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Biharmonic maps from Finsler spaces

By NICOLETA VOICU (Brasov)

Abstract. The notions of bienergy of a smooth mapping and of biharmonic map

between Riemannian manifolds are extended to the case when the domain is Finslerian.

We determine the first and the second variation of the bienergy functional, the equations

of Finsler-to-Riemann biharmonic maps and some specific examples. We prove that

two notable results in Riemannian geometry concerning the inexistence of nonharmonic

biharmonic maps still hold true in this case.

1. Introduction

Biharmonic mappings, as a generalization of harmonic ones, are among the

most important mappings in physics; initially appearing from problems of elas-

ticity theory and fluid mechanics, [24], in the latter decades, they proved to be

useful also in computer graphics, geometry processing, [12] and radar imaging,

[1]. Mathematical arguments, [17], for the use of biharmonic maps include the

fact that harmonic maps do not always exist – and biharmonic maps can “succeed

where harmonic maps have failed” – together with stability issues. On the other

side, Finslerian models seem to gain more and more ground in domains such as:

kinematics, elasticity theory, [6], seismic ray theory, [3], [29], [30], gravity theories,

[11], [19], [28], geometrical optics, [2], thermodynamics, statistical mechanics, [2],

[21], biology, [2], [4].

While in Riemannian geometry, biharmonic mappings have been quite in-

tensively studied (see, for instance, [5], [8], [17], [22], [23]), to our knowledge, in

Finsler geometry, only harmonic maps have been considered so far, [14], [15], [16],
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[18], [20], [25]. Still, the rich potential of Finslerian geometric models makes us

think that such a study is at least necessary.

As a first step in this direction, we study in this paper biharmonic mappings

having as domain real Finsler spaces (M, g) and as codomain, Riemannian ones

(M̃, g̃) or, briefly, Finsler-to-Riemann mappings. Our study is a continuation of

the one of Finsler-to-Riemann harmonic mappings made by Xiaohuan Mo and

collaborators ([14], [15], [16]).

First of all, we extend the concept of bienergy functional for Finsler-to-

Riemann mappings and determine its Euler–Lagrange equations, i.e., the equa-

tions of Finsler-to-Riemann biharmonic maps. This process points out a genera-

lization of the rough Laplacian from Riemannian geometry.

Any Finsler-to-Riemann harmonic map is biharmonic. Just as in Riemannian

geometry, there exist several cases in which the converse is also true; two notable

results in Riemannian geometry, due to Guoying Jiang, [8], and C. Oniciuc,

[22], respectively, can be generalized without difficulty to our situation:

1) Any biharmonic mapping whose domain is compact and boundaryless and

whose codomain has nonpositive sectional curvature, is harmonic.

2) Any biharmonic mapping whose codomain has strictly negative sectional

curvature, obeying the conditions: a) the norm of its tension is constant and b)

its rank is greater or equal to 2 at least at one point of its domain, is harmonic.

Further, we study the biharmonicity of the identity map id : (M, g) → (M, g̃)

in two cases of Finsler-to-Riemann transformations of metrics g 7→ g̃, thus point-

ing out examples of nonharmonic biharmonic maps. The second case, that of

linearized perturbations, is inspired from general relativity; even though we only

consider here positive definite metrics, in our opinion, it is illustrative.

In the last section, we determine the second variation of the bienergy func-

tional. Except for the facts that each of the expressions of the tension and of

the rough Laplacian gains an extra term and of the use of nonlinear connections

on TM , the first and second variation of the bienergy remain formally similar to

their Riemannian counterparts.

In the study of a Finsler space (M, g), there are two major– and equivalent

– approaches: the one based on the tangent bundle (TM, π,M), via horizontal

lifts, and the one based on the pullback bundle π∗TM . As noticed in [20], the

study of harmonic maps between real Finsler manifolds is usually carried out on

π∗TM (as in [14], [25]) while in the case of complex Finsler manifolds, it relies

on the geometry of TM . In order to obtain a more unified method, we preferred

to work, also in the real case, on TM ; the geometric structures we used are the

TM -correspondents of those in [14], [15], [16].
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2. Biharmonic maps in Riemannian geometry

In this section, we present in brief some results in [17], [8], [5].

Let (M, g) and (M̃, g̃) be two C∞-smooth, connected Riemannian manifolds

without boundary, of dimensions n and ñ; unless elsewhere specified, we will

assume, as in [8], that M is compact and orientable. On the two manifolds, we

denote the local coordinates by (xi)i=1,n, (x̃
α)α=1,ñ, the Levi–Civita connections

by ∇, ∇̃ (with coefficients Γi
jk, Γ̃

α
βγ) and by Γ(E), Γ(Ẽ), the modules of C∞-

smooth sections of any vector bundles E, Ẽ over M and M̃ . Commas ,i and ,α

will mean partial differentiation with respect to xi and x̃α and ∂i, ∂̃α, the natural

bases of the modules Γ(TM) and Γ(TM̃), respectively.

A C∞-smooth mapping φ : M → M̃ is called harmonic, if it is a critical point

of the energy functional

E : C∞(M, M̃) → R, E(φ) =
1

2

∫

M

‖dφ‖2dVg, (1)

where dφ is regarded as a section of the bundle φ−1TM̃ ⊗ T ∗M ,

‖dφ‖2 = traceg(φ
∗g̃) = gij g̃αβφ

α
,iφ

β
,j is the squared Hilbert-Schmidt norm of dφ

and dVg is the Riemannian volume element on M .

Harmonic maps are solutions of the equation τ(φ) = 0, where, [17],

τ(φ) = gij{∇φ
∂i
dφ(∂j)− dφ(∇∂i∂j)} =: gij(∇φ

∂i
dφ)∂j , (2)

is a section of the bundle φ−1TM̃ , called the tension of φ and∇φ is the connection

induced by ∇̃ in the pullback bundle φ−1TM̃ , [5]. In local writing:

τα(φ) = gij{φα
,ij + Γ̃α

βγφ
β
,iφ

γ
,j − Γk

ijφ
α
,k}. (3)

The above notion of harmonicity generalizes the usual one for mappings

between Euclidean spaces; notable examples include geodesic curves and minimal

Riemannian immersions.

Biharmonic maps φ ∈ C∞(M, M̃) are defined as critical points of the bienergy

functional :

E2(φ) =
1

2

∫

M

〈τ(φ), τ(φ)〉dVg; (4)

here 〈 , 〉 denotes the scalar product on the fibers of TM̃ , determined by g̃. The

Euler–Lagrange equation attached to the bienergy is, [17]:

τ2(φ) = 0, (5)

where:
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– the bitension τ2(φ) of φ is the section of the bundle φ−1TM̃ given by:

τ2(φ) = −∆φτ(φ)− traceg(R
∇̃(dφ, τ(φ))dφ); (6)

– the operator ∆φ = −gij(∇φ
∂i
∇φ

∂j
− ∇φ

∇∂i
∂j
) is the rough Laplacian (which

coincides, up to a sign, with the tensor version of the classical Laplace–

Beltrami operator), acting on sections of φ−1TM̃ ;

– R∇̃ denotes the curvature tensor of the Levi–Civita connection ∇̃ on the

codomain (M̃, g̃).

Remarks. 1) Equation (5) is the Riemannian generalization of the biharmonic

equation in Euclidean spaces, [24].

2) Any harmonic map φ : M → M̃ is biharmonic.

3. Finsler structures

In the following, except for the metric structure onM (and related quantities)

we preserve the notations and conventions in Section 2. We denote by TM and

TM̃ the tangent bundles of the manifoldsM and M̃ and their local coordinates, by

(x, y) := (xi, yi), (x̃, ỹ) := (x̃α, ỹα); dots ·i and ·α will mean partial differentiation

with respect to yi and ỹα.

A. Metric structure: A Finsler structure, [7], [16], on the manifold M is

a function F : TM → R with the properties:

1) F (x, y) is C∞-smooth for y 6= 0 and continuous at y = 0.

2) F (x, λy) = λF (x, y), ∀λ > 0, 3) The Finslerian metric tensor :

gij(x, y) :=
1

2
(F 2(x, y))·ij (7)

is positive definite for any (x, y) with y 6= 0.

The arc length of a curve c on the Finsler space (M, g) is given, [7], by:

l(c) =

∫

c

F (x, dx). (8)

Condition 2) above ensures the independence of l(c) of the chosen parametrization

of c.

B. Nonlinear connection and adapted frame on TM : Ehresmann (or

nonlinear, [6], Ch. 2) connections on TM , described as splittings TTM = HTM⊕
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V TM , with V TM = Span
(

∂
∂yi

)
, help simplify computations in Finsler geometry

and obtain geometric objects with simple transformation rules. A typical choice

is the Cartan nonlinear connection, built as follows, ([7], Section 2.3).

Geodesics of the Finsler space (M, g) are defined as critical points c of the

arc length (8); in the natural parametrization, their equations are:

dyi

ds
+ 2Gi(x, y) = 0, y = ẋ, (9)

with 2Gi(x, y) = 1
2g

ih((F 2)·h,kyk − (F 2),h); this defines the local coefficients

Gi
j = Gi

j(x, y) of the Cartan nonlinear connection as:

Gi
j := Gi

·j . (10)

The Cartan nonlinear connection gives rise to the adapted basis:

(
δi =

∂

∂xi
−Gj

i(x, y)
∂

∂yj
, ∂̇i =

∂

∂yi

)
(11)

on Γ(TTM) and to its dual (dxi, δyi = dyi +Gi
jdx

j).

With respect to coordinate transformations on TM , induced by coordinate

transformations xi′ = xi′(x) on M , the elements of the adapted basis/cobasis

transform by the same rules as vector/covector fields on M ([6] pp. 8, 26).

Any vector fieldX on TM can be decomposed as: X = hX+vX, hX = Xiδi,

vX = X̂i∂̇i; its horizontal component hX and its vertical component vX are

vector fields on TM . This leads to a simple rule of transformation for Xi, X̂i.

A similar situation holds for 1-forms ω = hω + vω, hω = ωidx
i, vω = ω̂iδy

i and,

more generally, for tensors of any rank on TM .

Using the Cartan nonlinear connection, tangent vector fields to lifts c′ :=

(c, ċ) to TM of unit speed geodesics of M are always horizontal ([9], Section

VIII.2). Another important property ([7], p. 36) is that, for any horizontal vector

field hX ∈ Γ(HTM):

(hX)F = 0. (12)

The adapted basis {δi, ∂̇i} is generally a non-holonomic (non-coordinate) one,

i.e., the Lie brackets of its elements do not all vanish. More precisely, these are:

[δj , δk] = Ri
jk(x, y)∂̇i, [δj , ∂̇k] = Gi

jk(x, y)∂̇i, [∂̇j , ∂̇k] = 0;

where:

Ri
jk(x, y) = δkG

i
j − δjG

i
k, Gi

jk(x, y) := Gi
·j·k(x, y). (13)
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C. As covariant differentiation rule on TM , we will use the one given by

the Chern–Rund affine connection D on TM ([6], Section 5.6), locally described

by:

Dδkδj = Γi
jkδi, Dδk ∂̇j = Γi

jk∂̇i, D∂̇k
δj = D∂̇k

∂̇j = 0, (14)

where Γi
jk = 1

2g
ih(δkghj + δjghk − δhgjk) are the “adapted” Christoffel symbols1

of g. The Chern–Rund connection preserves by parallelism the horizontal and

vertical distributions on TTM , i.e.,

DX(hY ) = hDXY, DX(vY ) = vDXY ; (15)

it is generally, only h-metrical:

DhXg = 0, ∀X ∈ Γ(TTM).

The Chern–Rund connection D has nontrivial torsion:

T = Ri
jk∂̇i ⊗ dxk ⊗ dxj + P i

jk∂̇i ⊗ δyk ⊗ dxj , (16)

with Ri
jk as in (13) and P i

jk = Gi
jk−Γi

jk; the latter defines a horizontal 1-form:

P = Pidx
i, Pi := P j

ij , (17)

which will be used in the following. We notice that the torsion of D has only

vertical components, i.e.:

hT (X,Y ) = 0, ∀X,Y ∈ Γ(TTM). (18)

The curvature R of D is locally described by:

R = R i
j klδi ⊗ dxl ⊗ dxk ⊗ dxj +R i

j kl∂̇i ⊗ dxl ⊗ dxk ⊗ δyj

+ P i
j klδi ⊗ δyl ⊗ dxk ⊗ dxj + P i

j kl∂̇i ⊗ δyl ⊗ dxk ⊗ δyj , (19)

where R i
j kl = δlΓ

i
jk − δkΓ

i
jl + Γh

jkΓ
i
hl − Γh

jlΓ
i
hk and P i

j kl = Γi
jk·l.

1In the Finslerian case, the usual Christoffel symbols γi
jk = 1

2
gih(ghj,k + ghk,j − gjk,h) do not

generally represent the coefficients of an affine connection on TM .
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We consider the same notions for the Riemannian manifold (M̃, g̃) and de-

signate them by tildes. In this case: Γ̃α
βγ = G̃α

βγ = γ̃α
βγ , that is:

(∇̃XY )h̃ = D̃Xh̃Y
h̃, ∀X,Y ∈ Γ(TM̃), (20)

where the superscript h̃ indicates the horizontal lift of vector fields from M̃ to

TM̃ ; also, G̃α
β(x̃, ỹ) = γ̃α

βγ(x̃)ỹ
γ , P̃α

βγ = 0; the Chern–Rund connection becomes

“fully” metrical:

D̃X g̃ = 0, ∀X ∈ Γ(TTM̃). (21)

The only nonzero local component of the curvature tensor R̃ is R̃ α
β γδ, i.e.:

R̃(X,Y )Z = R̃(h̃X, h̃Y )Z, ∀X,Y, Z ∈ Γ(TTM̃); (22)

R̃ α
β γδ coincide with the components of the curvature R∇̃ of the Levi–Civita con-

nection of g̃ and are thus subject to the same symmetries. Ricci identities of D̃

([6], p. 106) take the local form:

D̃δρD̃δγZ
α − D̃δγ D̃δρZ

α = R̃ α
β γρZ

β + R̃β
γρZ

α
·β ;

D̃∂̇ρ
D̃δγZ

α − D̃δγ D̃∂̇ρ
Zα = 0, ∀Z = Zαδα ∈ Γ(HTM̃). (23)

Another useful property of D̃ is:

D̃δ̃β
ỹα = 0. (24)

The Riemannian metric g̃ gives rise to a scalar product on the fibers on

HTM̃ , which will be denoted by 〈 , 〉:

〈X,Y 〉 = g̃αβX
αY β , ∀X = Xαδ̃α, Y = Y αδ̃α ∈ Γ(HTM̃). (25)

D. Volume form and integration domain. Consider the Riemannian

volume element dVg =
√
detGdx ∧ δy = det gdx ∧ δy on TM , determined by the

Sasaki lift, ([26], p. 92) G := gijdx
i ⊗ dxj + gijδy

i ⊗ δyj of g to TM . For an

x, y-dependent function α : TM → R, we will consider its integral on the total

space of the unit ball bundle of M (which is compact, since g is positive definite),

divided by the volume VolBn of the unit ball in the Euclidean space Rn, i.e.,

∫

BM

α(x, y)dVg =
1

VolBn

∫

M

(∫

Bx

α(x, y) det g(x, y)dy

)
dx, (26)
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where Bx =
{
y ∈ TxM | gij(x, y)yiyj ≤ 1

}
(on M , this construction provides a

generalization of the Riemannian volume element, called the Holmes–Thompson

volume element, [26], p. 26).

The divergence divX = 1
det g δi(X

i det g)−Gj
ijX

i, of a horizontal vector field

X = Xiδi on TM , [31], can be expressed as:

divX = DδiX
i − P (X);

we will also use this relation in the form:

gijδiXj = divX + gijΓk
ijXk + PiX

i. (27)

4. Some remarks on Finsler-to-Riemann maps

Let φ : M → M̃ , (xi) 7→ (φα(xi)) be C∞-smooth. Between the tangent

bundles TM and TM̃ , it acts the differential Φ := dφ (regarded as a mapping

between manifolds); throughout this section, we will use alternatively the two

notations Φ and dφ. The mapping Φ is locally described by:

Φ : x̃α = φα(x), ỹα = φα
,j(x)y

j .

Let us make the notation φα′
(x, y) := φα

,j(x)y
j and express in local coordinates

the pushforward by Φ of a horizontal vector field X ∈ Γ(HTM), i.e., Φ∗X =

X(φα)∂̃α +X(φα′
)
˙̃
∂α. Taking X = Xiδi we have, in the adapted bases given by

the two Cartan nonlinear connections N (on TM) and Ñ (on TM̃):

Φ∗X = Xiφα
,iδ̃α + (Xiδiφ

α′
+ Ñα

βX
iφβ

,i)
˙̃
∂α. (28)

The horizontal component h̃Φ∗X will have a peculiar importance.

Lemma 1. For any horizontal vector field X = Xiδi on TM :

h̃Φ∗X = Xiφα
,iδ̃α = dφh̃(X), (29)

where dφh̃ := φα
,iδ̃α ⊗ dxi is the horizontal lift of the vector-valued 1-form dφ.

The connection D̃ on TM̃ determines a connection Ddφ in the pullback

bundle dφ−1(TTM̃):

Ddφ
X (Φ∗Y ) := D̃Φ∗XY, ∀X ∈ Γ(TTM), Y ∈ Γ(TTM̃), (30)
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where2 Φ∗ denotes pullback (precomposition) by Φ, i.e., Φ∗Y is the section of

dφ−1(TTM̃) given by (Φ∗Y )(x,y) := YΦ(x,y), (x, y) ∈ TM .

The pulled back connection Ddφ allows us to differentiate vector fields – and

further, 1-forms, tensors of arbitrary rank – on the image of dφ (which is contained

in the codomain TM̃) with respect to vector fields on the domain TM . Moreover,

setting DdφT := DT for tensors T on TM , the action of Ddφ can be naturally

extended to sections of arbitrary tensor products of TTM , TTM̃, T ∗TM etc. In

local writing, taking into account (28) and (14), we will have, for instance:

Ddφ
δj
δ̃β = D̃Φ∗δj δ̃β = φγ

,jΓ̃
α
βγ δ̃α, Ddφ

δj
dxi = −Γi

jkdx
k,

Ddφ
δj
(δ̃β ⊗ dxi) = φγ

,jΓ̃
α
βγ δ̃α ⊗ dxi − Γi

jk δ̃β ⊗ dxk.

Taking into account the definition (30) and (15), it follows that the pullback

connection Ddφ preserves the distributions generated by the Cartan nonlinear

connection Ñ on TM̃ :

Ddφ
X (h̃Z) = h̃Ddφ

X Z, Ddφ
X (ṽZ) = ṽDdφ

X Z, ∀Z ∈ Γ(dφ−1(TTM̃)). (31)

Consider now a 1-parameter variation f : Iε ×M,f = f(ε, x), f(0, x) = φ(x)

of φ and:

F := df : T (Iε ×M) → TM̃.

On T (Iε × M), the local coordinates are (ε, x, ε′, y). Taking on the inter-

val Iε ⊂ R, the Euclidean metric and the product Finsler metric on Iε × M ,

we will obtain a trivial prolongation of the Cartan nonlinear connection to this

new manifold, which produces the adapted basis {∂ε, δi, ∂ε′ , ∂̇i} and a trivial pro-

longation of the Chern connection D (which we will denote again by D). i.e.,

D∂εδi = D∂ε ∂̇i = 0, Dδi∂ε = D∂̇i
∂ε = 0 etc. We also notice that [∂ε, δi] = 0 and

[∂ε, ∂̇i] = 0.

The connection Ddf will be prolonged to df−1(TTM̃), by:

Ddf
∂ε
(F ∗X) := D̃F∗∂εX, X ∈ Γ(TTM̃). (32)

Lemma 2. For any X ∈ Γ(TTM), there holds:

Ddf
∂ε
(df h̃(X)) = Ddf

X (df h̃(∂ε)). (33)

Proof. Equality (18) says that 0 = h̃T̃ (F∗∂ε, F∗X) = h{Ddf
∂ε
(F∗X)−

Ddf
X (F∗∂ε)− [F∗X,F∗∂ε]}. The result follows then from (31) and [X, ∂ε] = 0. ¤

2Actually, to be very rigorous, we should have written: Ddφ
X (Φ∗Y ) := Φ∗(D̃Φ∗XY ), thus point-

ing out that the right hand side is also to be evaluated at points Φ(x, y), with (x, y) ∈ TM . But,

for the simplicity of writing, this composition will be understood, just as in [5], [22], without

being explicitly indicated.
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5. Bienergy and its first variation

The energy of a Finsler-to-Riemann mapping φ : M → M̃ , was defined in

[14] as: E(φ) = 1
2

∫
BM

gij g̃αβφ
α
,iφ

β
,jdVg, (note that φ = φ(x), hence φα

,i = δiφ
α);

in our language, this is:

E(φ) =
1

2

∫

BM

gij〈dφh̃(δi), dφ
h̃(δj)〉dVg,

with 〈 , 〉 as in (25). The tension of φ : M → M̃ , [14], is:

τ(φ) = gij{Ddφ
δi
dφh̃(δj)− dφh̃(Dδiδj)− Pidφ

h̃(δj)}. (34)

Since, on one side, the vector fields dφh̃(δj) and dφh̃(Dδiδj) are horizon-

tal and, on the other side, Ddφ
δi

preserves the distributions generated by Ñ on

TM̃ , the tension τ(φ) is itself horizontal, i.e., it can be regarded as a section of

(dφ)−1HTM̃ .

The mapping φ is harmonic iff its tension vanishes identically. It appears as

natural:

Definition 3. The bienergy of a Finsler-to-Riemann map φ : M → M̃ is:

E2(φ) =
1

2

∫

BM

〈τ(φ), τ(φ)〉dVg. (35)

A critical point of the bienergy (35) is called a biharmonic map.

In order to determine the critical points of E2, we take variations f = f(ε, x)

of φ as above and denote by

V := (df(∂ε))
h̃ = df h̃(∂ h̃

ε ), V := V|ε=0. (36)

the horizontal lift of the associated deviation vector field df(∂ε).

Since the Chern–Rund connection D̃ on the codomain TM̃ is metrical, we

can write:

Ddf
∂ε
(Φ∗g̃) = D̃Φ∗∂ε g̃ = 0. (37)

that is,

dE2

dε
(f) =

1

2

d

dε
〈τ(f), τ(f)〉dVg =

∫

BM

〈Ddf
∂ε
τ(f), τ(f)〉dVg.

Let us evaluate the term Ddf
∂ε
τ(f):

Ddf
∂ε
τ(f) = Ddf

∂ε
{gij(Ddf

δi
(df h̃(δj))− df h̃(Dδiδj)− Pidf

h̃(δj))}
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= gij
{
Ddf

∂ε
Ddf

δi
(df h̃(δj))−Ddf

∂ε
(df h̃(Dδiδj))− PiD

df
∂ε
(df h̃(δj))

}

(gij and Pi can be taken in front of the ∂ε-derivative, since in their expressions

gij = gij(x, y), Pi = Pi(x, y) the coordinates x, y do not depend on ε). Commut-

ing derivatives by means of the curvature tensor of D̃, taking (22) and [δi, ∂ε] = 0

into account,

Ddf
∂ε
Ddf

δi
(df h̃(δj)) = R̃(V, df h̃(δi))df

h̃(δj) +Ddf
δi
Ddf

∂ε
(df h̃(δj)).

By (33), the term Ddf
δi
Ddf

∂ε
(df h̃(δj)) becomes Ddf

δi
Ddf

δj
V. Using (33) also in the

expression Ddf
∂ε
(df h̃(Dδiδj))− PiD

df
∂ε
(df h̃(δj)) and summing up, we get:

Ddf
∂ε
τ(f)= gij{R̃(V, df h̃(δi))df

h̃(δj)+Ddf
δi
Ddf

δj
V−Ddf

Dδi
δj
V − PiD

df
δj
V}. (38)

We notice the operators

gij(−Ddf
δi
Ddf

δj
+Ddf

Dδi
δj
+PiD

df
δj
)=:∆df, J=−∆df− tracegR̃(df h̃, ·)df h̃, (39)

acting on sections of the bundle (df)−1(HTM̃). With this, we have:

Ddf
∂ε
τ(f) = −∆dfV − gijR̃(df h̃(δi),V)df h̃(δj) = J (V). (40)

Evaluating at ε = 0 and substituting into the expression of the variation,

dE2

dε
(f)|ε=0 =

∫

BM

〈J (V ), τ(φ)〉dVg. (41)

It remains to transform the above expression so as to have V in the right hand

side of the scalar product. This will be easy using the following lemma.

Lemma 4. The operators ∆dφ and J are self-adjoint:
∫

BM

〈∆dφX,Y 〉dVg =

∫

BM

〈X,∆dφY 〉dVg,

∫

BM

〈JX,Y 〉dVg =

∫

BM

〈X,J Y 〉dVg. (42)

for any X,Y ∈ Γ(dφ−1(HTM̃)).

Proof. We start from the left hand side of the first relation in (42); in-

tegrating by parts the term
∫
BM

〈−gijDdf
δi
Ddf

δj
X,Y 〉dVg and applying (27), we

get: ∫

BM

〈∆dφX,Y 〉dVg = −
∫

BM

gij〈Ddφ
δi
X, Ddφ

δj
Y 〉dVg. (43)

Integrating once again by parts, we obtain the first identity in (42). The self-

adjointness of J follows then from the symmetries of R̃. ¤
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The operator ∆dφ is a generalization of the rough Laplacian from Riemannian

geometry, built in the same spirit as the horizontal Laplacian acting on differential

forms in [31], [32]. Using Lemma 4 in (41), we get:

Proposition 5. a) The first variation of the bienergy of a mapping φ : M →
M̃ from the Finsler space (M, g) to the Riemann space (M̃, g̃) is:

dE2(f)

dε
|ε=0 =

∫

BM

〈−∆dφτ(φ)− tracegR̃(dφh̃, τ(φ))dφh̃, V 〉dVg; (44)

b) The mapping φ is biharmonic iff:

τ2(φ) := −∆dφτ(φ)− tracegR̃(dφh̃, τ(φ))dφh̃ = 0. (45)

Remarks. 1) In the above, we considered, as in [8], that M is compact and

without boundary. Elsewhere, all the discussion can be made on a compact subset

D of M ; in this case, we assume that, on the boundary of D, the vector field V

and the covariant derivatives Ddφ
δi
V vanish.

2) For any harmonic map φ from a Finsler space to a Riemann one, we have

τ(φ) = 0, that is, E2(φ) = 0. Consequently, any harmonic map is biharmonic,

namely, a minimum point for the bienergy functional. A biharmonic map which

is not harmonic will be called proper biharmonic.

Particular cases: 1) If M̃ = Rn with the Euclidean metric, then the bihar-

monic equation (45) becomes:
∆dφτ(φ) = 0.

2) If M̃ = Sn is the unit Euclidean sphere, then, using the expression of the

Riemann tensor of a space form, we get that φ : M → Sn is biharmonic iff:

∆dφτ(φ) + 2e(φ)τ(φ)− traceg〈dφh̃, τ(φ)〉dφh̃ = 0,

where e(φ) = 1
2 traceg〈dφh̃, dφh̃〉 is the energy density of φ. The result is similar

to the one in the Riemannian case ([5], Section 3.2.2).

3) (Riemann-to-Riemann maps) Assume that the domain (M, g) is Riemann-

ian; then, relation (20) also holds true for D and ∇, the Landsberg tensor P

vanishes and thus, the rough Laplacian ∆dφ coincides (up to a horizontal lift)

with the operator ∆φ = −gij(∇φ
∂i
∇φ

∂j
−∇φ

∇∂i
∂j
) presented in Section 2:

lh̃(∆φU) = ∆dφ(lh̃U), ∀U ∈ φ−1(Γ(TM̃)).
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It turns out that, in the case of Riemann-to-Riemann mappings, the bitension

of a mapping φ obtained by us – let’s denote it, for the moment, by τFinsler2 (φ) - is

the horizontal lift of the bitension τRiem
2 (φ) in Section 2: τFinsler2 (φ) = (τRiem

2 (φ))h̃.

In local coordinates, the two versions of the bitension and, accordingly, of the

biharmonic equation, coincide.

4) A weakly Landsberg manifold (M, g) is defined, ([26], Section 7.2), as a

Finsler manifold for which P = 0 (this includes, but does not coincide with

the class of Riemannian manifolds). If (M, g) is weakly Landsberg, then the

local expressions of the tension, rough Laplacian and accordingly, of the bi-

harmonic equation, are still the same as the ones in the Riemannian case –

just, this time, depending on the fiber coordinates yi: τ(φ) = tracegD
dφ(dφh̃),

∆df = gij(−Ddf
δi
Ddf

δj
+Ddf

Dδi
δj
).

6. Existence of proper biharmonic maps

The following two results represent generalizations to Finsler-to-Riemann

maps of two theorems in [8] and [22] respectively.

Theorem 6. If (M, g) is a compact Finslerian manifold without boundary

and (M̃, g̃) is Riemannian with nonpositive sectional curvature, then any bihar-

monic map φ : M → M̃ is harmonic.

Proof. The strategy of proof is similar to the one in the Riemannian case,

[8]. Let us consider the horizontal Laplace–Beltrami operator ∆ψ:=−div(gradh ψ)

(see, for instance, [31]), acting on scalar functions ψ : TM → R. In local coordi-

nates, we have gradh ψ := (gijδjψ)δi and:

∆ψ = − (
Dδi(g

ijδjψ)− gijPiδjψ
)
. (46)

We apply (46) to the function ψ := ‖τ(φ)‖2, defined on TM :

−1

2
∆‖τ(φ)‖2 =

1

2
{Dδi(g

ijδj‖τ(φ)‖2)− gijPiδj‖τ(φ)‖2}

=
1

2
gij{δiδj‖τ(φ)‖2 − Γk

ijδk‖τ(φ)‖2 − Piδj‖τ(φ)‖2}. (47)

Here, noticing again that the Chern–Rund connection D̃ is metrical, we

can express δj‖τ(φ)‖2 in terms of Ddφ-covariant derivatives as: δj‖τ(φ)‖2 =

δj〈τ(φ), τ(φ)〉 = 2〈Ddφ
δj
τ(φ), τ(φ)〉. Substituting the latter expression into (47)

and taking into account that Γk
ijδk = Dδiδj , we obtain, after a brief calculation:

−1

2
∆ ‖τ(φ)‖2 = −〈∆dφτ(φ), τ(φ)〉+ gij〈Ddφ

δi
τ(φ), Ddφ

δj
τ(φ)〉.
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By means of the biharmonic equation (45), this becomes:

−1

2
∆ ‖τ(φ)‖2 =

〈
tracegR̃(dφh̃, τ(φ))dφh̃, τ(φ)

〉
+ gij

〈
Ddφ

δi
τ(φ), Ddφ

δj
τ(φ)

〉
. (48)

According to the hypothesis that the sectional curvature of (M̃, g̃) is nonposit-

ive, the curvature term above is nonnegative; since gij〈Ddφ
δi
τ(φ), Ddφ

δj
τ(φ)〉 (as a

squared norm) is nonnegative, too, we get: − 1
2∆‖τ(φ)‖2 ≥ 0.

On the other side, we have, [31],
∫
BM

∆‖τ(φ)‖2dVg=0, hence, ∆‖τ(φ)‖2=0;

thus, by (48), gij〈Ddφ
δi
τ(φ), Ddφ

δj
τ(φ)〉 = 0; as a consequence,

Ddφ
δj
τ(φ) = 0. (49)

Take the horizontal vector field X := (gij〈φ,i, τ(φ)〉)δj on TM ; by (49), we get:

0 =

∫

BM

divXdVg =

∫

BM

〈τ(φ), τ(φ)〉︸ ︷︷ ︸
≥0

dVg

and therefore, 〈τ(φ), τ(φ)〉 = 0 ⇒ τ(φ) = 0, i.e., φ is harmonic. ¤

Dropping any condition upon the compactness or on the boundary of M , we

have:

Theorem 7. Let (M, g) be an arbitrary Finsler space (not necessarily com-

pact), (M̃, g̃), a Riemannian manifold with strictly negative sectional curvature

and φ : M → M̃ , a biharmonic map. If φ has the properties: 1) ‖τ(φ)‖ = const.

and 2) there exists a point x0 ∈ M at which the rank of φ is at least 2, then φ is

harmonic.

Proof. The proof is similar to the one in the Riemannian case, [22]. From

the hypothesis ‖τ(φ)‖ = const., in (48), the left hand side is 0; but both terms in

the right hand side are nonnegative, hence: 〈tracegR̃(dφh̃, τ(φ))dφh̃, τ(φ)〉 = 0.

Let us orthonormalize the basis {δi}i=1.n of HTM and call this new basis

{ei}i=1.n. In terms of this basis, we can write: 〈tracegR̃(dφh̃, τ(φ))dφh̃, τ(φ)〉 =∑n
i=1〈R̃(dφh̃(ei), τ(φ))dφ

h̃(ei), τ(φ)〉. Since Riemg̃ < 0, the only chance for

〈tracegR̃(dφh̃, τ(φ))dφh̃, τ(φ)〉 to be 0 is that all the (minus) sectional curvatures

〈R̃(dφh̃(ei), τ(φ))dφ
h̃(ei), τ(φ)〉 be 0. This can, again happen only if: 1) either

all dφh̃(ei) (i = 1, n) are collinear with τ(φ) (that is, collinear with one another),

or: 2) τ(φ) = 0. But, at the point x0, we have rank(φ) ≥ 2, hence, the only

remaining possibility is the second one, i.e., τ(φ)(x0) = 0. Using ‖τ(φ)‖ = const.,

it follows that τ(φ) ≡ 0, i.e., φ is harmonic. ¤
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7. Biharmonicity of the identity map

Throughout this section, we assume that M = M̃ (not necessarily compact),

dimM = n, and denote the coordinates on TM by (xi, yi). Considering on M

two metrics: a Riemannian one g̃ and a Finslerian one g, we will explore the

biharmonicity of the Finsler-to-Riemann mapping:

id : (M, g) → (M, g̃). (50)

In this situation, there appear two adapted bases (δi, ∂̇i) and (δ̃i, ∂̇i) on TM ,

together with the covariant differentiations given by D, D̃ and Dd(id). According

to [16] (p. 115), the tension of the identity map has the local components

τ i(id) = gjk(Γ̃i
jk −Gi

jk) (51)

(note: our Gi is half the one in [16]).

Let us evaluate (51). We denote 2b := F 2 − F̃ 2, i.e.:

gij(x, y) = g̃ij(x) + bij(x, y), (52)

where the function b = b(x, y) is homogeneous of degree 2 in y and bij = b·ij .
In the expression of the spray coefficients (9) of g, i.e.,

2Gi(x, y) =
1

2
gih

(
F 2

,k·hy
k − F 2

,h

)
, (53)

the derivative F 2
,k can be written in terms of D̃δ̃k

-covariant derivatives (denoted

in the following by double bars ‖k), as: F 2
,k = F 2

‖k + G̃l
kF

2
·l. Differentiating the

latter relation with respect to yh, contracting it with yk and taking into account

that G̃l are homogeneous of degree 2 in y, we get:

F 2
,k·hyk = F 2

‖k·hy
k + ykG̃l

hkF
2
·l + ykG̃l

kF
2
·lh = F 2

‖k·hy
k + G̃l

hF
2
·l + 2G̃lF 2

·lh.

We notice that, in the above, the last term is 2G̃lF 2
·lh = 4G̃lglh. Expressing

also F 2
,h in terms of D̃δ̃h

-covariant derivatives and substituting into (53), we are

finally led to:

2Gi = 2G̃i + 2Bi, (54)

where:

2Bi :=
1

2
gih(F 2

‖k·hy
k − F 2

‖h). (55)

The tension of id is:

τ i(id) = −gjkBi
·j·k. (56)
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Remarks. 1) Suppose that b is parallel with respect to D̃. Then, according

to (12) (applied to F̃ and its Cartan nonlinear connection Ñ), we have: F̃ 2
‖k =

δ̃kF̃ = 0. As a consequence, F 2
‖k = F̃ 2

‖k + 2b‖k = 0, which entails Bi = 0 ⇒
τ i = 0. We obtain that, in this case, the identity map is harmonic, i.e., also

biharmonic.

2) Assuming that g is a Berwald-type metric, i.e., Gi
jk = Gi

jk(x), then there

exists, [13], [27], a Riemannian metric g̃ such that Gi
jk = G̃i

jk; in this case, the

identity map id : (M, g) → (M, g̃) is, again, harmonic, hence, biharmonic.

We will find in the following two examples of Finslerian perturbations b for

which the identity of M is proper biharmonic.

With τ i := τ i(id), the relation between the Dd(id)- and D̃-covariant deriva-

tives of τ i is:

D
d(id)
δj

τ i = δjτ
i + Γ̃i

jkτ
k = τ i‖j −Bk

·jτ
i
·k. (57)

Example 1. y-independent tension. Assume that the Finslerian function sa-

tisfies:

F 2
‖h = 〈a, y〉gyh, (58)

where yh = ghly
l, 〈a, y〉g := gija

iyj and ai = ai(x) are components of some vector

field a = ai∂i on M . A brief calculation leads to: F 2
‖k·jy

k −F 2
‖j = ajF

2, that is,

in (55), 2Bi = 1
2a

i(x)F 2. From (56), we obtain:

τ i = −1

2
nai. (59)

We notice that, in our case, τ i = τ i(x); that is, relation (57) becomes simply:

D
d(id)
δj

τ i = τ i‖j and the biharmonic equation is written as:

gjk(τ i‖j‖k − Γ̃l
jkτ

i
‖l − R̃ i

j lkτ
l) = 0. (60)

Here, taking into account that R̃jhlk = R̃lkjh, Ricci identities (23) for D̃ and the

fact that τ i = τ i(x) does not depend on y, the curvature term R̃ i
j lkτ

l can be

expressed by commuting D̃-covariant derivatives of τ i:

R̃ i
j lkτ

l = gihR̃jhlkτ
l = gihR̃lkjhτ

l = gihgkm(τm‖j‖h − τm‖h‖j).

It turns out that a sufficient condition for the biharmonicity of id is:

τ i‖j = 0. (61)
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(Note: this statement is always true in the Riemann-to-Riemann case, but gene-

rally, not in the Finsler-to-Riemann one, where, as a rule, τ i = τ i(x, y)).

Using (59), we deduce that (61) is identically satisfied if the vector field

ah = aiδi is parallel with respect to D̃. But, according to (20), this is nothing

but: ∇̃∂i
a = 0. In other words:

Proposition 8. If, in (58), the nonzero vector field a = ai(x)∂i is parallel

with respect to g̃, then the identity map id : (M, g) → (M, g̃) is proper biharmonic.

Example 2. Linearized Finslerian perturbations of the Euclidean metric. As-

sume that (M, g̃ij) = (Rn, δij) and the perturbation bij =: εij(x, y) is small

(linearly approximable), that is, we may neglect all terms of degree greater than

one in εij and its derivatives, [10]. In this case, the inverse metric is given by:

gik = δik − εik relation (55) becomes:

2Bi =
1

2
δih(εhj,k + εhk,j − εjk,h)y

jyk.

We notice that the tension τ will be of the same order of smallness as ε; it

means that products of τ with ε and its derivatives can be neglected. For instance,

we have: Bh
lτ

i
·h ' 0, which, substituted into (57), leads to:

D
d(id)
δj

τ i = τ i,j .

The biharmonic equation takes the simple form: δlmτ i,l,m = 0. A sufficient

condition for biharmonicity is

τ i,l = 0,

(or: τ i = τ i(y)), that is, δih(εhj,k,l + εhk,j,l − εjk,h,l)y
jyk = 0. obtain:

Proposition 9. Let the Finsler metric g, with gij(x, y) = δij + εij(x, y),

be a linearized perturbation of the Euclidean metric g̃ = (δij) on Rn. If the

components εij(x, y) are non-constant and affine in x, then id : (Rn, g) → (Rn, g̃)

is proper biharmonic.

8. Second variation of the bienergy

Take a biharmonic map φ : (M, g) → (M̃, g̃) and a smooth 2-parameter

variation f = f(ε1, ε2, x), f(0, 0, x) = φ of φ, with

V1 = df h̃(∂ε1), V2 = df h̃(∂ε2), V1 := V1|ε1=ε2=0, V2 := V2|ε1=ε2=0
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(if M has a boundary, then V1, V2 and their δi -covariant derivatives are assumed

to vanish on ∂M).

The deduction of the second variation of E2 follows the same steps as in

the Riemannian case, with two differences: in the expressions of τ(f) and of

∆df , there appear extra terms and we have to take into account that Φ∗(∂εi) is,
generally, not horizontal. Fortunately, as we will see below, these will finally not

complicate the expression of the variation.

We denote, for simplicity, τ := τ(f). According to (44), (45):

∂E2(f)

∂ε1
=

∫

BM

〈τ2(f),V1〉dVg; (62)

differentiating with respect to ε2:

∂2E2(f)

∂ε1∂ε2
=

∫

BM

{〈Ddf
∂ε2

τ2(f),V1〉+ 〈τ2(f), Ddf
∂ε2

V1〉}dVg.

At ε1 = ε2 = 0, since φ is biharmonic, the second term in the right hand side

will vanish. It is thus enough to evaluate the first one; we have:

Ddf
∂ε2

τ2(f) = −Ddf
∂ε2

(∆dfτ)−Ddf
∂ε2

(tracegR̃(df h̃, τ)df h̃). (63)

The covariant derivative of the Laplacian −∆dfτ is:

T1 := −Ddf
∂ε2

(∆dfτ) = gijDdf
∂ε2

(Ddf
δi
Ddf

δj
τ −Ddf

Dδi
δj
τ − PiD

df
δj
τ). (64)

Commuting covariant derivatives by means of the curvature R̃ (twice for the

term Ddf
δi
Ddf

δj
τ), taking into account that [∂ε, δi] = 0 and (22), we find:

T1 = gij
{
R̃(V2, df

h̃(δi))D
df
δj
τ +Ddf

δi
(R̃(V2, df

h̃(δj))τ +Ddf
δj
Ddf

∂ε2
τ)

− R̃(V2, df
h̃(Dδiδj))τ −Ddf

Dδi
δj
Ddf

∂ε2
τ −PiR̃(V2, df

h̃(δj))τ −PiD
df
δj
Ddf

∂ε2
τ
}
.

The terms in Ddf
∂ε2

τ can be grouped into −∆df (Ddf
∂ε2

τ):

T1 = −∆df (Ddf
∂ε2

τ) + gij
{
R̃(V2, df

h̃(δi))D
df
δj
τ

+Ddf
δi
(R̃(V2, df

h̃(δj))τ)− R̃(V2, df
h̃(Dδiδj))τ − PiR̃(V2, df

h̃(δj))τ
}
.

Splitting Ddf
δi
(R̃(V2, df

h̃(δj))τ) as a sum of derivatives, we recognize in the

resulting expression R̃(V2, τ)τ :

T1 = −∆df (Ddf
∂ε2

τ) + R̃(V2, τ)τ + gij
{
(Ddf

δi
R̃)(V2, df

h̃(δj))τ
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+ 2R̃(V2, df
h̃(δi))D

df
δj
τ + R̃(Ddf

δi
V2, df

h̃(δj))τ
}
. (65)

The curvature term T2 := −Ddf
∂ε2

(tracegR̃(df h̃, τ)df h̃) in (63) is:

T2 = −gij{(Ddf
∂ε2

R̃)(df h̃(δi), τ)df
h̃(δj) + R̃(Ddf

∂ε2
df h̃(δi), τ)df

h̃(δj)

+ R̃(df h̃(δi), D
df
∂ε2

τ)df h̃(δj) + R̃(df h̃(δi), τ)D
df
∂ε2

(df h̃(δj))}. (66)

Taking into account that R̃ = R̃(x) only, we obtain Ddf
∂ε2

R̃ = D̃V2
R̃. Trans-

forming Ddf
∂ε2

df h̃(δi), D
df
∂ε2

df h̃(δj) by (33) and then using first Bianchi identity in

the second term:

T2 = −gij{(D̃V2
R̃)(df h̃(δi), τ)df

h̃(δj) + R̃(Ddf
δi
V2, τ)df

h̃(δj)

+ R̃(df h̃(δi), D
df
∂ε2

τ)df h̃(δj) + R̃(df h̃(δi), τ)D̃δjV2}
= −gij{(D̃V2

R̃)(df h̃(δi), τ)df
h̃(δj) + 2R̃(df h̃(δi), τ)D̃δjV2

− R̃(df h̃(δj), D
df
δi
V2)τ + R̃(df h̃(δi), D

df
∂ε2

τ)df h̃(δj)}. (67)

Second, and then first Bianchi identities for the (D̃V2
R̃)-term tell us that:

−gij(D̃V2
R̃)(df h̃(δi), τ)df

h̃(δj) = gij{(D̃τ R̃)(V2, df
h̃(δi))df

h̃(δj)

−(D̃δiR̃)(df h̃(δj), τ)V2 − (D̃δiR̃)(V2, df
h̃(δj))τ}.

Substituting into T2 and adding: T1 + T2 = Ddf
∂ε2

τ2(f), we get:

Ddf
∂ε2

τ2(f) = J (Ddf
∂ε2

τ) + R̃(V2, τ)τ + gij
{
(D̃τ R̃)(V2, df

h̃(δi))df
h̃(δj)

−(Ddf
δi
R̃)(df h̃(δj), τ)V2 + 2R̃(V2, df

h̃(δi))D
df
δj
τ − 2R̃(df h̃(δi), τ)D

df
δi
V2

}
,

with J as in (39). Using (40) and evaluating at ε1 = ε2 = 0, we get:

Proposition 10. The second variation of the bienergy of a Finsler-to-Ri-

emann biharmonic map φ : M → M̃ is:

∂2E2(f)

∂ε1∂ε2
|ε1=ε2=0 =

∫

BM

〈
V1,J 2V2 + R̃(V2, τ)τ

+ gij
{
(D̃τ R̃)(V2, df

h̃(δi))df
h̃(δj)− (Ddf

δi
R̃)(df h̃(δj), τ)V2

+ 2R̃(V2, df
h̃(δi))D

df
δj
τ − 2R̃(df h̃(δi), τ)D

df
δi
V2

}〉
dVg. (68)
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In particular cases (for instance, M̃ = Rn or Sn), (68) becomes considerably

simpler.

The Hessian H : (V1, V2) 7→ H(V1, V2) = ∂2E2(f)
∂ε1∂ε2

|ε1=ε2=0 of the bienergy is

a symmetric bilinear form. A solution φ of the biharmonic equation is stable if

the quadratic form H(V, V ) is nonnegative for any V . As an example, harmonic

maps are stable biharmonic maps.
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