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Proportionally modular numerical semigroups with embedding
dimension three

By AURELIANO M. ROBLES-PÉREZ (Granada) and JOSÉ CARLOS ROSALES (Granada)

Abstract. In this paper we study numerical semigroups, generated by three po-

sitive integers, that are the set of solutions of a Diophantine inequality of the form ax

mod b ≤ cx. As a consequence, we show that, if these numerical semigroups are irredu-

cible (this is, symmetric or pseudo-symmetric), then they are the set of solutions of a

Diophantine inequality of the form αx mod β ≤ x.

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subset

S of N such that it is closed under addition, 0 ∈ S and N \ S is finite. If A ⊆ N,
we denote by 〈A〉 the submonoid of (N,+) generated by A, this is,

〈A〉 = {λ1a1 + · · ·+ λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N}.

It is well known (see for instance [11]) that 〈A〉 is a numerical semigroup if and

only if gcd{A} = 1, where gcd means greatest common divisor.

Let S be a numerical semigroup and let X be a subset of S. We say that X

is a system of generators of S if S = 〈X〉. In addition, if no proper subset of X

generates S, then we say that X is a minimal system of generators of S. Every
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numerical semigroup admits a unique minimal system of generators. Moreover,

such system has finitely many elements (see [1], [11]).

If n1 < n2 < · · · < ne are the elements of the minimal system of generators

of a numerical semigroup S, then n1, n2 and e are known as the multiplicity, the

ratio, and the embedding dimension of S, and they are denoted by m(S), r(S)

and e(S), respectively.

Let m, n be integers such that n 6= 0. We denote by m mod n the remainder

of the division of m by n. A proportionally modular Diophantine inequality (see

[12]) is an expression of the form

ax mod b ≤ cx (1)

where a, b, c are positive integers. We call a, b and c the factor, the modulus, and

the proportion of the inequality, respectively. Let S(a, b, c) be the set of integer

solutions of (1). Then S(a, b, c) is a numerical semigroup. We say that a numerical

semigroup is a proportionally modular numerical semigroup (PM-semigroup) if it

is the set of integer solutions of a proportionally modular Diophantine inequality.

A modular Diophantine inequality (see [13]) is an expression of the form

ax mod b ≤ x, (2)

this is, it is a proportionally modular Diophantine inequality with proportion

equal to one. A numerical semigroup is a modular numerical semigroup (M-

semigroup) if it is the set of integer solutions of a modular Diophantine inequality.

Therefore, every M-semigroup is a PM-semigroup, but the converse is false. In

effect, from Example 26 in [12], we have that the numerical semigroup 〈3, 8, 10〉
is a PM-semigroup, but is not an M-semigroup.

A numerical semigroup is an irreducible numerical semigroup if it can not be

expressed as an intersection of two numerical semigroups containing it properly.

In [9] it is shown that the class of irreducible numerical semigroups is the union

of two widely studied classes of numerical semigroups: the symmetric numerical

semigroups and the pseudo-symmetric numerical semigroups (see [1], [2], [5]).

From Theorem 16 in [12] and Theorem 6 in [3] we deduce that the numerical

semigroup 〈n, n + 1, . . . , 2n − 2〉 is a symmetric PM-semigroup if n is an integer

such that n ≥ 3. Therefore, there exist irreducible PM-semigroups with arbitrary

embedding dimension. However, this result is false for M-semigroups. In fact, as a

consequence of the results in [7], [8], we have that every irreducible M-semigroup

has embedding dimension less than or equal to three. More precisely, in this

paper we will show that the irreducible M-semigroups are just the irreducible

PM-semigroups with embedding dimension less than or equal to three.
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We summarize the content of this article in the following way. From Re-

mark 24 in [14], we know that, if S is a PM-semigroup, then gcd{r(S),m(S)} = 1.

For this reason, we will consider m, r integers such that 3 ≤ m < r and

gcd{m, r} = 1. In Section 2 we will give in explicit form the elements of the

set

PM(m, r) = {S | S is a PM-semigroup, m(S) = m, r(S) = r, and e(S) = 3}.

Moreover, we will see that PM(m, r) has cardinality equal to m + r − ⌈
2r
m

⌉ − 3.

We will compute positive integers a, b, c such that S = S(a, b, c) for each S ∈
PM(m, r).

In Section 3 we will study the set

Sy(PM(m, r)) = {S ∈ PM(m, r) | S is symmetric}.

We will compute the cardinality of this set from the divisors of m and r. We will

give positive integers a, b such that S = S(a, b, 1) for each S ∈ Sy(PM(m, r)).

Finally, Section 4 will be devoted to the study of the set

PSy(PM(n1, n2)) = {S ∈ PM(n1, n2) | S is pseudo-symmetric}.

We will show that, if m = 3, then this set has cardinality equal to 1 and, if

m ≥ 4, then the cardinality is equal to the cardinality of {x ∈ {m, r} | x is odd}.
At the end, we will compute positive integers a, b such that S = S(a, b, 1) for each

S ∈ PSy(PM(m, r)).

2. PM-semigroups

Let x1, x2, . . . , xq be a sequence of integer numbers. We say that it is arranged

in a convex form if one of the following conditions is satisfied,

(1) x1 ≤ x2 ≤ · · · ≤ xq;

(2) x1 ≥ x2 ≥ · · · ≥ xq;

(3) There exists h ∈ {2, . . . , q − 1} such that x1 ≥ · · · ≥ xh ≤ · · · ≤ xq.

As a consequence of Theorem 31 in [14] (see its proof and Corollary 18 of [14])

we have the next lemma.

Lemma 2.1. A numerical semigroup S is a PM-semigroup if and only if

there exists a convex arrangement n1, n2, . . . , ne of its set of minimal generators

that satisfies the following conditions,
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(1) gcd{ni, ni+1} = 1 for all i ∈ {1, . . . , e− 1};
(2) (ni−1 + ni+1) ≡ 0 mod ni for all i ∈ {2, . . . , e− 1}.

In what follows we will suppose that n1, n2 are integer numbers such that

3 ≤ n1 < n2 and gcd{n1, n2} = 1. Moreover, to simplify the notation we will use

the following sets,

• A(n1) = {2, . . . , n1 − 1};
• A(n1, n2) =

{⌈
2n2

n1

⌉
, . . . , n2 − 1

}
;

• B(n1) = {k ∈ A(n1) such that k | n1

}
;

• B(n1, n2) = {t ∈ A(n1, n2) such that t | n2

}
.

For the definition of A(n1, n2), remember that, if q ∈ Q (where Q is the set of

rational numbers), then we denote
⌈
q
⌉
= min{z ∈ Z | q ≤ z}. Moreover, for the

definitions of B(n1) and B(n1, n2), if a, b are positive integers, then we denote

by a|b that a divides b.

Lemma 2.2. If k ∈ A(n1), then S = 〈n1, n2, kn2 − n1〉 is a PM-semigroup

with e(S) = 3. Moreover, n1 < n2 < kn2 − n1.

Proof. It is clear that n1 < n2 < kn2 − n1 because k ≥ 2 (by hypothesis)

and n1 < n2 (by assumption). In order to give the proof, it is enough to see that

kn2 − n1 6∈ 〈n1, n2〉. Otherwise, there will exist λ, µ ∈ N such that kn2 − n1 =

λn1 + µn2. Then (k − µ)n2 = (λ + 1)n1. Because gcd{n1, n2} = 1, we deduce

that k − µ ≥ n1 which is a contradiction with the condition k ∈ A(n1). Finally,

if we consider the arrangement n1, n2, kn2 − n1 of the set of minimal generators

for S, then it is a PM-semigroup as a consequence of Lemma 2.1. ¤

Lemma 2.3. If t ∈ A(n1, n2), then S = 〈n1, n2, tn1−n2〉 is a PM-semigroup

with e(S) = 3. Moreover, n1 < n2 < tn1 − n2.

Proof. Let us have t ∈ Z. Let us observe that n2 < tn1 − n2 if and

only if t > 2n2

n1
, which is equivalent to t ≥ ⌈

2n2

n1

⌉
because n1 ≥ 3. Using a similar

reasoning as in Lemma 2.2, we prove that e(S) = 3. Finally, S is a PM-semigroup

by Lemma 2.1 with the arrangement tn1 − n2, n1, n2 of the set of its minimal

generators. ¤

Let us denote the set

PM(n1, n2) = {S | S is a PM-semigroup, m(S) = n1, r(S) = n2, e(S) = 3}.

Theorem 2.4. PM(n1, n2) is equal to the union of

PM1(n1, n2) = {〈n1, n2, kn2 − n1〉 | k ∈ A(n1)}
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and
PM2(n1, n2) = {〈n1, n2, tn1 − n2〉 | t ∈ A(n1, n2)} .

Proof. By applying Lemmas 2.2 and 2.3, PM1(n1, n2) ∪ PM2(n1, n2) ⊆
PM(n1, n2). In order to prove the other inclusion, let us have S ∈ PM(n1, n2).

Then S is minimally generated by {n1, n2, n3} with n1 < n2 < n3. From Lem-

ma 2.1, we deduce that (n1 + n3) ≡ 0 mod n2 or (n2 + n3) ≡ 0 mod n1. If

(n1 + n3) ≡ 0 mod n2, then n3 = kn2 − n1 for an integer k ≥ 2. Moreover,

k ≤ n1 − 1 because n3 ∈ 〈n1, n2〉 in other case, and this is a contradiction with

the fact that {n1, n2, n3} is the minimal system of generators of S. On the other

hand, if (n2 + n3) ≡ 0modn1, then n3 = tn1 − n2 for an integer t ≥ ⌈
2n2

n1

⌉
.

Moreover, t ≤ n2 − 1 because n3 6∈ 〈n1, n2〉. ¤

Now we compute the cardinality of PM(n1, n2). First, we need a lemma that

is the key.

Lemma 2.5. Let k, t be positive integers such that k ≤ n1−1 and t ≤ n2−1.

Then kn2 − n1 = tn1 − n2 if and only if k = n1 − 1 and t = n2 − 1.

Proof. It is obvious that kn2 − n1 = tn1 − n2 if and only if (k + 1)n2 =

(t+ 1)n1. Because gcd{n1, n2} = 1, k ≤ n1 − 1, and t ≤ n2 − 1, we deduce that

(k + 1)n2 = (t+ 1)n1 if and only if k = n1 − 1 and t = n2 − 1. ¤

Let us have a set A. We denote by #A the cardinality of A.

Corollary 2.6. #PM(n1, n2) = n1 + n2 −
⌈
2n2

n1

⌉− 3.

Proof. From Lemma 2.5, we have that PM1(n1, n2)∩PM2(n1, n2) has card-

inality equal to one. By applying Theorem 2.4, we have the conclusion. ¤

To clarify the previous results, we give an example.

Example 2.1. We want to compute PM(5, 7). First, from Corollary 2.6, we

know that #PM(5, 7) = 5+ 7− ⌈
14
5

⌉− 3 = 6. Second, by applying Theorem 2.4,

we have that the elements of PM(5, 7) are,

• S1 = 〈5, 7, 2 · 7− 5〉 = 〈5, 7, 9〉;
• S2 = 〈5, 7, 3 · 7− 5〉 = 〈5, 7, 16〉;
• S3 = 〈5, 7, 4 · 7− 5〉 = 〈5, 7, 23〉 = 〈5, 7, 6 · 5− 7〉;
• S4 = 〈5, 7, 3 · 5− 7〉 = 〈5, 7, 8〉;
• S5 = 〈5, 7, 4 · 5− 7〉 = 〈5, 7, 13〉;
• S6 = 〈5, 7, 5 · 5− 7〉 = 〈5, 7, 18〉.
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Let S be a PM-semigroup. By definition, there exist positive integers a, b

and c such that S = S(a, b, c) = {x ∈ N | ax mod b ≤ cx}. We finish this section

giving, for each S ∈ PM(n1, n2), a triplet (a, b, c) such that S = S(a, b, c). For

this purpose, we introduce some concepts and results.

Let Q+
0 be the set of nonnegative rational numbers. If A ⊆ Q+

0 , we denote

by 〈A〉 the submonoid of (Q+
0 ,+) generated by A, this is,

〈A〉 = {λ1a1 + · · ·+ λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N}.

It is clear that S(A) = 〈A〉 ∩ N is a submonoid of (N,+). If α, β are two rational

numbers such that α < β, then we denote [α, β] = {x ∈ Q | α ≤ x ≤ β}. The

next result is a consequence of Lemmas 12 and 21 in [12].

Lemma 2.7. Let S be a numerical semigroup. Then S is a PM-semigroup

if and only if there exist α, β positive rational numbers such that S = S([α, β]).

And this one is consequence of Lemma 6 and Corollary 9 in [12].

Lemma 2.8. Let a, b, c be positive integers such that c < a < b. Then

S(a, b, c) = S
([

b
a ,

b
a−c

])
.

Following the ideas in [14], we say that a1

b1
< a2

b2
< · · · < ar

br
is a Bézout

sequence if a1, a2, . . . , ar, b1, b2, . . . , br are positive integers such that ai+1bi −
aibi+1 = 1 for all i ∈ {1, 2, . . . , r− 1}. The following result is Theorem 12 in [14].

Lemma 2.9. If a1

b1
< a2

b2
< · · · < ar

br
is a Bézout sequence, then

〈a1, a2, . . . , ar〉 = S

([
a1
b1

,
ar
br

])
.

In the rest of the paper, we denote by u, v the unique positive integers such

that n1

u < n2

v is a Bézout sequence and 1 < n1

u .

Proposition 2.10. (1) If k ∈ A(n1), then

〈n1, n2, kn2 − n1〉 = {x ∈ N | u(kn2 − n1)x mod n1(kn2 − n1) ≤ kx}.

(2) If t ∈ A(n1, n2), then

〈n1, n2, tn1 − n2〉 = {x ∈ N | n2(tu− v)x mod n2(tn1 − n2) ≤ tx}.
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Proof. (1) It is clear that n1

u < n2

v < kn2−n1

kv−u is a Bézout sequence. From

Lemma 2.9, we have

〈n1, n2, kn2 − n1〉 = S

([
n1

u
,
kn2 − n1

kv − u

])

= S

([
n1(kn2 − n1)

u(kn2 − n1)
,
n1(kn2 − n1)

n1(kv − u)

])
.

By using Lemma 2.8, we have the conclusion.

(2) The proof is similar to the previous one with the Bézout sequence given

by tn1−n2

tu−v < n1

u < n2

v . ¤

Example 2.2. Let S1 be the numerical semigroup that appeared in Exam-

ple 2.1, this is, S1 = 〈5, 7, 2 · 7− 5〉. Let us observe that 5
3 < 7

4 < 2·7−5
2·4−3 = 9

5 is a

Bézout sequence. Therefore,

S1 = 〈5, 7, 9〉 = S

([
5

3
,
9

5

])
= S

([
45

27
,
45

25

])
= {x ∈ N | 27x mod 45 ≤ 2x}.

3. Symmetric PM-semigroups

Let S be a numerical semigroup. The greatest integer that does not belong

to S is called the Frobenius number of S (see [6]) and denoted by F(S). In [9] it

is shown that a numerical semigroup S is irreducible if and only if it is maximal

(with respect to the inclusion order) in the set of all numerical semigroups with

fixed Frobenius number. Therefore, on applying [2], we have that a numerical

semigroup S is symmetric (respectively, pseudo-symmetric) if and only if S is

irreducible and F(S) is odd (respectively, even).

The next result is Proposition 39 in [14].

Lemma 3.1. Let S be a numerical semigroup with minimal system of gene-

rators {m1,m2,m3}. Let us suppose that gcd{m1,m2} = gcd{m2,m3} = 1 and

dm2 = m1 +m3. Then S is symmetric if and only if d = gcd{m1,m3}.
In the following result it is shown what elements of PM(n1, n2) are symmetric.

We denote Sy(PM(n1, n2)) = {S ∈ PM(n1, n2) | S is symmetric}.
Proposition 3.2. Sy(PM(n1, n2)) is equal to the union of

Sy(PM1(n1, n2)) = {〈n1, n2, kn2 − n1〉 | k ∈ B(n1)}
and

Sy(PM2(n1, n2)) = {〈n1, n2, tn1 − n2〉 | t ∈ B(n1, n2)} .
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Proof. Let us take k ∈ A(n1). From Lemmas 2.2 and 3.1, the numerical

semigroup 〈n1, n2, kn2 − n1〉 is symmetric if and only if k = gcd{n1, kn2 − n1},
but this equality is equivalent to the condition k|n1.

If t ∈ A(n1, n2), we use Lemmas 2.3 and 3.1, and a similar reasoning to the

previous one.

By using Theorem 2.4 we finish the proof. ¤

As a consequence of Proposition 3.2 and Lemma 2.5, we have the following

result.

Corollary 3.3. #Sy(PM(n1, n2)) = #B(n1) + #B(n1, n2).

Again, we give an example to clarify the previous results.

Example 3.1. Let us show that there do not exist symmetric PM-semigroups

such that the embedding dimension is 3, the multiplicity is 5, and the ratio is 49.

In fact, if k ∈ {2, 3, 4} and t ∈ {⌈
98
5

⌉
, . . . , 48

}
= {20, . . . , 48}, then k - 5 and

t - 49. By applying Corollary 3.3, we have the statement.

Now, let us compute Sy(PM(10, 21)). Since B(10) = {2, 5} and B(10, 21) =

{7}, from Proposition 3.2, we have that

Sy(PM(10, 21)) = {〈10, 21, 32〉, 〈10, 21, 95〉, 〈10, 21, 49〉}.
In the introduction, we noted that every irreducible PM-semigroup with em-

bedding dimension equal to three is an M-semigroup. In the next result we prove

this fact for symmetric PM-semigroups.

Proposition 3.4. (1) If k ∈ B(n1), then

〈n1, n2, kn2 − n1〉 =
{
x ∈ N

∣∣ u
(
n2 − n1

k

)
x mod n1

(
n2 − n1

k

)
≤ x

}
.

(2) If t ∈ B(n1, n2), then

〈n1, n2, tn1 − n2〉 =
{
x ∈ N

∣∣ n2

t
(tu− v)x mod

n2

t
(tn1 − n2) ≤ x

}
.

Proof. Let us observe that, if d is a common divisor of a, b, c, then the

inequalities ax mod b ≤ cx and a
dx mod b

d ≤ c
dx have the same set of solutions.

From this fact and Proposition 2.10, we have the proof. ¤

In [8] it is shown that, if S is a symmetric M-semigroup, then e(S)≤ 3. On the

other hand, from Lemmas 2.8 and 2.9, 〈n1, n2〉 = S
([

n1

u , n2

v

])
= S

([
n1n2

un2
, n1n2

n1v

])
=

{x ∈ N | un2x mod n1n2 ≤ x}. Therefore, 〈n1, n2〉 is an M-semigroup. More-

over, it is well known (see for instance [2]) that every numerical semigroup with

embedding dimension equal to two is symmetric. From all this, we can enunciate

the next result.
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Proposition 3.5. S is a symmetric M-semigroup with m(S) = n1 and

r(S) = n2 if and only if S is in one of the following three cases,

(1) S = 〈n1, n2〉;
(2) S = 〈n1, n2, kn2 − n1〉 with k ∈ B(n1);

(3) S = 〈n1, n2, tn1 − n2〉 with t ∈ B(n1, n2).

4. Pseudo-symmetric PM-semigroups

Our purpose is to study the pseudo-symmetric PM-semigroups with embed-

ding dimension equal to three. For this aim, we begin with a series of lemmas.

Let S be a numerical semigroup and let {m1,m2,m3} be its minimal system

of generators. We define the numbers

ci = min {x ∈ N \ {0} | xmi ∈ 〈{m1,m2,m3} \ {mi}〉} , i ∈ {1, 2, 3} .

The next result is Theorem 10 in [10].

Lemma 4.1. Let S be a numerical semigroup with embedding dimension 3.

Then S is pseudo-symmetric if and only if, for some rearrangement of its genera-

tors {m1,m2,m3}, we have that c1m1 = (c2−1)m2+m3, c2m2 = (c3−1)m3+m1,

and c3m3 = (c1 − 1)m1 +m2.

Lemma 4.2. Let S be a numerical semigroup with minimal system of gene-

rators {m1,m2,m3}. If k ∈ N and km2 = m1 +m3, then k = c2.

Proof. If c2 < k, then we have that c2m2 is either multiple ofm1 or multiple

of m3. Let us assume that c2m2 = λm1, with λ ∈ N. Then m1 +m3 = km2 =

(k − c2)m2 + λm1. Therefore, m3 = (k − c2)m2 + (λ − 1)m1. We conclude that

m3 ∈ 〈m1,m2〉, in contradiction with the fact that {m1,m2,m3} is a minimal

system of generators. ¤

The following result is Theorem 14 in [7].

Lemma 4.3. Let t, n be two positive integers such that t < n and t divides n.

Then S =
〈
n
t , t+ 2, n+t+2

2

〉
is a pseudo-symmetric modular numerical semigroup

with Frobenius number n− t− 2 if and only if n
t is odd and gcd

{
t+ 2, n

t

}
= 1.

For our purpose, the next result is fundamental.

Proposition 4.4. The following conditions are equivalent.

(1) S is a pseudo-symmetric PM-semigroup with e(S) = 3.
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(2) There exists an arrangement m1, m2, m3 of the minimal generators of S such

that m1 is odd, gcd{m1,m2} = 1, and m3 = m1+1
2 (m2 − 2) + 1.

(3) S is a pseudo-symmetric M-semigroup with e(S) = 3.

Proof. (1) ⇒ (2). By applying Lemmas 2.1 and 4.2, we deduce that there

exists an arrangement m1, m2, m3 of the minimal generators of S such that

gcd{m1,m2} = gcd{m2,m3} = 1 and c2m2 = m1 + m3. Besides, as S has

embedding dimension 3, it is clear that m1, m2 and m3 are greater than or

equal to 3. As c2m2 = m1 +m3, from Lemma 4.1 we deduce that either c1 = 2

or c3 = 2. Let us suppose, without loss of generality, that c3 = 2. By using

again Lemma 4.1, we have c2m2 = m1 + m3 and 2m3 = (c1 − 1)m1 + m2.

Therefore, 2c2m2 = 2m1 + 2m3 = 2m1 + (c1 − 1)m1 +m2 and, in consequence,

(2c2 − 1)m2 = (c1 + 1)m1. Since gcd{m1,m2} = 1 and 1 ≤ c1 ≤ m2, we have

c1 + 1 = m2 and m1 = 2c2 − 1. Thus m1 is odd. Moreover, m3 = c2m2 −m1 =

c2(c1 + 1)− 2c2 + 1 = c2(c1 − 1) + 1 = m1+1
2 (m2 − 2) + 1.

(2) ⇒ (3). Let t = m2 − 2 and n = m1(m2 − 2). Then n
t = m1 is odd and

gcd{t + 2, n
t } = gcd{m2,m1} = 1. Thus, in view of Lemma 4.3, we have that

S = 〈m1,m2,m3〉 =
〈
n
t , t + 2, n+t+2

2

〉
is a pseudo-symmetric modular numerical

semigroup. To conclude the proof it suffices now to show that S has embedding

dimension 3. However, we can deduce it by the assert that all numerical semigro-

ups with embedding dimension 2 are symmetric (see [4]). Therefore, these ones

are not pseudo-symmetric.

(3) ⇒ (1). It is obvious. ¤

The next result gives us information about the arrangement of m1, m2, m3

in the previous proposition.

Lemma 4.5. Let m1, m2, m3 be integers such that they are greater than or

equal to 4 and m3 = m1+1
2 (m2 − 2) + 1. Then m3 = max{m1,m2,m3}.

Proof. It is easy to see thatm3 = m1+1
2 (m2−2)+1 ≥ m1+1

2 2+1. Therefore,

m3 ≥ m1. In the same way, m3 = m1+1
2 (m2 − 2) + 1 ≥ 2(m2 − 2) + 1, and

m3 ≥ m2. ¤

From Theorem 7 in [9], we deduce the next result.

Lemma 4.6. S is a pseudo-symmetric numerical semigroup with m(S) =

e(S) = 3 if and only if S is minimally generated by {3, x+ 3, 2x+ 3}, where x is

a positive integer such that x 6≡ 0 mod 3.

We denote PSy(PM(n1, n2)) = {S ∈ PM(n1, n2) | S is pseudo-symmetric}.
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Proposition 4.7. S ∈ PSy(PM(n1, n2)) if and only if (n1 is odd and S =

〈n1, n2,
n1+1

2 n2 − n1〉) or (n2 is odd, n1 ≥ 4, and S = 〈n1, n2,
n2+1

2 n1 − n2〉).

Proof. If k ∈ A(n1), from Lemma 2.2, we know that 〈n1, n2, kn2 − n1〉 is

a PM-semigroup with e(S) = 3 and n1 < n2 < kn2 − n1. If n1 = 3, by applying

Lema 4.6, we deduce that 〈n1, n2, kn2 − n1〉 is pseudo-symmetric if and only if

n2 − 3 = kn2 − 3− n2, and this equality is equivalent to k = 2 = n1+1
2 .

If n1 ≥ 4, from Proposition 4.4 and Lemma 4.5, we deduce that 〈n1, n2, kn2−
n1〉 is pseudo-symmetric if and only if n1 is odd and kn2−n1 = n1+1

2 (n2−2)+1 or

n2 is odd and kn2−n1 = n2+1
2 (n1−2)+1. The first case is possible if and only if

k = n1+1
2 . The second case is not possible because, if kn2−n1 = n2+1

2 (n1−2)+1,

then 3n1 = (2k−n1+2)n2. Because gcd{n1, n2} = 1, we have that 3 is a multiple

of n2, but n2 ≥ 4.

If t ∈ A(n1, n2), from Lemma 2.3, we know that 〈n1, n2, tn1 − n2〉 is a PM-

semigroup with e(S) = 3 and n1 < n2 < tn1 − n2. If n1 = 3, again from Lem-

ma 4.6, we deduce that 〈n1, n2, tn1 − n2〉 is pseudo-symmetric if and only if t =

n2 − 1. Therefore, 〈n1, n2, (n2 − 1)n1 −n2〉 = 〈3, n2, 2n2 − 3〉 = 〈n1, n2,
n1+1

2 n2 −
n1〉.

If n1 ≥ 4, again from Proposition 4.4 and Lemma 4.5, 〈n1, n2, tn1 − n2〉 is

pseudo-symmetric if and only if n1 is odd and tn1−n2 = n1+1
2 (n2−2)+1 or n2 is

odd and tn1−n2 = n2+1
2 (n1−2)+1. Now, the second case is possible if and only

if t = n2+1
2 . The first case is not possible because, if tn1 −n2 = n1+1

2 (n2 − 2)+1,

then 3n2 = (2t − n2 + 2)n1. Because gcd{n1, n2} = 1, now we have that 3 is a

multiple of n1, but n1 ≥ 4.

By applying Theorem 2.4, we finish the proof. ¤

As an immediate consequence of the previous proposition we have the next

result.

Corollary 4.8. (1) If n1 = 3, then #PSy(PM(n1, n2)) = 1.

(2) If n1 ≥ 4, then #PSy(PM(n1, n2)) = #{x ∈ {n1, n2} | x is odd}.

Because gcd{n1, n2} = 1, then #{x ∈ {n1, n2} | x is odd} ≥ 1. Therefore,

PSy(PM(n1, n2)) is always nonempty.

Example 4.1. From Proposition 4.7, it is easy to check that

• PSy(PM(5, 7)) = {〈5, 7, 16〉, 〈5, 7, 13〉};
• PSy(PM(5, 6)) = {〈5, 6, 13〉};
• PSy(PM(6, 7)) = {〈6, 7, 17〉}.
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From Proposition 4.4, we know that every pseudo-symmetric PM-semigroup

with embedding dimension equal to three is an M-semigroup. Therefore, for each

numerical semigroup S ∈ PSy(PM(n1, n2)) there exist a, b positive integers such

that S = S(a, b, 1) = {x ∈ N | ax mod b ≤ x}. The next proposition give us a

new proof of this fact. First we introduce a lemma which is Theorem 10 in [7].

Lemma 4.9. Let a, b be integers such that 2 ≤ a < b and gcd{a− 1, b} = 1.

Let d = gcd{a, b}. Then S(a, b, 1) is a pseudo-symmetric numerical semigroup

if and only if 0 < a(d + 2) mod b < d + 2. Moreover, if this is the case, then

S(a, b, 1) =
〈
b
d , d+ 2, b+d+2

2

〉
.

Now we are in conditions to show the announced result.

Proposition 4.10. (1) If n1 is odd, then

〈
n1, n2,

n1 + 1

2
n2 − n1

〉
= {x ∈ N | u(n2 − 2)x mod n1(n2 − 2) ≤ x}.

(2) If n1 ≥ 4 and n2 is odd, then

〈
n1, n2,

n2 + 1

2
n1 − n2

〉
= {x ∈ N | (n2 − v)(n1 − 2)x mod n2(n1 − 2) ≤ x}.

Proof. (1) Let us have a=(n2−2)u, b=(n2−2)n1. Because gcd{u, n1}=1,

then gcd{a, b} = n2 − 2. Let us see that gcd{a − 1, b} = 1. Let us have p =

gcd{a−1, b}. Then p|((n2−2)u−1) and p|((n2−2)n1). Therefore, p|n1. Because

(n2−2)u−1 = un2−2u−1 = vn1+1−2u−1 = vn1−2u, then p|n1 and p|(vn1−2u).

Therefore, p|n1 and p|(2u). Applying that n1 is odd and gcd{n1, u} = 1, we have

p = 1.

Now, because (n2−2)un2 mod ((n2−2)n1) = (n2−2)(un2 mod n1) = n2−2

and 0 < n2 − 2 < n2, applying Lemma 4.9, we have that

〈
n1, n2,

(n2 − 2)n1 + n2

2

〉
= {x ∈ N | u(n2 − 2)x mod n1(n2 − 2) ≤ x}.

In order to conclude, we must note that (n2−2)n1+n2

2 = n1+1
2 n2 − n1.

(2) If we consider a = (n1 − 2)(n2 − v) and b = (n1 − 2)n2, the proof of this

case is analogous to the previous one. Therefore, we omit it. ¤

If S is a pseudo-symmetric M-semigroup, in [7] it is proven that e(S) = 3.

Therefore, we can give the next result.
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Proposition 4.11. S is a pseudo-symmetric M-semigroup with m(S) = n1

and r(S) = n2 if and only if one of following cases holds,

(1) n1 is odd and S =
〈
n1, n2,

n1+1
2 n2 − n1

〉
;

(2) n2 is odd, n1 ≥ 4 and S =
〈
n1, n2,

n2+1
2 n1 − n2

〉
.

In the introduction we stated that the irreducible M-semigroups are just the

irreducible PM-semigroups with embedding dimension less than or equal to three.

As a consequence of Proposition 3.4, the commentary after it, and Proposition 4.4

(or Proposition 4.10), we show the above mentioned result.

Proposition 4.12. Let S be an irreducible numerical semigroup such that

e(S) ≤ 3. Then S is a PM-semigroup if and only if it is an M-semigroup.
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