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Abstract. We prove that for any elliptic divisibility sequence and any sufficiently

large integer k, one can find k consecutive terms of the sequence such that none of these

terms is coprime to all the others. In other words, elliptic divisibility sequences are Pillai

sequences, named for a problem posed originally by Pillai for the sequence of integers. In

fact we give an upper bound for the smallest value k0 past which this property is valid.

We also provide a more general theorem where the coprimality condition is severely

relaxed. In case of some particular sequences we give the values of k0, as well.
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1. Introduction

Elliptic divisibility sequences have a long history and a large literature. Alre-

ady the definition of such sequences has several variants. We shall use the version

from a paper of Everest, Mclaren and Ward [9]. That is, by an elliptic di-

visibility sequence we mean the following. Take an elliptic curve E over Q given

in generalized Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with a1, a2, a3, a4, a6 ∈ Q, (1)

and let P = (x(P ), y(P )) be a non-torsion rational point on E. (For the backg-

round and basic properties of elliptic curves see e.g. [5], [13], [26], [31]). For any

non-zero integer n write x(nP ) = An/Bn in lowest terms, with An ∈ Z and

Bn ∈ N. Throughout the paper the sequence B = B(E,P ) = (Bn)
∞
n=1 is called

an elliptic divisibility sequence. As noted in [9], this terminology follows a suggest-

ion of Silverman. The term has also been used for more general sequences related

to rational points on elliptic curves (see e.g. Ward [36] and Silverman [30]).

Furthermore, note that as is well-known, Bn is a full square for all n ≥ 1. We

would like to emphasize that in several papers the sequence ±√
Bn is considered

as an elliptic divisibility sequence, where the sign is chosen in an appropriate way

(which is itself of particular interest – see the paper of Silverman and Stephens

[32]). However, since for our purposes only the prime divisors of Bn are important

and their powers are in fact irrelevant, we stick to the above definition of elliptic

divisibility sequences throughout the paper.

The arithmetic properties of elliptic divisibility sequences were first studied in

detail by Ward [36], [37]. Since then several authors achieved many interesting

results, concerning various properties of such sequences. Instead of trying to

survey the related literature (which would be an enormous task), we only refer

the interested reader to the papers [6], [7], [8], [10], [11], [12], [15], [23], [25], [28],

[29], [30], [32], [34], [35] and the references therein.

In this paper we investigate a new property of elliptic divisibility sequences.

Let u = (un)
∞
n=1 be a sequence of integers. Write gu for the smallest k ≥ 2 (if it

exists) such that there exist k consecutive terms of u with the property that none

of them is coprime to all the others. Further, write Gu for the smallest k0 ≥ 2 (if

it exists) such that for any k ≥ k0 one can find k consecutive terms of u with the

above property. Obviously, these quantities do not always exist. However, if Gu

exists then so does gu, and we have gu ≤ Gu. Sequences u for which Gu exists

are called Pillai sequences (see [17]) after Pillai, who was the first to investigate

this property in N (i.e. in the increasing sequence of positive integers). Due to
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Pillai’s classical result from [22] and by a nice theorem of Brauer [3], we have

that N is a Pillai sequence, with gN = GN = 17. Later, Ohtomo and Tamari

[21] proved that for any coprime integers a, b the arithmetic progression an + b

(n ≥ 1) is also a Pillai sequence. Recently, Hajdu and Szikszai [17] together

with other related results proved that Lucas and Lehmer sequences of the first

kind are Pillai sequences, as well. However, they also demonstrated that being a

Pillai sequence is a special property, at least Lucas and Lehmer sequences of the

second kind do not have this property in general. In the present paper we show

that elliptic divisibility sequences are also Pillai sequences. Further, we prove a

more general theorem about the so-called T -Pillai property of such sequences.

(We provide the precise definitions in the next section.) Moreover, we explicitly

give the values gB and GB for several particular elliptic divisibility sequences B.

Our results rely on divisibility properties of elliptic divisibility sequences shown

by Everest, Mclaren and Ward [9], a classical theorem of Baker [2] bo-

unding the solutions of elliptic diophantine equations, a theorem of Ingram and

Silverman [19] concerning the existence of primitive prime divisors of B, and

results and algorithms of Hajdu and Saradha [16] and Hajdu and Szikszai

[17] concerning the T -Pillai property.

We organize the paper in the following way. In the next section we give our

results (together with some new notions and notation). Since we need several

lemmas to prove our theorems, we give them separately, in the third section.

Then in the final section we provide the proofs of our theorems.

2. New results

Our principal result is the following.

Theorem 2.1. Every elliptic divisibility sequence B = B(E,P ) = (Bn)
∞
n=1

is a Pillai sequence. Further, we have GB ≤ C1(E), where C1(E) is an explicitly

computable constant depending only on E.

Remark 1. As one can notice, the upper bound C1(E) is independent of the

point P . It is an interesting question how far this “uniformity” can be extended.

In our arguments the critical point is to give a bound for the number N of

integral points on an elliptic curve. Already the classical result of Baker [2]

implies the finiteness of such points, in terms of the coefficients a1, a2, a3, a4, a6,

appearing in (1). Hence in fact one could replace C1(E) by C1(a1, a2, a3, a4, a6).

Further, by a conjecture of Lang (see [20], p. 140), N should be bounded in



294 Lajos Hajdu and Márton Szikszai

terms of the rank of E only, provided that the above model for E is so-called

quasiminimal. This conjecture has been proved to be true by Silverman [27] if

E has integral j-invariant, while Hindry and Silverman [18] showed that Lang’s

conjecture is implied by the ABC conjecture. So if we assume that E is given by

a quasiminimal model and it has integral j-invariant, then C1(E) can be replaced

by C1(r), where r denotes the rank of E. The same is true if we assume Lang’s

conjecture or the ABC-conjecture.

Our next theorem provides the exact values of GB for certain “interesting”

elliptic divisibility sequences B from the literature. More precisely, we consider

the sequences given in Examples 2–5 in [32], as the “simplest” examples of elliptic

divisibility sequences. Note that in [32] in our notation the authors work with the

sequence ±√
Bn. However, as we have already mentioned, this does not yield any

difference from our viewpoint. We also mention that the background data (that

is the corresponding elliptic curve E and point P ) indicated in Table 1 are given

in [32]. In fact in [32] two more examples are given. However, Example 1 and

Example 2 coincide, while Example 6 concerns a “degenerate” situation, so we do

not include it here. Finally, we mention that our method would work for other

elliptic divisibility sequences, as well. We just pick up these sequences because

they appear in the literature, and they are the “simplest” ones in some sense.

Theorem 2.2. Table 1 gives the explicit values of gB and GB for elliptic

divisibility sequences B = B(E,P ) for the indicated specific choices for E and P .

E P = (x(P ), y(P )) gB GB

y2 + y = x3 − x (0, 0) 79 79

y2 + y = x3 + x2 (0, 0) 81 81

y2 + xy = x3 − x2 − x+ 1 (1, 0) 47 47

y2 + xy = x3 − 2x+ 1 (1, 0) 81 81

Table 1. The values of gB and GB for certain elliptic divisibility sequences.

Remark 2. Note that for the four sequences B appearing in Theorem 2.2

we have gB = GB . The coincidence of these parameters seems to be a common

behavior; see [16] and [17] for related situations. However, we are pretty sure that

there are elliptic divisibility sequences B with gB < GB , similarly to the cases

considered in [16] and [17].

Our last result concerns a much more general case. For its formulation we

need to introduce some new notation.
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Let T be an arbitrary set of positive integers. The integers a and b are called

T -coprime if gcd(a, b) ∈ T . Observe that in case of T = {1}, T -coprimality just

coincides with the ordinary notion of coprimality. Let u = (un)
∞
n=1 be a sequence

of integers. As in the original case, we write gu(T ) for the smallest k ≥ 2 (if it

exists) such that there exist k consecutive terms of u with the property that none

of them is T -coprime to all the others. Further, we write Gu(T ) for the smallest

k0 ≥ 2 (if it exists) such that for any k ≥ k0 one can find k consecutive terms

of u with the above property. As before, if Gu(T ) exists then so does gu(T ),

and we have gu(T ) ≤ Gu(T ). A sequence u for which Gu(T ) exists is called a

T -Pillai sequence (see [17]). Obviously, for T = {1} we get back the notion of

Pillai sequences.

In the literature there are several results concerning the problem whether N
is a T -Pillai sequence or not for various choices of T , see e.g. the papers of Caro

[4], Saradha and Thangadurai [24] and Hajdu and Saradha [16], and the

references there. Further, there are also theorems concerning the T -Pillai property

of other sequences for certain types of T , cf. results of Hajdu and Saradha [16]

for arithmetic progressions, and of Hajdu and Szikszai [17] for Lucas, Lehmer

and general linear recurrence divisibility sequences.

Now we give an answer to this question for elliptic divisibility sequences in

the case when T consists of integers with prime factors coming from a fixed finite

set. Note that a similar choice for T was considered in [16] and [17], for N and

for Lucas–Lehmer sequences, respectively.

Theorem 2.3. Let S be an arbitrary finite set of primes with |S| = s,

and T be an arbitrary set of integers having no prime divisors outside S. Then

every elliptic divisibility sequence B = B(E,P ) = (Bn)
∞
n=1 is a T -Pillai sequence.

Moreover, we have GB(T ) ≤ C2(E, s), where C2(E, s) is an explicitly computable

constant depending only on E and s.

Remark 3. As one can easily check, Theorem 2.1 is in fact an immediate

consequence of Theorem 2.3. However, beside being a simpler statement, The-

orem 2.1 can be proved by more classical tools than Theorem 2.3. So we prefer

to state and prove these theorems separately.

3. Some lemmas

To prove our results, we need two types of lemmas. The first branch of them

concerns various properties of elliptic divisibility sequences. The other class of

lemmas provides certain information about T -Pillai sequences.
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3.1. Lemmas concerning elliptic divisibility sequences. The first result

we use is due to Everest, Mclaren and Ward [9], and reveals a vital property

of elliptic divisibility sequences – in fact it justifies their name in a strong form.

Lemma 3.1. Every elliptic divisibility sequence B = (Bn)
∞
n=1 is a strong

divisibility sequence. That is, for any m,n ∈ N we have

gcd(Bm, Bn) = Bgcd(m,n).

Proof. See Lemma 3.2 in [9]. ¤

Our second lemma is a classical result of Baker [2], providing an upper

bound for the integral solutions of elliptic diophantine equations.

Lemma 3.2. Let B = B(E,P ) = (Bn)
∞
n=1 be an elliptic divisibility sequ-

ence. There exists a positive explicit constant C3(E) depending only on E such

that we have
{n : Bn = 1} ≤ C3(E).

Proof. Observe that Bn = 1 means that the underlying point nP is an

integral point of E. Hence the statement immediately follows from the main

result of [2]. ¤

The next result we need is a theorem of Ingram and Silverman [19], con-

cerning primitive prime divisors of elliptic divisibility sequences B = (Bn)
∞
n=1.

A prime p is called a primitive prime divisor of the term Bn, if p | Bn, and

furthermore, whenever 1 ≤ m < n, one has p - Bm.

Lemma 3.3. Let B = B(E,P ) = (Bn)
∞
n=1 be an elliptic divisibility sequ-

ence. There exists an explicitly computable positive integer N(E) depending only

on E such that the number of terms Bn having no primitive prime divisor is at

most N(E).

Proof. The assertion is a simple and immediate consequence of Theorem 1

(a) of [19]. ¤

3.2. Lemmas concerning the T -Pillai property. Our first lemma of this

type is due to Hajdu and Saradha [16]. It implies that if T is finite then the

original Pillai function G(T ) = GN(T ) (and hence also g(T ) = gN(T )) exists. For

any set T of positive integers let T (X) denote the set of elements t of T with

t ≤ X.
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Lemma 3.4. Suppose that

|T (X)| ≤ X

10 logX
(2)

holds for all X ≥ X1. Then G(T ) exists and

g(T ) ≤ G(T ) ≤ max(425, 2X1 + 1).

Proof. This is Theorem 2.1 of [16]. ¤

The next lemma provides the values of g(T ) and G(T ) for certain special

choices of T . In fact two of the cases considered are covered by a previous result

of the present authors [17].

Lemma 3.5. For the sets T occurring in the first column of Table 2, the

values of g(T ) and G(T ) are those occurring in the second and third columns of

the table, respectively.

T g(T ) G(T )

{1, 2, 3, 4, 6} 79 79

{1, 2, 3, 4, 7} 81 81

{1, 2, 4} 47 47

{1, 2, 3, 5} 81 81

Table 2. The values of g(T ) and G(T ) for some particular sets T .

Proof. The second and third cases are included in Lemma 4.4 of [17]. In

the first and last cases we use the algorithm developed in [16], see Section 5 there.

As the precise explanation of the procedure would need a lot of preparation, we

only indicate the most important steps of the method, and refer to [16] for details.

In giving this short description, we follow the proof of Lemma 4.4 from [17].

We consider only the case T = {1, 2, 3, 4, 6}, the choice T = {1, 2, 3, 5} can

be similarly treated. As it has been explained in [16], the property that there

exists a set Sk of k consecutive integers such that none of them is T -coprime to

all the others is equivalent to the following assertion: the set K := {1, 2, . . . , k}
can be ”covered” by the set L := {p : p prime, p 6= 2, 3, p < k}∪ {8, 9, 12}. That
is, there exists a function f : L → K with the following properties:

• for every ` ∈ L we have f(`) ≤ `,

• 4 | (f(8)− f(12)) and 3 | (f(9)− f(12)),
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• for every i ∈ K there exists a j ∈ K with i 6= j and an ` ∈ L such that

i ≡ j ≡ f(`) (mod `).

Indeed, assume that such a function f is given. (One can consider f such that it

defines the places f(`) of the elements of ` ∈ L in K. Then ` | i ∈ K precisely

when ` | (i − f(`)).) Using the Chinese Remainder Theorem, we can find a set

Sk = {n + 1, . . . , n + k} of k consecutive integers such that for any ` ∈ L and

i ∈ K, we have ` | i if and only if ` | (n + i). So for any n + i ∈ Sk we can

find an n + j ∈ Sk such that n + i 6= n + j, and gcd(n + i, n + j) has a divisor

from L, implying that it is not in T . This shows that g(T ) 6= k and certainly also

G(T ) > k. On the other hand, if we can find a set Sk = {n+ 1, . . . , n+ k} such

that none of its elements is T -coprime to all the others, then for any n + i ∈ Sk

we can find an n+ j ∈ Sk such that n+ i 6= n+ j, and gcd(n+ i, n+ j) /∈ T , i.e.,

it has a divisor from L. Putting now f(`) = i for any ` ∈ L where i ∈ K is the

first element such that ` | (n + i), we just get a function f with the properties

required above.

Thus to find g(T ), we need to check all k-s from k0 = 17 up. (Since by the

results of Pillai [22] and Brauer [3] we know that g(T ) ≥ g({1}) = 17.) This

is done by applying the corresponding algorithm from [16]. This gives g(T ) = 79.

Now since |T | = 5, by Lemma 3.4 we obtain X1 = 283 so that G(T ) ≤ 567. Thus

we need to check for coverings ofK for the values of k in the interval 79 < k < 567.

For k < 90 one can easily and quickly find coverings just as previously. For the

larger values of k, the algorithm becomes less efficient. Thus for these values of k

we use a heuristic algorithm from [16], to find a covering for K. Note that this

algorithm is heuristic only in the sense that there is no preliminary guarantee

that it will work. However, it worked efficiently in all cases considered in [16],

and also in all the present instances. In this way, we could produce a covering

for all k with 79 < k < 567, which gives G(T ) = 79, too. Hence the statement

is proved in this case. As we mentioned, in the other case a similar method has

been used, and we have just obtained the values of g(T ) and G(T ) occurring in

Table 2. ¤

4. Proofs of the theorems

Now we are ready to give the proofs of our theorems. We start with the

proof of Theorem 2.1. Then the proof of Theorem 2.3 follows, since it is of

similar nature. We conclude this section with the proof of Theorem 2.2.
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Proof of Theorem 2.1. Let B = B(E,P ) = (Bn)
∞
n=1 be an elliptic divi-

sibility sequence. Put
T = {n : Bn = 1},

and note that by Lemma 3.2 we have |T | ≤ C4(E) where C4(E) is an expli-

citly computable constant depending only on E. Consider k consecutive terms

Bn+1, . . . , Bn+k of B. In view of Lemma 3.1 we obtain that

gcd(Bn+i, Bn+j) = Bgcd(n+i,n+j) = 1

if and only if gcd(n+i, n+j) ∈ T .In other words, a term Bn+i is coprime to all the

other terms Bn+j (i 6= j) if and only if n+ i is T -coprime to all the other indices

n + j. Since T is finite, by Lemma 3.4 we know that N is a T -Pillai sequence.

This implies that B is a Pillai sequence. Further, we also have that gB = g(T )

and GB = G(T ). Since |T | ≤ C4(E), by Lemma 3.4 we have that G(T ) ≤ C1(E)

with some explicitly computable constant C1(E), and the theorem follows. ¤

Proof of Theorem 2.3. Let S be an arbitrary finite set of primes with

|S| = s and T be an arbitrary set of integers having no prime divisors outside S.

Further, let B = B(E,P ) = (Bn)
∞
n=1 be an elliptic divisibility sequence. Put

T ′ := {n : Bn ∈ T}.
Lemma 3.3 yields that there exists an explicitly computable positive integer N(E)

such that there exist at most N(E) terms Bn having no primitive prime divisor.

Thus |T ′| ≤ C5(E, s) holds, where C5(E, s) is some constant depending only

on E and s. Thus by Lemma 3.4, N is a T ′-Pillai sequence, and in particular,

G(T ′) ≤ C2(E, s) with some explicitly computable constant C2(E, s) depending

only on E and s. Now by a similar argument as in the proof of Theorem 2.1

we get that B is a T -Pillai sequence, and GB(T ) = G(T ′). Hence the statement

immediately follows. ¤

Proof of Theorem 2.2. For any of the sequences B = B(E,P ) from

Table 1, put

TB := {n : Bn = 1}.
By a simple calculation e.g. using the function IntegralPoints of Magma [1]

(which is based upon the deterministic and efficient method of Stroeker and

Tzanakis [33] and Gebel, Pethő and Zimmer [14]) we can easily find all

integral points on the corresponding elliptic curves E, and check that the sets TB

are precisely those indicated in Table 3.

Thus recalling from the proof of Theorem 2.1 that gB = g(T ) and GB =

G(T ), the statement instantly follows from Lemma 3.5. ¤
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E P = (x(P ), y(P )) TB

y2 + y = x3 − x (0, 0) {1, 2, 3, 4, 6}
y2 + y = x3 + x2 (0, 0) {1, 2, 3, 4, 7}

y2 + xy = x3 − x2 − x+ 1 (1, 0) {1, 2, 4}
y2 + xy = x3 − 2x+ 1 (1, 0) {1, 2, 3, 5}
Table 3. The sets TB for certain elliptic divisibility sequences.
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