the position alone, R-quadratic

spaces (Hh
ijk(l) = 0) [2],

Wx(n) . . . spaces with W depending on the position alone, W -quadratic spaces

(Wh
ijk(l) = 0) [3],

RHx(n) . . . spaces with RH depending on the position alone, Ricci-quadratic

spaces (Hα
ijα(k) = Hij(k) = 0) [4], [5],

GRHx(n) . . . generalized Ricci-quadratic spaces (Hα
αij(k) = 0).

We have some well-known inclusion relations of the above mentioned notions:

D(n) ∩ L(n) = B(n) . . . [6]

B(n) ⊂ Hx(n) ⊂ S(n)

B(n) ⊂ L(n) ⊂ S(n)

B(n) ⊂ D(n) ⊂ Wx(n) . . . [3]

B(n) ⊂ Hx(n) ⊂ Wx(n)

B(n) ⊂ Hx(n) ⊂ RHx(n).

1. Some reduction theorems among special Finsler spaces

Proposition 1. Wx(n) ∩RHx(n) = Hx(n).

Proof. From (0.6) we have

Wh
ijk(l) = Hh

ijk(l) +
1

n+ 1

{
δhi H

h
jk(l) + δheHjk(i) + yhHjk(i)(l) +

1

n− 1
δhj

×
[(
nHαk(i)(l)+Hkα(i)(l)

)
yα +

(
nHlk(i)+Hkl(i)

)
+
(
nHik(l)+Hki(l)

)]}

− 1

n+ 1

{
δhi Hkj(l) + δhl Hkj(i) + yhHkj(i)(l) +

1

n− 1
δhk

×
[(
nHαj(i)(l) +Hjα(i)(l)

)
yα +

(
nHlj(i) +Hjl(i)

)

+
(
nHij(l) +Hji(l)

)]}
. (1.7)
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From (1.7) we easily get Proposition 1. Consequence of (1.7): Hx(n) ⊂
Wx(n). ¤

Proposition 2. Wx(n) ∩RHx(n) ⊂ S(n).

Proof. If an Fn is Wx(n) and RHx(n) at the same time, then we have

Hh
ijk(l) = 0. (1.8)

The stretch curvature tensor Σhijk is written in the form [1]:

Σhijk = −yαH
α
hjk(i). (1.9)

(1.9) gives Proposition 2. ¤

The notion of Douglas spaces, arising from the problem of the equations of

the geodesics, yields interesting topics in Finsler geometry. A Finsler space is a

Douglas space if and only if the Douglas tensor Dh
ijk vanishes identically.

It means that

Gi
hjk = Ghjky

i/(n+ 1) + (Ghjδ
i
k +Gjkδ

i
h +Gkhδ

i
j)/(n+ 1), (1.10)

where Ghjk = Gα
αhj(k) are completely symmetric.

One of the Bianchi identities of BΓ (Berwald connection) is the following:

Hh
mij(k) +Gh

mjk‖i −Gh
mij‖k = 0.

Consequently, we have the expression

Σhijk =
(
yαG

α
hki

)
‖j −

(
yαG

α
hji

)
‖k.

Therefore Fn is without stretch, iff

(yαG
α
hij)‖k − (yαG

α
hik)‖j = 0. (1.11)

(In the above equation, ”‖” is the h-covariant differentiation in BΓ). Transvecting

(1.10) by hl
i we easily get

Gl
hjk = ll(lαG

α
hjk) + (hl

hGjk + hl
jGkh + hl

kGhj)/(n+ 1). (1.12)

Proposition 3. Fn is a Douglas space without stretch if and only if (1.11)

and (1.12) are satisfied.
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Differentiate (1.12) h-covariantly and we get

Gl
hjk‖i = ll

(
lαG

α
hjk

)
‖i +

(
hl
hGjk‖i + hl

jGkh‖i + hl
kGhj‖i

)
/(n+ 1). (1.13)

By changing the indices i and j in (1.13) we have

Gl
hik‖j = ll

(
lαG

α
hik

)
‖j +

(
hl
hGik‖j + hl

iGkh‖j + hl
kGhi‖j

)
/(n+ 1). (1.13’)

From (1.13), (1.13’) and Σ = 0 we obtain

H l
hij(k) =

(
hl
hGik‖j + hl

iGkh‖j + hl
kGhi‖j

− hl
jGkh‖i − hl

hGjk‖i − hl
hGhj‖i

)
/(n+ 1). (1.14)

So we have:

Corollary 1. Hx(n) ⊂ S(n) with Gij‖k = 0.

Transvecting (1.14) by the indices l and h, we get

Corollary 2. GRHx(n) ⊂ S(n) with Gij‖k = 0.

2. Quasi-autoparallel mappings

In the last section we want to study the quasi-autoparallel curves and quasi-

autoparallel mappings in bivector preserving tensorially connected spaces.

Let Mn be an n-dimensional manifold. A nonlinear (that is, a not necessarily

linear) connection of the tensors tij of type (2, 0) is a mapping between the n2-

dimensional vector spaces of the tensors of the given type at two points of M .

For two neighbouring points x and x + dx this is given by the vanishing of the

absolute differential

Vtij = dtij +Bij
α(x, t)dx, (2.15)

where Bij
α(x, t) are the coefficients of the connection [7].

Vtij must be a tensor of type (2, 0). This requirement determines the trans-

formation law of the geometric object Bij
α [7]. Bij

α(x, t) is supposed to be

homogeneous of degree one in t.

A tensor connection is linear if

Bij
r(x, t) = γκλ

ij
r(x)t

κλ,

and it reduces to a linear vector connection (to an affine connection) with coeffi-

cients Γi
jα if and only if

γκλ
ij

α = Γi
καδ

j
λ + Γj

λαδ
i
κ.

N. S. Sinyukov gave the following notion ([8]):
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Definition 1 ([8]). A curve is almost autoparallel if there exists a plane τ(t)

in every tangent space of the curve xi(t) such that:

(a) τ(t) are parallel translated along xi(t), and

(b) the tangent dxi/dt of the curve lies in τ(t).

This definition can be used in any context in which the parallelism of planes

is defined. We showed that the parallel translation of plane positions can be

defined in any tensorially connected space in which bivectors, as tensors of type

(2, 0), are translated again into bivectors. In the following we use the fact that a

bivector determines a plane position, and vice versa.

The following theorem characterizes a subclass of tensorial connections Bij
α

which carries bivectors into bivectors.

Theorem 1 ([9]). The nonlinear tensor connection Bij
α(x, t) carries bivec-

tors pij (p12 6= 0) into bivectors if and only if the relations

B(ij)
α(x, p) = 0

p1 [ 2Bκλ]
α(x, p) +B1 [ 2

αp
κλ ] = 0 (κ, λ = 3, 4, . . . , n; κ 6= λ)

hold good, where (ij) denotes the cyclic permutation of indices i, j and summa-

tion, and [ij] means the interchange of indices i, j and subtraction.

Definition 2 ([9]). A curve xi(t) is quasi-autoparallel if it satisfies Definition 1

with respect to a bivector connection.

Theorem 2 ([9]). In a canonical parameter the differential equation of a

quasi-autoparallel curve xi(t) is

dpij

dt
+Bij

α(x, p)
dxα

dt
= 0 (2.16)

pij ∧ dxk

dt
= 0. (2.17)

Let two bivector be given, which preserve the tensorially connected spaces

Tn and T̃n.

Definition 3 ([10]). A mapping L : Tn → T̃n is called quasi-autoparallel if

any quasi-autoparallel curve of Tn coincides with a quasi-autoparallel curve T̃n as

a set of points and vice versa.
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Theorem 3 ([10]). A mapping L : Tn → T̃n is quasi-autoparallel if and only

if there exists a vector field ϕk(x, p) satisfying

Bkl
r(x, p) = Bkl

r(x, p)+ cϕk(x, p)δlr − c ·ϕα(x, p)δkr , pij ∧ϕk(x, p) = 0, (2.18)

where c is a constant.

From the parameters of a bivector preserving tensorial connection, one can

construct a tensor which is invariant under quasi-autoparallel mappings.

Theorem 4 ([10]). The tensor

Tkl
ij

mnr = Akl
ij

mnr − 1

n− 1

(
Akl

i
mnδ

j
r −Akl

j
mnδ

i
r

)
, (2.19)

where Akl
ij

mnr = ∂
∂pmn

(
∂

∂pklB
ij
r

)
and Akl

i
mn = Akl

iα
mnα, is invariant under

quasi-autoparallel mappings.

From (2.19) it follows that if the bivector preserving tensorial connection is

linear with respect to pij , then Tkl
ij

mnr = 0. Conversely, if the invariant tensor

Tkl
ij

mnr vanishes, then from (2.18) we obtain the following equation:

∂

∂pmn

[
Bkl

ij
r(x, p)− 1

n− 1

(
Bkl

iα
α(x, p)δ

j
r −Bkl

jα
α(x, p)δ

i
r

)]
= 0.

Consequently, we have a new geometrical object

Ekl
ij

r(x) = Bkl
ij

r(x, p)− 1

(n− 1)

(
Bkl

iα
α(x, p)δ

j
r −Bkl

jα
α(x, p)δ

i
r

)
. (2.20)

Using the contracted object Ekl
ij

r(x)p
kl = Eij

r(x, p) and the contracted

connection parameters Bkl
ij

r(x, p)p
kl = Bij

r(x, p), we obtain the following

Proposition 4. The object

Eij
r(x, p) = Bij

r(x, p)− 1

n− 1

(
Biα

α(x, p)δ
j
r −Bjα

α(x, p)δ
i
r

)
(2.21)

is invariant under quasi-autoparallel mappings.

We say that Eij
r are the quasi-projective parameters.

Consequently, we obtain the following

Theorem 5. In a space where a linear (bivector preserving) connection is

provided, the tensor Tkl
ij

mnr(x, p) vanishes. Conversely, if Tkl
ij

mnr(x, p) is equal

to zero, then the quasi-projective parameters are linear with respect to pkl.

Let (U, xi) and (Ū , x̄i) be two coordinate systems of Mn having the overlap-

ping region U ∩ Ū , where we have n smooth transition functions x̄r = x̄r(xi). If
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we put ∂kx̄
i = ∂x̄i/∂xk, ∂2

klx̄
i = ∂2x̄i/∂xk∂xl and ∆ = ‖∂x̄i‖, then we get the

following transformation law:

Ēkl
αβ

r(x̄)∂αx̄
i∂β x̄

j=Eαβ
ij

γ(x)∂kx̄
α∂lx̄

α∂lx̄
β∂rx̄

r+ ∂2
krx̄

i∂lx̄
j+ ∂2

lrx̄
j ∂̄kx̄

i− 1

n−1

×
[(

∂2
klx̄

i∂rx̄
j − ∂l ln∆∂kx̄

i∂rx̄
j
)
−
(
∂2
klx̄

j∂rx̄
i − ∂k ln∆∂lx̄

j∂rx̄
i
)]

. (2.22)

Therefore, summarizing all of the above, we have

Theorem 6. A tensor invariant with respect to quasi-autoparallel mappings

is equal to zero if and only if the bivector connection has the following form:

Bkl
ij

r(x, p) = Ekl
ij

r(x) +
1

n− 1
(Bkl

iα
α(x, p)δ

j
r −Bkl

jα
α(x, p)δ

i
r).
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[10] S. Bácsó, On mapping preserving quasi-autoparallel curve, Publ. Math. Debrecen 29
(1982), 155–161 (in Russian).
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