Title: Volumes and geodesic ball packings to the regular prism tilings in $\widetilde{\mathbf{S L}_{2} \mathbf{R}}$ space Author(s): Emil Molnár and Jenő Szirmai

After having investigated the regular prisms and prism tilings in the $\widetilde{\mathbf{S L}_{2} \mathbf{R}}$ space in a previous work of the second author, we consider the problem of geodesic ball packings related to those tilings and their symmetry groups pq2 $\mathbf{1}_{\mathbf{1}} . S L R$ is one of the eight Thurston geometries that can be derived from the 3-dimensional Lie group of all 2×2 real matrices with determinant one.

In this paper we consider geodesic spheres and balls in $\widetilde{\mathbf{S L}_{2} \mathbf{R}}$ (even in $\mathbf{S L}_{2} \mathbf{R}$), if their radii $\rho \in\left[0, \frac{\pi}{2}\right)$, and determine their volumes. Moreover, we consider the prisms of the above space, compute their volumes and define the notion of the geodesic ball packing and its density. We develop a procedure to determine the densities of the densest geodesic ball packings for the tilings, or in this paper more precisely, for their generating groups $\mathbf{p q} \mathbf{2}_{\mathbf{1}}$ (for integer rotational parameters $p, q ; 3 \leq p, \frac{2 p}{p-2}<$ $q)$. We look for those parameters p and q above, where the packing density large enough as possible. Now our record is 0.567362 for $(p, q)=(8,10)$. These computations seem to be important, since we do not know optimal ball packing, namely in the hyperbolic space \mathbf{H}^{3}. We know only the density upper bound 0.85326 , realized by horoball packing of \mathbf{H}^{3} to its ideal regular simplex tiling. Surprisingly, for the socalled translation ball packings under the same groups pq2 $\mathbf{1}_{\mathbf{1}}$ we have got larger density 0.841700 for $(p, q)=(5,10000 \rightarrow \infty)$ close to the above upper bound.

We use for the computation and visualization of the $\widetilde{\mathbf{S L}_{2} \mathbf{R}}$ space its projective model introduced by the first author.

Address:

Emil Molnár

Budapest University of Technology and
Economics Institute of Mathematics
Department of Geometry
1521 Budapest, P. O. Box 91
Hungary

Address:

Jenő Szirmai
Budapest University of Technology and
Economics Institute of Mathematics
Department of Geometry
1521 Budapest, P. O. Box 91
Hungary

