Publ. Math. Debrecen 84/3-4 (2014), 319–332 DOI: 10.5486/PMD.2014.5357

Proportionally modular numerical semigroups with embedding dimension three

By AURELIANO M. ROBLES-PÉREZ (Granada) and JOSÉ CARLOS ROSALES (Granada)

Abstract. In this paper we study numerical semigroups, generated by three positive integers, that are the set of solutions of a Diophantine inequality of the form $ax \mod b \leq cx$. As a consequence, we show that, if these numerical semigroups are irreducible (this is, symmetric or pseudo-symmetric), then they are the set of solutions of a Diophantine inequality of the form $\alpha x \mod \beta \leq x$.

1. Introduction

Let \mathbb{N} be the set of nonnegative integers. A numerical semigroup is a subset S of \mathbb{N} such that it is closed under addition, $0 \in S$ and $\mathbb{N} \setminus S$ is finite. If $A \subseteq \mathbb{N}$, we denote by $\langle A \rangle$ the submonoid of $(\mathbb{N}, +)$ generated by A, this is,

 $\langle A \rangle = \{ \lambda_1 a_1 + \dots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_1, \dots, a_n \in A, \lambda_1, \dots, \lambda_n \in \mathbb{N} \}.$

It is well known (see for instance [11]) that $\langle A \rangle$ is a numerical semigroup if and only if $gcd\{A\} = 1$, where gcd means greatest common divisor.

Let S be a numerical semigroup and let X be a subset of S. We say that X is a system of generators of S if $S = \langle X \rangle$. In addition, if no proper subset of X generates S, then we say that X is a minimal system of generators of S. Every

Mathematics Subject Classification: Primary: 11D75, 20M14; Secondary: 13H10.

Key words and phrases: proportionally modular numerical semigroups, modular numerical semigroups, Diophantine inequalities, symmetric, pseudo-symmetric.

Both of the authors are supported by FQM-343 (Junta de Andalucía), MTM2010-15595 (MI-CINN, Spain) and FEDER funds. The second author is also partially supported by Junta de Andalucía/Feder grant number FQM-5849.

numerical semigroup admits a unique minimal system of generators. Moreover, such system has finitely many elements (see [1], [11]).

If $n_1 < n_2 < \cdots < n_e$ are the elements of the minimal system of generators of a numerical semigroup S, then n_1 , n_2 and e are known as the *multiplicity*, the *ratio*, and the *embedding dimension* of S, and they are denoted by m(S), r(S)and e(S), respectively.

Let m, n be integers such that $n \neq 0$. We denote by $m \mod n$ the remainder of the division of m by n. A proportionally modular Diophantine inequality (see [12]) is an expression of the form

$$ax \mod b \le cx$$
 (1)

where a, b, c are positive integers. We call a, b and c the *factor*, the *modulus*, and the *proportion* of the inequality, respectively. Let S(a, b, c) be the set of integer solutions of (1). Then S(a, b, c) is a numerical semigroup. We say that a numerical semigroup is a *proportionally modular numerical semigroup* (PM-*semigroup*) if it is the set of integer solutions of a proportionally modular Diophantine inequality.

A modular Diophantine inequality (see [13]) is an expression of the form

$$ax \mod b \le x,\tag{2}$$

this is, it is a proportionally modular Diophantine inequality with proportion equal to one. A numerical semigroup is a *modular numerical semigroup* (M-semigroup) if it is the set of integer solutions of a modular Diophantine inequality. Therefore, every M-semigroup is a PM-semigroup, but the converse is false. In effect, from Example 26 in [12], we have that the numerical semigroup $\langle 3, 8, 10 \rangle$ is a PM-semigroup, but is not an M-semigroup.

A numerical semigroup is an *irreducible numerical semigroup* if it can not be expressed as an intersection of two numerical semigroups containing it properly. In [9] it is shown that the class of irreducible numerical semigroups is the union of two widely studied classes of numerical semigroups: the *symmetric numerical semigroups* and the *pseudo-symmetric numerical semigroups* (see [1], [2], [5]).

From Theorem 16 in [12] and Theorem 6 in [3] we deduce that the numerical semigroup $\langle n, n + 1, \ldots, 2n - 2 \rangle$ is a symmetric PM-semigroup if n is an integer such that $n \geq 3$. Therefore, there exist irreducible PM-semigroups with arbitrary embedding dimension. However, this result is false for M-semigroups. In fact, as a consequence of the results in [7], [8], we have that every irreducible M-semigroup has embedding dimension less than or equal to three. More precisely, in this paper we will show that the irreducible M-semigroups are just the irreducible PM-semigroups with embedding dimension less than or equal to three.

We summarize the content of this article in the following way. From Remark 24 in [14], we know that, if S is a PM-semigroup, then $gcd\{r(S), m(S)\} = 1$. For this reason, we will consider m, r integers such that $3 \leq m < r$ and $gcd\{m,r\} = 1$. In Section 2 we will give in explicit form the elements of the set

$$PM(m,r) = \{S \mid S \text{ is a PM-semigroup, } m(S) = m, r(S) = r, \text{ and } e(S) = 3\}.$$

Moreover, we will see that PM(m, r) has cardinality equal to $m + r - \left\lceil \frac{2r}{m} \right\rceil - 3$. We will compute positive integers a, b, c such that S = S(a, b, c) for each $S \in PM(m, r)$.

In Section 3 we will study the set

$$Sy(PM(m, r)) = \{ S \in PM(m, r) \mid S \text{ is symmetric} \}.$$

We will compute the cardinality of this set from the divisors of m and r. We will give positive integers a, b such that S = S(a, b, 1) for each $S \in Sy(PM(m, r))$.

Finally, Section 4 will be devoted to the study of the set

$$PSy(PM(n_1, n_2)) = \{S \in PM(n_1, n_2) \mid S \text{ is pseudo-symmetric}\}.$$

We will show that, if m = 3, then this set has cardinality equal to 1 and, if $m \ge 4$, then the cardinality is equal to the cardinality of $\{x \in \{m, r\} \mid x \text{ is odd}\}$. At the end, we will compute positive integers a, b such that S = S(a, b, 1) for each $S \in PSy(PM(m, r))$.

2. PM-semigroups

Let x_1, x_2, \ldots, x_q be a sequence of integer numbers. We say that it is arranged in a convex form if one of the following conditions is satisfied,

- (1) $x_1 \leq x_2 \leq \cdots \leq x_q;$
- (2) $x_1 \ge x_2 \ge \cdots \ge x_q;$
- (3) There exists $h \in \{2, \ldots, q-1\}$ such that $x_1 \ge \cdots \ge x_h \le \cdots \le x_q$.

As a consequence of Theorem 31 in [14] (see its proof and Corollary 18 of [14]) we have the next lemma.

Lemma 2.1. A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement n_1, n_2, \ldots, n_e of its set of minimal generators that satisfies the following conditions,

- (1) $gcd\{n_i, n_{i+1}\} = 1$ for all $i \in \{1, \dots, e-1\}$;
- (2) $(n_{i-1} + n_{i+1}) \equiv 0 \mod n_i \text{ for all } i \in \{2, \dots, e-1\}.$

In what follows we will suppose that n_1 , n_2 are integer numbers such that $3 \le n_1 < n_2$ and $gcd\{n_1, n_2\} = 1$. Moreover, to simplify the notation we will use the following sets,

- $A(n_1) = \{2, \ldots, n_1 1\};$
- $A(n_1, n_2) = \{ \lceil \frac{2n_2}{n_1} \rceil, \dots, n_2 1 \};$
- $B(n_1) = \{k \in A(n_1) \text{ such that } k \mid n_1\};$
- $B(n_1, n_2) = \{t \in A(n_1, n_2) \text{ such that } t \mid n_2\}.$

For the definition of $A(n_1, n_2)$, remember that, if $q \in \mathbb{Q}$ (where \mathbb{Q} is the set of rational numbers), then we denote $\lceil q \rceil = \min\{z \in \mathbb{Z} \mid q \leq z\}$. Moreover, for the definitions of $B(n_1)$ and $B(n_1, n_2)$, if a, b are positive integers, then we denote by a|b that a divides b.

Lemma 2.2. If $k \in A(n_1)$, then $S = \langle n_1, n_2, kn_2 - n_1 \rangle$ is a PM-semigroup with e(S) = 3. Moreover, $n_1 < n_2 < kn_2 - n_1$.

PROOF. It is clear that $n_1 < n_2 < kn_2 - n_1$ because $k \ge 2$ (by hypothesis) and $n_1 < n_2$ (by assumption). In order to give the proof, it is enough to see that $kn_2 - n_1 \notin \langle n_1, n_2 \rangle$. Otherwise, there will exist $\lambda, \mu \in \mathbb{N}$ such that $kn_2 - n_1 = \lambda n_1 + \mu n_2$. Then $(k - \mu)n_2 = (\lambda + 1)n_1$. Because $gcd\{n_1, n_2\} = 1$, we deduce that $k - \mu \ge n_1$ which is a contradiction with the condition $k \in A(n_1)$. Finally, if we consider the arrangement $n_1, n_2, kn_2 - n_1$ of the set of minimal generators for S, then it is a PM-semigroup as a consequence of Lemma 2.1.

Lemma 2.3. If $t \in A(n_1, n_2)$, then $S = \langle n_1, n_2, tn_1 - n_2 \rangle$ is a PM-semigroup with e(S) = 3. Moreover, $n_1 < n_2 < tn_1 - n_2$.

PROOF. Let us have $t \in \mathbb{Z}$. Let us observe that $n_2 < tn_1 - n_2$ if and only if $t > \frac{2n_2}{n_1}$, which is equivalent to $t \ge \lfloor \frac{2n_2}{n_1} \rfloor$ because $n_1 \ge 3$. Using a similar reasoning as in Lemma 2.2, we prove that e(S) = 3. Finally, S is a PM-semigroup by Lemma 2.1 with the arrangement $tn_1 - n_2$, n_1 , n_2 of the set of its minimal generators.

Let us denote the set

 $PM(n_1, n_2) = \{S \mid S \text{ is a PM-semigroup, } m(S) = n_1, r(S) = n_2, e(S) = 3\}.$

Theorem 2.4. $PM(n_1, n_2)$ is equal to the union of

$$PM_1(n_1, n_2) = \{ \langle n_1, n_2, kn_2 - n_1 \rangle \mid k \in A(n_1) \}$$

$$PM_2(n_1, n_2) = \{ \langle n_1, n_2, tn_1 - n_2 \rangle \mid t \in A(n_1, n_2) \}$$

PROOF. By applying Lemmas 2.2 and 2.3, $\operatorname{PM}_1(n_1, n_2) \cup \operatorname{PM}_2(n_1, n_2) \subseteq \operatorname{PM}(n_1, n_2)$. In order to prove the other inclusion, let us have $S \in \operatorname{PM}(n_1, n_2)$. Then S is minimally generated by $\{n_1, n_2, n_3\}$ with $n_1 < n_2 < n_3$. From Lemma 2.1, we deduce that $(n_1 + n_3) \equiv 0 \mod n_2$ or $(n_2 + n_3) \equiv 0 \mod n_1$. If $(n_1 + n_3) \equiv 0 \mod n_2$, then $n_3 = kn_2 - n_1$ for an integer $k \geq 2$. Moreover, $k \leq n_1 - 1$ because $n_3 \in \langle n_1, n_2 \rangle$ in other case, and this is a contradiction with the fact that $\{n_1, n_2, n_3\}$ is the minimal system of generators of S. On the other hand, if $(n_2 + n_3) \equiv 0 \mod n_1$, then $n_3 = tn_1 - n_2$ for an integer $t \geq \lfloor \frac{2n_2}{n_1} \rfloor$. Moreover, $t \leq n_2 - 1$ because $n_3 \notin \langle n_1, n_2 \rangle$.

Now we compute the cardinality of $PM(n_1, n_2)$. First, we need a lemma that is the key.

Lemma 2.5. Let k, t be positive integers such that $k \le n_1 - 1$ and $t \le n_2 - 1$. Then $kn_2 - n_1 = tn_1 - n_2$ if and only if $k = n_1 - 1$ and $t = n_2 - 1$.

PROOF. It is obvious that $kn_2 - n_1 = tn_1 - n_2$ if and only if $(k+1)n_2 = (t+1)n_1$. Because $gcd\{n_1, n_2\} = 1$, $k \le n_1 - 1$, and $t \le n_2 - 1$, we deduce that $(k+1)n_2 = (t+1)n_1$ if and only if $k = n_1 - 1$ and $t = n_2 - 1$.

Let us have a set A. We denote by #A the cardinality of A.

Corollary 2.6. $\# PM(n_1, n_2) = n_1 + n_2 - \left\lfloor \frac{2n_2}{n_1} \right\rfloor - 3.$

PROOF. From Lemma 2.5, we have that $PM_1(n_1, n_2) \cap PM_2(n_1, n_2)$ has cardinality equal to one. By applying Theorem 2.4, we have the conclusion.

To clarify the previous results, we give an example.

Example 2.1. We want to compute PM(5,7). First, from Corollary 2.6, we know that $\# PM(5,7) = 5 + 7 - \left\lceil \frac{14}{5} \right\rceil - 3 = 6$. Second, by applying Theorem 2.4, we have that the elements of PM(5,7) are,

- $S_1 = \langle 5, 7, 2 \cdot 7 5 \rangle = \langle 5, 7, 9 \rangle;$
- $S_2 = \langle 5, 7, 3 \cdot 7 5 \rangle = \langle 5, 7, 16 \rangle;$
- $S_3 = \langle 5, 7, 4 \cdot 7 5 \rangle = \langle 5, 7, 23 \rangle = \langle 5, 7, 6 \cdot 5 7 \rangle;$
- $S_4 = \langle 5, 7, 3 \cdot 5 7 \rangle = \langle 5, 7, 8 \rangle;$
- $S_5 = \langle 5, 7, 4 \cdot 5 7 \rangle = \langle 5, 7, 13 \rangle;$
- $S_6 = \langle 5, 7, 5 \cdot 5 7 \rangle = \langle 5, 7, 18 \rangle.$

Let S be a PM-semigroup. By definition, there exist positive integers a, b and c such that $S = S(a, b, c) = \{x \in \mathbb{N} \mid ax \mod b \leq cx\}$. We finish this section giving, for each $S \in PM(n_1, n_2)$, a triplet (a, b, c) such that S = S(a, b, c). For this purpose, we introduce some concepts and results.

Let \mathbb{Q}_0^+ be the set of nonnegative rational numbers. If $A \subseteq \mathbb{Q}_0^+$, we denote by $\langle A \rangle$ the submonoid of $(\mathbb{Q}_0^+, +)$ generated by A, this is,

$$\langle A \rangle = \{ \lambda_1 a_1 + \dots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_1, \dots, a_n \in A, \lambda_1, \dots, \lambda_n \in \mathbb{N} \}.$$

It is clear that $S(A) = \langle A \rangle \cap \mathbb{N}$ is a submonoid of $(\mathbb{N}, +)$. If α, β are two rational numbers such that $\alpha < \beta$, then we denote $[\alpha, \beta] = \{x \in \mathbb{Q} \mid \alpha \leq x \leq \beta\}$. The next result is a consequence of Lemmas 12 and 21 in [12].

Lemma 2.7. Let S be a numerical semigroup. Then S is a PM-semigroup if and only if there exist α , β positive rational numbers such that $S = S([\alpha, \beta])$.

And this one is consequence of Lemma 6 and Corollary 9 in [12].

Lemma 2.8. Let a, b, c be positive integers such that c < a < b. Then $S(a, b, c) = S(\left[\frac{b}{a}, \frac{b}{a-c}\right]).$

Following the ideas in [14], we say that $\frac{a_1}{b_1} < \frac{a_2}{b_2} < \cdots < \frac{a_r}{b_r}$ is a Bézout sequence if $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_r$ are positive integers such that $a_{i+1}b_i - a_ib_{i+1} = 1$ for all $i \in \{1, 2, \ldots, r-1\}$. The following result is Theorem 12 in [14].

Lemma 2.9. If $\frac{a_1}{b_1} < \frac{a_2}{b_2} < \cdots < \frac{a_r}{b_r}$ is a Bézout sequence, then

$$\langle a_1, a_2, \dots, a_r \rangle = S\left(\left[\frac{a_1}{b_1}, \frac{a_r}{b_r}\right]\right).$$

In the rest of the paper, we denote by u, v the unique positive integers such that $\frac{n_1}{u} < \frac{n_2}{v}$ is a Bézout sequence and $1 < \frac{n_1}{u}$.

Proposition 2.10. (1) If $k \in A(n_1)$, then

$$\langle n_1, n_2, kn_2 - n_1 \rangle = \{ x \in \mathbb{N} \mid u(kn_2 - n_1)x \mod n_1(kn_2 - n_1) \le kx \}.$$

(2) If $t \in A(n_1, n_2)$, then

$$\langle n_1, n_2, tn_1 - n_2 \rangle = \{ x \in \mathbb{N} \mid n_2(tu - v)x \mod n_2(tn_1 - n_2) \le tx \}$$

PROOF. (1) It is clear that $\frac{n_1}{u} < \frac{n_2}{v} < \frac{kn_2-n_1}{kv-u}$ is a Bézout sequence. From Lemma 2.9, we have

$$\langle n_1, n_2, kn_2 - n_1 \rangle = S\left(\left[\frac{n_1}{u}, \frac{kn_2 - n_1}{kv - u} \right] \right)$$

= S\left(\left[\frac{n_1(kn_2 - n_1)}{u(kn_2 - n_1)}, \frac{n_1(kn_2 - n_1)}{n_1(kv - u)} \right] \right).

By using Lemma 2.8, we have the conclusion.

(2) The proof is similar to the previous one with the Bézout sequence given by $\frac{tn_1-n_2}{tu-v} < \frac{n_1}{u} < \frac{n_2}{v}$.

Example 2.2. Let S_1 be the numerical semigroup that appeared in Example 2.1, this is, $S_1 = \langle 5, 7, 2 \cdot 7 - 5 \rangle$. Let us observe that $\frac{5}{3} < \frac{7}{4} < \frac{2 \cdot 7 - 5}{2 \cdot 4 - 3} = \frac{9}{5}$ is a Bézout sequence. Therefore,

$$S_1 = \langle 5, 7, 9 \rangle = S\left(\left[\frac{5}{3}, \frac{9}{5}\right]\right) = S\left(\left[\frac{45}{27}, \frac{45}{25}\right]\right) = \{x \in \mathbb{N} \mid 27x \mod 45 \le 2x\}.$$

3. Symmetric PM-semigroups

Let S be a numerical semigroup. The greatest integer that does not belong to S is called the Frobenius number of S (see [6]) and denoted by F(S). In [9] it is shown that a numerical semigroup S is irreducible if and only if it is maximal (with respect to the inclusion order) in the set of all numerical semigroups with fixed Frobenius number. Therefore, on applying [2], we have that a numerical semigroup S is symmetric (respectively, pseudo-symmetric) if and only if S is irreducible and F(S) is odd (respectively, even).

The next result is Proposition 39 in [14].

Lemma 3.1. Let S be a numerical semigroup with minimal system of generators $\{m_1, m_2, m_3\}$. Let us suppose that $gcd\{m_1, m_2\} = gcd\{m_2, m_3\} = 1$ and $dm_2 = m_1 + m_3$. Then S is symmetric if and only if $d = gcd\{m_1, m_3\}$.

In the following result it is shown what elements of $PM(n_1, n_2)$ are symmetric. We denote $Sy(PM(n_1, n_2)) = \{S \in PM(n_1, n_2) \mid S \text{ is symmetric}\}.$

Proposition 3.2. Sy(PM (n_1, n_2)) is equal to the union of

$$Sy(PM_1(n_1, n_2)) = \{ \langle n_1, n_2, kn_2 - n_1 \rangle \mid k \in B(n_1) \}$$

and

Sy(PM₂(n₁, n₂)) = {
$$\langle n_1, n_2, tn_1 - n_2 \rangle \mid t \in B(n_1, n_2)$$
 }.

PROOF. Let us take $k \in A(n_1)$. From Lemmas 2.2 and 3.1, the numerical semigroup $\langle n_1, n_2, kn_2 - n_1 \rangle$ is symmetric if and only if $k = \gcd\{n_1, kn_2 - n_1\}$, but this equality is equivalent to the condition $k|n_1$.

If $t \in A(n_1, n_2)$, we use Lemmas 2.3 and 3.1, and a similar reasoning to the previous one.

By using Theorem 2.4 we finish the proof.

As a consequence of Proposition 3.2 and Lemma 2.5, we have the following result.

Corollary 3.3. # Sy(PM (n_1, n_2)) = $\#B(n_1) + \#B(n_1, n_2)$.

Again, we give an example to clarify the previous results.

Example 3.1. Let us show that there do not exist symmetric PM-semigroups such that the embedding dimension is 3, the multiplicity is 5, and the ratio is 49. In fact, if $k \in \{2,3,4\}$ and $t \in \{\lfloor \frac{98}{5} \rfloor, \ldots, 48\} = \{20, \ldots, 48\}$, then $k \nmid 5$ and $t \nmid 49$. By applying Corollary 3.3, we have the statement.

Now, let us compute Sy(PM(10, 21)). Since $B(10) = \{2, 5\}$ and $B(10, 21) = \{7\}$, from Proposition 3.2, we have that

 $Sy(PM(10,21)) = \{ \langle 10, 21, 32 \rangle, \langle 10, 21, 95 \rangle, \langle 10, 21, 49 \rangle \}.$

In the introduction, we noted that every irreducible PM-semigroup with embedding dimension equal to three is an M-semigroup. In the next result we prove this fact for symmetric PM-semigroups.

Proposition 3.4. (1) If $k \in B(n_1)$, then

$$\langle n_1, n_2, kn_2 - n_1 \rangle = \left\{ x \in \mathbb{N} \mid u\left(n_2 - \frac{n_1}{k}\right) x \mod n_1\left(n_2 - \frac{n_1}{k}\right) \leq x \right\}.$$

(2) If $t \in B(n_1, n_2)$, then

$$\langle n_1, n_2, tn_1 - n_2 \rangle = \left\{ x \in \mathbb{N} \mid \frac{n_2}{t} (tu - v)x \mod \frac{n_2}{t} (tn_1 - n_2) \le x \right\}.$$

PROOF. Let us observe that, if d is a common divisor of a, b, c, then the inequalities $ax \mod b \leq cx$ and $\frac{a}{d}x \mod \frac{b}{d} \leq \frac{c}{d}x$ have the same set of solutions. From this fact and Proposition 2.10, we have the proof.

In [8] it is shown that, if S is a symmetric M-semigroup, then $e(S) \leq 3$. On the other hand, from Lemmas 2.8 and 2.9, $\langle n_1, n_2 \rangle = S\left(\left[\frac{n_1}{u}, \frac{n_2}{v}\right]\right) = S\left(\left[\frac{n_1n_2}{un_2}, \frac{n_1n_2}{n_1v}\right]\right) = \{x \in \mathbb{N} \mid un_2x \mod n_1n_2 \leq x\}$. Therefore, $\langle n_1, n_2 \rangle$ is an M-semigroup. Moreover, it is well known (see for instance [2]) that every numerical semigroup with embedding dimension equal to two is symmetric. From all this, we can enunciate the next result.

Proposition 3.5. S is a symmetric M-semigroup with $m(S) = n_1$ and $r(S) = n_2$ if and only if S is in one of the following three cases,

- (1) $S = \langle n_1, n_2 \rangle;$
- (2) $S = \langle n_1, n_2, kn_2 n_1 \rangle$ with $k \in B(n_1)$;
- (3) $S = \langle n_1, n_2, tn_1 n_2 \rangle$ with $t \in B(n_1, n_2)$.

4. Pseudo-symmetric PM-semigroups

Our purpose is to study the pseudo-symmetric PM-semigroups with embedding dimension equal to three. For this aim, we begin with a series of lemmas.

Let S be a numerical semigroup and let $\{m_1, m_2, m_3\}$ be its minimal system of generators. We define the numbers

$$c_i = \min \{x \in \mathbb{N} \setminus \{0\} \mid xm_i \in \langle \{m_1, m_2, m_3\} \setminus \{m_i\} \rangle \}, \ i \in \{1, 2, 3\}.$$

The next result is Theorem 10 in [10].

Lemma 4.1. Let S be a numerical semigroup with embedding dimension 3. Then S is pseudo-symmetric if and only if, for some rearrangement of its generators $\{m_1, m_2, m_3\}$, we have that $c_1m_1 = (c_2-1)m_2+m_3$, $c_2m_2 = (c_3-1)m_3+m_1$, and $c_3m_3 = (c_1-1)m_1 + m_2$.

Lemma 4.2. Let S be a numerical semigroup with minimal system of generators $\{m_1, m_2, m_3\}$. If $k \in \mathbb{N}$ and $km_2 = m_1 + m_3$, then $k = c_2$.

PROOF. If $c_2 < k$, then we have that c_2m_2 is either multiple of m_1 or multiple of m_3 . Let us assume that $c_2m_2 = \lambda m_1$, with $\lambda \in \mathbb{N}$. Then $m_1 + m_3 = km_2 = (k - c_2)m_2 + \lambda m_1$. Therefore, $m_3 = (k - c_2)m_2 + (\lambda - 1)m_1$. We conclude that $m_3 \in \langle m_1, m_2 \rangle$, in contradiction with the fact that $\{m_1, m_2, m_3\}$ is a minimal system of generators.

The following result is Theorem 14 in [7].

Lemma 4.3. Let t, n be two positive integers such that t < n and t divides n. Then $S = \left\langle \frac{n}{t}, t+2, \frac{n+t+2}{2} \right\rangle$ is a pseudo-symmetric modular numerical semigroup with Frobenius number n - t - 2 if and only if $\frac{n}{t}$ is odd and gcd $\{t + 2, \frac{n}{t}\} = 1$.

For our purpose, the next result is fundamental.

Proposition 4.4. The following conditions are equivalent.

(1) S is a pseudo-symmetric PM-semigroup with e(S) = 3.

- (2) There exists an arrangement m_1 , m_2 , m_3 of the minimal generators of S such that m_1 is odd, $gcd\{m_1, m_2\} = 1$, and $m_3 = \frac{m_1+1}{2}(m_2-2)+1$.
- (3) S is a pseudo-symmetric M-semigroup with e(S) = 3.

PROOF. (1) \Rightarrow (2). By applying Lemmas 2.1 and 4.2, we deduce that there exists an arrangement m_1 , m_2 , m_3 of the minimal generators of S such that $\gcd\{m_1, m_2\} = \gcd\{m_2, m_3\} = 1$ and $c_2m_2 = m_1 + m_3$. Besides, as S has embedding dimension 3, it is clear that m_1 , m_2 and m_3 are greater than or equal to 3. As $c_2m_2 = m_1 + m_3$, from Lemma 4.1 we deduce that either $c_1 = 2$ or $c_3 = 2$. Let us suppose, without loss of generality, that $c_3 = 2$. By using again Lemma 4.1, we have $c_2m_2 = m_1 + m_3$ and $2m_3 = (c_1 - 1)m_1 + m_2$. Therefore, $2c_2m_2 = 2m_1 + 2m_3 = 2m_1 + (c_1 - 1)m_1 + m_2$ and, in consequence, $(2c_2 - 1)m_2 = (c_1 + 1)m_1$. Since $\gcd\{m_1, m_2\} = 1$ and $1 \le c_1 \le m_2$, we have $c_1 + 1 = m_2$ and $m_1 = 2c_2 - 1$. Thus m_1 is odd. Moreover, $m_3 = c_2m_2 - m_1 = c_2(c_1 + 1) - 2c_2 + 1 = c_2(c_1 - 1) + 1 = \frac{m_1+1}{2}(m_2 - 2) + 1$.

 $(2) \Rightarrow (3)$. Let $t = m_2 - 2$ and $n = m_1(m_2 - 2)$. Then $\frac{n}{t} = m_1$ is odd and $\gcd\{t + 2, \frac{n}{t}\} = \gcd\{m_2, m_1\} = 1$. Thus, in view of Lemma 4.3, we have that $S = \langle m_1, m_2, m_3 \rangle = \langle \frac{n}{t}, t + 2, \frac{n+t+2}{2} \rangle$ is a pseudo-symmetric modular numerical semigroup. To conclude the proof it suffices now to show that S has embedding dimension 3. However, we can deduce it by the assert that all numerical semigroups with embedding dimension 2 are symmetric (see [4]). Therefore, these ones are not pseudo-symmetric.

$$(3) \Rightarrow (1)$$
. It is obvious.

The next result gives us information about the arrangement of m_1 , m_2 , m_3 in the previous proposition.

Lemma 4.5. Let m_1, m_2, m_3 be integers such that they are greater than or equal to 4 and $m_3 = \frac{m_1+1}{2}(m_2-2) + 1$. Then $m_3 = \max\{m_1, m_2, m_3\}$.

PROOF. It is easy to see that $m_3 = \frac{m_1+1}{2}(m_2-2)+1 \ge \frac{m_1+1}{2}2+1$. Therefore, $m_3 \ge m_1$. In the same way, $m_3 = \frac{m_1+1}{2}(m_2-2)+1 \ge 2(m_2-2)+1$, and $m_3 \ge m_2$.

From Theorem 7 in [9], we deduce the next result.

Lemma 4.6. S is a pseudo-symmetric numerical semigroup with m(S) = e(S) = 3 if and only if S is minimally generated by $\{3, x + 3, 2x + 3\}$, where x is a positive integer such that $x \neq 0 \mod 3$.

We denote $PSy(PM(n_1, n_2)) = \{S \in PM(n_1, n_2) \mid S \text{ is pseudo-symmetric}\}.$

Proposition 4.7. $S \in PSy(PM(n_1, n_2))$ if and only if $(n_1 \text{ is odd and } S = \langle n_1, n_2, \frac{n_1+1}{2}n_2 - n_1 \rangle)$ or $(n_2 \text{ is odd}, n_1 \ge 4, \text{ and } S = \langle n_1, n_2, \frac{n_2+1}{2}n_1 - n_2 \rangle).$

PROOF. If $k \in A(n_1)$, from Lemma 2.2, we know that $\langle n_1, n_2, kn_2 - n_1 \rangle$ is a PM-semigroup with e(S) = 3 and $n_1 < n_2 < kn_2 - n_1$. If $n_1 = 3$, by applying Lema 4.6, we deduce that $\langle n_1, n_2, kn_2 - n_1 \rangle$ is pseudo-symmetric if and only if $n_2 - 3 = kn_2 - 3 - n_2$, and this equality is equivalent to $k = 2 = \frac{n_1+1}{2}$.

If $n_1 \ge 4$, from Proposition 4.4 and Lemma 4.5, we deduce that $\langle n_1, n_2, kn_2 - n_1 \rangle$ is pseudo-symmetric if and only if n_1 is odd and $kn_2 - n_1 = \frac{n_1+1}{2}(n_2-2)+1$ or n_2 is odd and $kn_2 - n_1 = \frac{n_2+1}{2}(n_1-2)+1$. The first case is possible if and only if $k = \frac{n_1+1}{2}$. The second case is not possible because, if $kn_2 - n_1 = \frac{n_2+1}{2}(n_1-2)+1$, then $3n_1 = (2k - n_1 + 2)n_2$. Because $gcd\{n_1, n_2\} = 1$, we have that 3 is a multiple of n_2 , but $n_2 \ge 4$.

If $t \in A(n_1, n_2)$, from Lemma 2.3, we know that $\langle n_1, n_2, tn_1 - n_2 \rangle$ is a PMsemigroup with e(S) = 3 and $n_1 < n_2 < tn_1 - n_2$. If $n_1 = 3$, again from Lemma 4.6, we deduce that $\langle n_1, n_2, tn_1 - n_2 \rangle$ is pseudo-symmetric if and only if $t = n_2 - 1$. Therefore, $\langle n_1, n_2, (n_2 - 1)n_1 - n_2 \rangle = \langle 3, n_2, 2n_2 - 3 \rangle = \langle n_1, n_2, \frac{n_1 + 1}{2}n_2 - n_1 \rangle$.

If $n_1 \ge 4$, again from Proposition 4.4 and Lemma 4.5, $\langle n_1, n_2, tn_1 - n_2 \rangle$ is pseudo-symmetric if and only if n_1 is odd and $tn_1 - n_2 = \frac{n_1+1}{2}(n_2-2)+1$ or n_2 is odd and $tn_1 - n_2 = \frac{n_2+1}{2}(n_1-2)+1$. Now, the second case is possible if and only if $t = \frac{n_2+1}{2}$. The first case is not possible because, if $tn_1 - n_2 = \frac{n_1+1}{2}(n_2-2)+1$, then $3n_2 = (2t - n_2 + 2)n_1$. Because $gcd\{n_1, n_2\} = 1$, now we have that 3 is a multiple of n_1 , but $n_1 \ge 4$.

By applying Theorem 2.4, we finish the proof.

As an immediate consequence of the previous proposition we have the next result.

Corollary 4.8. (1) If $n_1 = 3$, then $\# PSy(PM(n_1, n_2)) = 1$.

(2) If $n_1 \ge 4$, then $\# \operatorname{PSy}(\operatorname{PM}(n_1, n_2)) = \# \{ x \in \{n_1, n_2\} \mid x \text{ is odd} \}.$

Because $gcd\{n_1, n_2\} = 1$, then $\#\{x \in \{n_1, n_2\} \mid x \text{ is odd}\} \ge 1$. Therefore, $PSy(PM(n_1, n_2))$ is always nonempty.

Example 4.1. From Proposition 4.7, it is easy to check that

- $PSy(PM(5,7)) = \{ \langle 5,7,16 \rangle, \langle 5,7,13 \rangle \};$
- $PSy(PM(5,6)) = \{ \langle 5, 6, 13 \rangle \};$
- $PSy(PM(6,7)) = \{ \langle 6,7,17 \rangle \}.$

From Proposition 4.4, we know that every pseudo-symmetric PM-semigroup with embedding dimension equal to three is an M-semigroup. Therefore, for each numerical semigroup $S \in \text{PSy}(\text{PM}(n_1, n_2))$ there exist a, b positive integers such that $S = S(a, b, 1) = \{x \in \mathbb{N} \mid ax \mod b \leq x\}$. The next proposition give us a new proof of this fact. First we introduce a lemma which is Theorem 10 in [7].

Lemma 4.9. Let a, b be integers such that $2 \le a < b$ and $gcd\{a-1,b\} = 1$. Let $d = gcd\{a,b\}$. Then S(a,b,1) is a pseudo-symmetric numerical semigroup if and only if $0 < a(d+2) \mod b < d+2$. Moreover, if this is the case, then $S(a,b,1) = \langle \frac{b}{d}, d+2, \frac{b+d+2}{2} \rangle$.

Now we are in conditions to show the announced result.

Proposition 4.10. (1) If n_1 is odd, then

$$\left\langle n_1, n_2, \frac{n_1+1}{2}n_2 - n_1 \right\rangle = \{x \in \mathbb{N} \mid u(n_2-2)x \mod n_1(n_2-2) \le x\}.$$

(2) If $n_1 \ge 4$ and n_2 is odd, then

$$\left\langle n_1, n_2, \frac{n_2+1}{2}n_1 - n_2 \right\rangle = \{x \in \mathbb{N} \mid (n_2 - v)(n_1 - 2)x \mod n_2(n_1 - 2) \le x\}.$$

PROOF. (1) Let us have $a = (n_2 - 2)u$, $b = (n_2 - 2)n_1$. Because $gcd\{u, n_1\} = 1$, then $gcd\{a, b\} = n_2 - 2$. Let us see that $gcd\{a - 1, b\} = 1$. Let us have $p = gcd\{a-1, b\}$. Then $p|((n_2 - 2)u - 1)$ and $p|((n_2 - 2)n_1)$. Therefore, $p|n_1$. Because $(n_2 - 2)u - 1 = un_2 - 2u - 1 = vn_1 + 1 - 2u - 1 = vn_1 - 2u$, then $p|n_1$ and $p|(vn_1 - 2u)$. Therefore, $p|n_1$ and p|(2u). Applying that n_1 is odd and $gcd\{n_1, u\} = 1$, we have p = 1.

Now, because $(n_2-2)un_2 \mod ((n_2-2)n_1) = (n_2-2)(un_2 \mod n_1) = n_2-2$ and $0 < n_2 - 2 < n_2$, applying Lemma 4.9, we have that

$$\left\langle n_1, n_2, \frac{(n_2 - 2)n_1 + n_2}{2} \right\rangle = \{x \in \mathbb{N} \mid u(n_2 - 2)x \mod n_1(n_2 - 2) \le x\}$$

In order to conclude, we must note that $\frac{(n_2-2)n_1+n_2}{2} = \frac{n_1+1}{2}n_2 - n_1$.

(2) If we consider $a = (n_1 - 2)(n_2 - v)$ and $b = (n_1 - 2)n_2$, the proof of this case is analogous to the previous one. Therefore, we omit it.

If S is a pseudo-symmetric M-semigroup, in [7] it is proven that e(S) = 3. Therefore, we can give the next result.

Proposition 4.11. S is a pseudo-symmetric M-semigroup with $m(S) = n_1$ and $r(S) = n_2$ if and only if one of following cases holds,

- (1) n_1 is odd and $S = \langle n_1, n_2, \frac{n_1+1}{2}n_2 n_1 \rangle;$
- (2) n_2 is odd, $n_1 \ge 4$ and $S = \langle n_1, n_2, \frac{n_2+1}{2}n_1 n_2 \rangle$.

In the introduction we stated that the irreducible M-semigroups are just the irreducible PM-semigroups with embedding dimension less than or equal to three. As a consequence of Proposition 3.4, the commentary after it, and Proposition 4.4 (or Proposition 4.10), we show the above mentioned result.

Proposition 4.12. Let S be an irreducible numerical semigroup such that $e(S) \leq 3$. Then S is a PM-semigroup if and only if it is an M-semigroup.

References

- V. BARUCCI, D. E. DOBBS and M. FONTANA, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, *Mem. Amer. Math. Soc* 598 (1997).
- [2] R. FRÖBERG, G. GOTTLIEB and R. HÄGGKVIST, On numerical semigroups, Semigroup Forum 35 (1987), 63–83.
- [3] P. A. GARCÍA-SÁNCHEZ and J. C. ROSALES, Numerical semigroups generated by intervals, *Pacific J. Math.* **191** (1999), 75–83.
- [4] J. HERZOG, Generators and relations of abelian semigroups and semigroup ring, Manuscripta Math. 3 (1970), 175–193.
- [5] E. KUNZ, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748–751.
- [6] J. L. RAMÍREZ ALFONSÍN, The Diophantine Frobenius problem, Oxford Univ. Press, 2005.
- [7] J. C. ROSALES, Pseudo-symmetric modular Diophantine inequalities, Math. Inequal. Appl. 8 (2005), 565–570.
- [8] J. C. ROSALES, Symmetric modular Diophantine inequalities, Proc. Amer. Math. Soc. 134 (2006), 3417–3421.
- [9] J. C. ROSALES and M. B. BRANCO, Irreducible numerical semigroups, *Pacific J. Math.* 209 (2003), 131–143.
- [10] J. C. ROSALES and P. A. GARCÍA-SÁNCHEZ, Pseudo-symmetric numerical semigroups with three generators, J. Algebra 291 (2005), 46–54.
- [11] J. C. ROSALES and P. A. GARCÍA-SÁNCHEZ, Numerical semigroups, Vol. 20, Developments in Mathematics, Springer, New York, 2009.
- [12] J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ, J. I. GARCÍA-GARCÍA and J. M. URBANO-BLANCO, Proportionally modular Diophantine inequalities, J. Number Theory 103 (2003), 281–294.
- [13] J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ and J. M. URBANO-BLANCO, Modular Diophantine inequalities and numerical semigroups, *Pacific J. Math.* 218 (2005), 379–398.

332 A. M. Robles-Pérez and J. C. Rosales : Proportionally modular numerical...

[14] J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ and J. M. URBANO-BLANCO, The set of solutions of a proportionally modular Diophantine inequality, J. Number Theory 128 (2008), 453–467.

AURELIANO M. ROBLES-PÉREZ DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD DE GRANADA CAMPUS DE FUENTENUEVA E-18071 GRANADA SPAIN *E-mail:* arobles@ugr.es

JOSÉ CARLOS ROSALES DEPARTAMENTO DE ÁLGEBRA UNIVERSIDAD DE GRANADA CAMPUS DE FUENTENUEVA E-18071 GRANADA SPAIN

E-mail: jrosales@ugr.es

(Received October 11, 2011; revised November 12, 2012)