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Characterizations of peripherally multiplicative mappings
between real function algebras

By KRISTOPHER LEE (Ames)

Abstract. Let X be a compact Hausdorff space; let τ : X → X be a topolog-

ical involution; and let A ⊂ C(X, τ) be a real function algebra. Given f ∈ A, the

peripheral spectrum of f is the set σπ(f) of spectral values of f of maximum mo-

dulus. We demonstrate that if T1, T2 : A → B and S1, S2 : A → A are surjective

mappings between real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) that satisfy

σπ(T1(f)T2(g)) = σπ(S1(f)S2(g)) for all f, g ∈ A, then there exists a homeomorphism

ψ : Ch(B) → Ch(A) between the Choquet boundaries such that (ψ ◦ ϕ)(y) = (τ ◦ ψ)(y)
for all y ∈ Ch(B), and there exist functions κ1, κ2 ∈ B, with κ−1

1 = κ2, such that

Tj(f)(y) = κj(y)Sj(f)(ψ(y)) for all f ∈ A, all y ∈ Ch(B), and j = 1, 2. As a corollary,

it is shown that if either Ch(A) or Ch(B) is a minimal boundary (with respect to inclu-

sion) for its corresponding algebra, then the same result holds for surjective mappings

T1, T2 : A → B and S1, S2 : A → A that satisfy σπ(T1(f)T2(g)) ∩ σπ(S1(f)S2(g)) 6= ∅
for all f, g ∈ A.

1. Introduction and background

Given a compact Hausdorff space X, a topological involution is a continuous

mapping τ : X → X such that τ(τ(x)) = x for all x ∈ X. Define C(X, τ) =

{f ∈ C(X) : f ◦ τ = f}, then a real function algebra is a uniformly closed, real

subalgebra A ⊂ C(X, τ) that separates points and contains the real constant

functions. Kulkarni and Limaye introduced real function algebras and gave a

thorough account of the theory in [6]. Although they are analogous to uniform

algebras, real function algebras are strictly real Banach algebras.
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There has been a recent surge of work done on analyzing mappings between

Banach algebras of continuous functions that preserve certain spectral properties,

and these problems are known as spectral preserver problems.Molnár began inte-

rest in such problems in [13] by characterizing surjective maps T : C(X) → C(X),

whereX is a first-countable, compact Hausdorff space, that satisfy σ(T (f)T (g)) =

σ(fg) for all f, g ∈ C(X). A wide range of spectral preserver problems have now

been studied in a variety of settings (see [3] for a recent survey), but such prob-

lems have yet to be investigated for real function algebras. This setting offers

new challenges, as the algebraic structure has been restricted to real scalars (af-

fecting the spectral structure), and the topological involution τ adds a new layer

of structure to be analyzed. In this work, we address these issues and answer a

particular spectral preserver problem in real function algebras.

Given a real function algebra A and an f ∈ A, the spectrum of f is the

non-empty, compact set σ(f) = {a + ib ∈ C : (f − a)2 + b2 6∈ A−1} (cf. [6]),

where A−1 is the collection of multiplicatively invertible elements of A. The set

of spectral values of f of maximum modulus is known as the peripheral spectrum

of f and it is denoted by

σπ(f) =
{
λ ∈ σ(f) : |λ| = max

z∈σ(f)
|z|

}
.

A foursome of surjective mappings T1, T2 : A → B and S1, S2 : A → A bet-

ween real function algebras that satisfy σπ(T1(f)T2(g)) = σπ(S1(f)S2(g)) for all

f, g ∈ A are called jointly peripherally multiplicative mappings. We characterize

such mappings, and prove that T1 and T2 are essentially weighted composition

operators. In particular, the pre-composition mapping is between the Choquet

boundaries, which is the set Ch(A) of points x such that Re ex, where ex is the

point-evaluation at x, is an extreme point of the state space of A.

Main Theorem. Let X and Y be compact Hausdorff spaces; let τ : X → X

and ϕ : Y → Y be topological involutions; and let A ⊂ C(X, τ) and B ⊂ C(Y, ϕ)

be real function algebras. If T1, T2 : A → B and S1, S2 : A → A are surjective

mappings that satisfy

σπ(T1(f)T2(g)) = σπ(S1(f)S2(g))

for all f, g ∈ A, then there exists a homeomorphism ψ : Ch(B) → Ch(A) between

the Choquet boundaries such that (ψ ◦ ϕ)(y) = (τ ◦ ψ)(y) for all y ∈ Ch(B), and
there exist functions κ1, κ2 ∈ B that satisfy κ−1

1 = κ2 and

Tj(f)(y) = κj(y)Sj(f)(ψ(y))

for all f ∈ A, all y ∈ Ch(B), and j = 1, 2.
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Note that when S1 and S2 are identity mappings and T1(1) = T2(1) = 1, then

T1 = T2 and T1 is an isometric algebra isomorphism. This mirrors the previous

results on peripherally multiplicative mappings (e.g. [2], [11]), with the addition

of demonstrating that the pre-composition mapping ψ is a topological conjugacy

between ϕ and τ . Furthermore, studying multiple mappings that jointly satisfy

spectral conditions has recently received attention [2], [9], [14], and doing so offers

the benefit of answering a wide range of possible questions at once.

Four surjective mappings T1, T2 : A → B and S1, S2 : A → A between real

function algebras A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) that satisfy σπ(T1(f)T2(g)) ∩
σπ(S1(f)S2(g)) 6= ∅ for all f, g ∈ A are known as jointly weakly peripherally

multiplicative. In the setting of uniform algebras, it is still an open question as to

whether or not such mappings are weighted composition operators. One approach

has been to impose additional topological conditions on the underlying domain

of the functions, and this is done to guarantee that the Choquet boundary has

further structure (see [9], [14]). Following in this vein, we demonstrate that the

conclusion of Main Theorem is true for jointly weakly peripherally multiplica-

tive mappings, provided that either Ch(A) or Ch(B) is a minimal boundary for

its respective algebra. This is to say that every function attains its maximum

modulus on the Choquet boundary, and no proper subset has this property.

Corollary 5.1. Let X and Y be compact Hausdorff spaces; let τ : X → X

and ϕ : Y → Y be topological involutions; and let A ⊂ C(X, τ) and B ⊂ C(Y, ϕ)

be real function algebras. If either Ch(A) is a minimal boundary for A or Ch(B)
is a minimal boundary for B and T1, T2 : A → B and S1, S2 : A → A are surjective

mappings that satisfy

σπ(T1(f)T2(g)) ∩ σπ(S1(f)S2(g)) 6= ∅
for all f, g ∈ A, then there exists a homeomorphism ψ : Ch(B) → Ch(A) such

that (ψ ◦ϕ)(y) = (τ ◦ψ)(y) for all y ∈ Ch(B) and there exist functions κ1, κ2 ∈ B
that satisfy κ−1

1 = κ2 and

Tj(f)(y) = κj(y)Sj(f)(ψ(y))

for all f ∈ A, all y ∈ Ch(B), and j = 1, 2.

We begin in Section 2 with the basic material on real function algebras that

will be needed throughout. This includes a real function algebra version of a result

known as Bishop’s lemma, and its relevant applications. Results that are needed

to characterize (weakly) peripherally multiplicative maps are demonstrated in

Section 3, and the proof of the Main Theorem is given in Section 4. The Main

Theorem is then used in Section 5 to prove Corollary 5.1.
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2. Preliminary and prior results

Throughout this section we assume that X is a compact Hausdorff space,

τ is a topological involution on X, and A ⊂ C(X, τ) is a real function algebra.

The complexification of A is the uniform algebra AC= {f + ig : f, g ∈ A} [6,

Theorem 1.3.20]. Given an f ∈ A, then σ(f) = {λ ∈ C : f −λ 6∈ A−1
C } (cf. [6, Re-

mark 1.1.11]). The peripheral range of f ∈ AC is the set Ranπ(f) = {f(x) : x∈X,

|f(x)| = ‖f‖}, where ‖ · ‖ denotes the uniform norm. For uniform algebras, it

is known that the peripheral spectrum and peripheral range coincide (see [11,

Lemma 1]), thus it follows that

σπ(f) = Ranπ(f)

for all f ∈ A. Note that σπ(f) is closed under complex conjugation for any f ∈ A.

Given an f ∈ AC, the maximizing set of f is the non-empty, compact set

M(f) = {x ∈ X : |f(x)| = ‖f‖}. If f ∈ A, then the set M(f) is τ -invariant,

which is to say that τ [M(f)] = M(f). A function h ∈ AC is a peaking function

if and only if Ranπ(h) = {1}. The collection of all peaking functions of A and of

AC are denoted by P(A) and P(AC), respectively. Clearly, P(A) ⊂ P(AC) and

given a k ∈ P(AC), there exists an h ∈ P(A) such that M(h) = M(k) ∪ τ [M(k)]

[6, Theorem 2.2.11]. Moreover, given an f ∈ A \ {0} and an x0 ∈ M(f), then

k =
f

2[f(x0)]
+

f2

2[f(x0)]2

belongs to P(AC) and satisfies M(k) = {x ∈ X : f(x) = f(x0)}. Consequently,

there exists an h ∈ P(A) such that M(h) = M(k) ∪ τ [M(k)] = f−1[{f(x0)}] ∪
f−1[{f(τ(x0))}].

A subset F ⊂ X is a p-set forA if F =
⋂

h∈S M(h) for some family S ⊂ P(A).

Given an F ⊂ X, let PF (A) = {h ∈ P(A) : F ⊂ M(h)}. A non-empty subset

F ⊂ X is a p-set forA if and only if given an open neighborhood U of F , then there

exists an h ∈ PF (A) such that M(h) ⊂ U [6, Theorem 2.2.3]. These definitions

and results also apply to AC, and we shall use Px(A) instead of P{x}(A).

A τ -invariant subset B ⊂ X is a boundary for A if M(f) ∩ B 6= ∅ for

all f ∈ A, and the Choquet boundary is a boundary for A [6, Theorem 4.2.5].

Additionally, the Choquet boundary coincides with collection of x ∈ X such that

{x, τ(x)} is a p-set, i.e. Ch(A) = {x ∈ X : {x, τ(x)} is a p-set for A} = {x ∈ X :

{x} is a p-set for AC} [6, Theorems 4.2.4 and 4.3.7].

An (i)-peaking function is a function h ∈ A such that Ranπ(h) = {i,−i}. We

denote the collection of all (i)-peaking functions by iP(A). In particular, given a
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subset F ⊂ X define iPF (A) = {h ∈ iP(A) : h
∣∣
F
≡ i}. These types of functions

were studied extensively in [12], where it was demonstrated that iPx(A) 6= ∅ for

any x ∈ Ch(A) with x 6= τ(x).

Given an x ∈ X, define xτ = {x, τ(x)}. In particular, let Chτ (A) = {xτ :

x ∈ Ch(A)}. For F ⊂ X, define MF (A) =
{
f ∈ A : ‖f‖ = 1, |f |

∣∣
F

≡ 1
}
, and

note that iPF (A),PF (A) ⊂ MF (A). These sets are useful as they can identify

elements of Chτ (A).

Lemma 2.1. Let A ⊂ C(X, τ) be a real function algebra; let xτ ∈ Chτ (A);

and let y ∈ X. Then xτ = yτ if and only if Mxτ (A) ⊂ Myτ (A).

The proof of this lemma follows exactly as the proof of [9, Lemma 2].

2.1. Bishop’s lemma for real function algebras and its applications. A

classic result from uniform algebra theory is a result known as Bishop’s lemma

(see [1, Theorem 2.4.1]), and the conclusion of this lemma also holds for real

function algebras.

Lemma 2.2 (Bishop’s lemma for real function algebras). Let A ⊂ C(X, τ)

be a real function algebra; let F ⊂ X be a p-set for A; and let f ∈ A be such

that f 6≡ 0 on F . Then there exists an h ∈ PF (A) such that M(fh) ∩ F 6= ∅.
Proof. As f 6≡ 0 on F , there exists a k ∈ PF (AC) such that M(fk)∩F 6= ∅

[8, Lemma 3]. Set k̂ = k ◦ τ , then it is straightforward to demonstrate that

k̂ ∈ PF (AC) and h = k · k̂ ∈ PF (A). Moreover,

‖fh‖ ≤ ‖fk‖ = |f(x)k(x)| = |f(x)k(x)k̂(x)| = |f(x)h(x)| ≤ ‖fh‖

for any x ∈ M(fk) ∩ F . Therefore, M(fh) ∩ F 6= ∅. ¤

Since xτ is a p-set for A for any x ∈ Ch(A), the following improvement can

be made to Bishop’s lemma:

Lemma 2.3. Let A ⊂ C(X, τ) be a real function algebra; let x ∈ Ch(A);

and let f ∈ A. If f(x) 6= 0, then there exists an h ∈ Px(A) such that σπ(fh) =

{f(x), f(τ(x))}. If f(x) = 0, then given an ε > 0, there exists an h ∈ Px(A) such

that ‖fh‖ < ε.

Proof. Suppose that f(x) 6= 0, then Lemma 2.2 implies that there exists an

h1 ∈ Px(A) such that x ∈ M(fh1). Thus there exists an h2 ∈ Px(A) such that

M(h2) = (fh1)
−1[{f(x)}] ∪ (fh1)

−1[{f(τ(x))}]. Setting h = h1 · h2 ∈ Px(A), it

then follows that σπ(fh) = Ranπ(fh) = {f(x), f(τ(x))}.
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Now, suppose that f(x) = 0 and let ε > 0. Since {x} is a p-set for AC, there
exists a k ∈ Px(AC) such that ‖fk‖ < ε [2, Lemma 2.1]. Set k̂ = k ◦ τ ∈ Px(AC),
and let h = k · k̂ ∈ Px(A). Therefore, ‖fh‖ = ‖fkk̂‖ ≤ ‖fk‖ < ε. ¤

Using Lemma 2.3, the following result can be obtained:

Lemma 2.4. Let A ⊂ C(X, τ) be a real function algebra and let f, g ∈ A.

If ‖fh‖ ≤ ‖gh‖ for all h ∈ P(A), then |f(x)| ≤ |g(x)| for all x ∈ Ch(A).

The proof of this lemma follows exactly as that of [11, Lemma 2]. Given an

h ∈ Px(A) and a k ∈ iPx(A), it is clear that hk ∈ iPx(A), and this yields an

(i)-peaking version of Bishop’s lemma:

Corollary 2.1. Let A ⊂ C(X, τ) be a real function algebra; let x ∈ Ch(A)

be such that τ(x) 6= x; and let f ∈ A. If f(x) 6= 0, then there exists an h ∈ iPx(A)

such that σπ(fh) = {if(x),−if(τ(x))}.
It is worth noting that if τ(x) = x, then iPx(A) = ∅. Another useful

application of Bishop’s lemma is the following result, which we will use repeatedly.

Lemma 2.5. Let A ⊂ C(X, τ) be a real function algebra; let x ∈ Ch(A);

and let f ∈ A. If M(f) ∩ Ch(A) = xτ , then M(f) = xτ .

Proof. Suppose that M(f)∩Ch(A) = xτ = {x, τ(x)}. We will demonstrate

that if y ∈ M(f) and y 6∈ {x, τ(x)}, then there exists a g ∈ A such that g(y) = 1

and 0 = g(x) = ‖g‖, which is clearly a contradiction.

Indeed, suppose that y ∈ M(f) and y 6∈ xτ , then there exists an s ∈ A
such that s(y) = 1 and s(x) = 0 [6, Lemma 1.3.9]. Additionally, we can find

a peaking function q such that M(q) = f−1[{f(y)}] ∪ f−1[{f(τ(y)}]. As s is

non-zero on M(q), Lemma 2.2 implies that there exists an h ∈ PM(q)(A) such

that M(sh) ∩M(q) 6= ∅. Set g = shq, and note that g(y) = 1 and g(x) = 0. As

M(g) ⊂ M(f), it must be that M(g) ∩ Ch(A) = xτ , hence 0 = g(x) = ‖g‖. ¤

Using this lemma, we now given a criterion for Ch(A) to be a minimal bo-

undary, which is to say that no proper subset of Ch(A) is again a boundary

for A.

Lemma 2.6 (Real function algebra version of Proposition 7.1.1 [10]). Let

A ⊂ C(X, τ) be a real function algebra. Then Ch(A) is a minimal boundary for

A if and only if for each x ∈ Ch(A), there exists an f ∈ A such that M(f) = xτ .

Proof. Suppose that Ch(A) is a minimal boundary for A. Given an x ∈
Ch(A), then Ch(A)\{x, τ(x)} is not a boundary for A. Therefore there exists an

f ∈ A such that M(f) ∩ Ch(A) = xτ , and Lemma 2.5 implies that M(f) = xτ .
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For the reverse direction, suppose that for each x ∈ Ch(A) there exists an

f ∈ A such that M(f) = xτ . This implies that given any boundary B for A,

then {x, τ(x)} ⊂ B for any x ∈ Ch(A). Therefore Ch(A) ⊂ B, and it follows that

Ch(A) is a minimal boundary for A. ¤

In general, Ch(A) need not be a minimal boundary. If M(h) = xτ for

x ∈ Ch(A) and h ∈ A, then there exists a k ∈ AC such that M(k) = {x} (cf. [6,

Theorem 2.2.11]). In other words, x is a peak point for the uniform algebra AC,
and it is well-known that such points need not exist.

When Ch(A) is a minimal boundary for A, then we have the following imp-

rovement of Lemma 2.3 and Corollary 2.1:

Corollary 2.2. Let A ⊂ C(X, τ) be a real function algebra such that Ch(A)

is a minimal boundary for A; let x ∈ Ch(A); and let f ∈ A be such that f(x) 6= 0.

Then there exists an h ∈ Px(A) such that M(fh) = M(h) = xτ . Moreover, if

x 6= τ(x), then there exists a k ∈ iPx(A) such that M(fk) = M(k) = xτ .

3. Jointly norm multiplicative maps

In the study of (weakly) peripherally multiplicative mappings, the first task

is to investigate mappings that multiplicatively preserve the uniform norm (e.g.

[8, Section 3]). Four mappings T1, T2 : A → B and S1, S2 : A → A between

real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) that satisfy ‖T1(f)T2(g)‖ =

‖S1(f)S2(g)‖ for all f, g ∈ A are known as jointly norm multiplicative mappings,

and the following proposition will be proven in this section:

Proposition 3.1. Let A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) be real function al-

gebras and let T1, T2 : A → B and S1, S2 : A → A be surjective mappings such

that

‖T1(f)T2(g)‖ = ‖S1(f)S2(g)‖ (1)

for all f, g ∈ A. Then there exists a bijective mapping Ψ : Chτ (A) → Chϕ(B).
Moreover, given an x ∈ Ch(A), then |S1(f)(x)S2(g)(x)| = |T1(f)(y)T2(g)(y)| for
all f, g ∈ A and all y ∈ Ψ(xτ ).

For the remainder of this section, let T1, T2 : A → B and S1, S2 : A → A be

surjective mappings between real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, τ)

that satisfy (1). The proof of Proposition 3.1 will follow via a sequence of lemmas.

Lemma 3.1. Let f, g ∈ A and j ∈ {1, 2}. Then |Sj(f)(x)| ≤ |Sj(g)(x)| for
all x ∈ Ch(A) if and only if |Tj(f)(y)| ≤ |Tj(g)(y)| for all y ∈ Ch(B).
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This lemma follows from Lemma 2.4, and the proof is exactly as that of [9,

Lemma 7]. Given an x ∈ Ch(A), set Aj(x) = S−1
j [Mxτ (A)], where j = 1, 2.

Given h ∈ A1(x) and k ∈ A2(x), then S1(h)S2(k) ∈ Mxτ
(A). Combining this

fact with (1) implies that ‖T1(h)T2(k)‖ = ‖S1(h)S2(k)‖ = 1. Define

Axτ =
⋂

h∈A1(x), k∈A2(x)

M(T1(h)T2(k)). (2)

Lemma 3.2. Let x ∈ Ch(A). Then the set Axτ
defined by (2) is non-empty.

Proof. Let h1, . . . , hn ∈ A1(x) and k1, . . . , kn ∈ A2(x), then S1(h1) · . . . ·
S1(hn) and S2(k1) · . . . ·S2(kn) both belong to Mxτ

(A). By the surjectivity of S1

and S2, there exist h ∈ A1(x) and k ∈ A2(x) such that S1(h) = S1(h1)·. . .·S1(hn)

and S2(k) = S2(k1) · . . . · S2(kn). Then

|S1(h)(ζ)| ≤ |S1(hj)(ζ)| and |S2(k)(ζ)| ≤ |S2(kj)(ζ)|

for all ζ ∈ Ch(A) and each 1 ≤ j ≤ n, and Lemma 3.1 implies that

|T1(h)(η)| ≤ |T1(hj)(η)| and |T2(k)(η)| ≤ |T2(kj)(η)|

for all η ∈ Ch(B) and each 1 ≤ j ≤ n. As 1 = ‖S1(h)S2(k)‖ = ‖T1(h)T2(k)‖,
there exists a y ∈ Ch(B) such that |T1(h)(y)T2(k)(y)| = 1. We then have

1 = |T1(h)(y)T2(k)(y)| ≤ |T1(hj)(y)T2(kj)(y)|
≤ ‖T1(hj)T2(kj)‖ = ‖S1(hj)S2(kj)‖ = 1

for each 1 ≤ j ≤ n. This yields that y ∈ ⋂n
j=1 M(T1(hj)T2(kj)). Therefore, by

the finite intersection property, Axτ is non-empty. ¤

Since Axτ is a non-empty intersection of maximizing sets, it meets the Cho-

quet boundary (cf. [7]).

Lemma 3.3. Let x ∈ Ch(A); let y ∈ Axτ ∩ Ch(B); and let f, g ∈ A. Then

T1(f)T2(g) ∈ Myϕ(B) if and only if S1(f)S2(g) ∈ Mxτ (A).

Proof. Suppose that T1(f)T2(g) ∈ Myϕ(B). Since 1 = ‖T1(f)T2(g)‖ =

‖S1(f)S2(g)‖, it is only to show that |S1(f)(x)S2(g)(x)| = 1. If S1(f)(x)S2(g)(x)

= 0, then we can assume without loss of generality that S1(f)(x) = 0 and Lem-

ma 2.3 implies that there exists an h ∈ Px(A) such that ‖S1(f)h‖ < 1/‖S2(g)‖.
Let p1, p2 ∈ A be such that S1(p1) = S2(p2) = h, then p1 ∈ A1(x) and p2 ∈ A2(x),

hence y ∈ M(T1(p1)T2(p2)). This yields that T1(p1)T2(p2) ∈ Myϕ(B), hence

1 = ‖T1(f)T2(g)T1(p1)T2(p2)‖ ≤ ‖T1(f)T2(p2)‖ · ‖T1(p1)T2(g)‖
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= ‖S1(f)h‖ · ‖hS2(g)‖ <
1

‖S2(g)‖ · ‖S2(g)‖ = 1,

which is a contradiction. Thus S1(f)(x) 6= 0 and S2(g)(x) 6= 0, so Lemma 2.3

implies that there exist h1, h2 ∈ Px(A) such that ‖S1(f)h1‖ = |S1(f)(x)| and
‖S2(g)h2‖ = |S2(g)(x)|. Let k1, k2 ∈ A be such that S2(k1) = h1 and S1(k2) = h2,

then T1(k2)T2(k1) ∈ Myϕ
(B) and

|S1(f)(x)S2(g)(x)| = ‖S1(f)h1‖ · ‖S2(g)h2‖ = ‖T1(f)T2(k1)‖ · ‖T1(k2)T2(g)‖
≥ ‖T1(f)T2(g)T1(k2)T2(k1)‖ = 1 = ‖S1(f)S2(g)‖.

Therefore S1(f)S2(g) ∈ Mxτ (A), and the converse is proved in a similar fashion.

¤

Using this lemma, it is now shown that Axτ ∩Ch(B) is at most a doubleton.

Lemma 3.4. Let x ∈ Ch(A), and let y ∈ Axτ ∩Ch(B). Then Axτ ∩Ch(B) =
yϕ = {y, ϕ(y)}.

Proof. Since y ∈ M(T1(h)T2(k)) for any h ∈ A1(x) and k ∈ A2(x), it

follows that ϕ(y) ∈ M(T1(h)T2(k)). This implies that yϕ ⊂ Axτ ∩ Ch(B). Let

z ∈ Axτ ∩ Ch(B), and suppose that zϕ ∩ yϕ = ∅. Then there exists an open

set U such that yϕ ⊂ U and zϕ ⊂ X \ U . As yϕ = {y, ϕ(y)} is a p-set, there

exists a k ∈ Py(B) ⊂ Myϕ(B) such that M(k) ⊂ U . If h1, h2 ∈ A are such

that T1(h1) = T2(h2) = k, then T1(h1)T2(h2) = k2 ∈ Myϕ(B). Thus Lemma 3.3

implies that S1(h1)S2(h2) ∈ Mxτ (A). As z ∈ Axτ ∩ Ch(B), applying Lem-

ma 3.3 again yields that k2 = T1(h1)T2(h2) ∈ Mzϕ(B). Hence |k(z)| = 1, which

contradicts that M(k) ⊂ U . Therefore, zϕ ∩ yϕ 6= ∅. Consequently, yϕ = zϕ. ¤

In light of Lemma 3.4, we define the mapping Ψ : Chτ (A) → Chϕ(B), where
Chτ (A) = {xτ : x ∈ Ch(A)} and Chϕ(B) = {yϕ : y ∈ Ch(B)}, by

Ψ(xτ ) = Axτ ∩ Ch(B) = yϕ = {y, ϕ(y)}. (3)

Lemma 3.5. The mapping defined by (3) is a bijection.

Proof. Let xτ , zτ ∈ Chτ (A), and suppose that Ψ(xτ ) = Ψ(zτ ). Given h ∈
Mxτ (A), let k1, k2 ∈ A be such that S1(k1) = S2(k2) = h, then S1(k1)S2(k2) =

h2 ∈ Mxτ (A). Lemma 3.3 implies that T1(k1)T2(k2) ∈ MΨ(xτ )(B) = MΨ(zτ )(B).
Applying Lemma 3.3 again gives that h2 = S1(k1)S2(k2) ∈ Mzτ (A), thus h ∈
Mzτ (A). It follows that Mxτ (A) ⊂ Mzτ (A), and xτ = zτ by Lemma 2.1. The-

refore Ψ is injective.



388 Kristopher Lee

Now, let y ∈ Ch(B). Define B1(y) = T−1
1 [Myϕ

(B)], B2(y) = T−1
2 [Myϕ(B)],

and

Byϕ
=

⋂

h∈B1(y), k∈B2(y)

M(S1(h)S2(k)).

This set is non-empty, and the proof is analogous to the proof of Lemma 3.2.

As Byϕ is a non-empty intersection of maximizing sets, it meets the Choquet

boundary Ch(A), thus there exists an x ∈ Byϕ
∩ Ch(A). Given k ∈ Myϕ

(B),
let h1 ∈ B1(y) and h2 ∈ B2(y) be such that T1(h1) = T2(h2) = k. It follows

that S1(h1)S2(h2) ∈ Mxτ (A), thus Lemma 3.3 implies that k2 = T1(h1)T2(h2) ∈
MΨ(xτ )(B), hence k ∈ MΨ(xτ )(B). Therefore Myϕ

(B) ⊂ MΨ(xτ )(B), and Lem-

ma 2.1 yields that Ψ(xτ ) = yϕ. Consequently, Ψ is surjective. ¤

We now complete the proof of Proposition 3.1 with the following lemma:

Lemma 3.6. Let x ∈ Ch(A) and let y ∈ Ψ(xτ ). Then |S1(f)(x)S2(g)(x)|
= |T1(f)(y)T2(g)(y)| for all f, g ∈ A.

Proof. Let f, g ∈ A. If any of S1(f), S2(g), T1(f), or T2(g) is identically 0,

then the result follows from (1). So we assume that S1(f), S2(g), T1(f), T2(g) 6= 0.

Now, suppose that S1(f)(x)S2(g)(x) = 0, then, without loss of generality, we can

assume that S1(f)(x) = 0. Given an ε > 0, Lemma 2.3 implies that there exists

an h ∈ Px(A) ⊂ Mxτ (A) such that ‖S1(f)h‖ < ε/‖S2(g)‖. Given p1, p2 ∈ A
such that S1(p1) = S2(p2) = h, then S1(p1)S2(p2) ∈ Mxτ (A). Lemma 3.3 yields

that T1(p1)T2(p2) ∈ Myϕ(B), thus
|T1(f)(y)T2(g)(y)| = |T1(f)(y)T2(p2)(y)T1(p1)(y)T2(g)(y)|

≤ ‖T1(f)T2(p2)T1(p1)T2(g)‖ ≤ ‖T1(f)T2(p2)‖ · ‖T1(p1)T2(g)‖
= ‖S1(f)S2(p2)‖ · ‖S1(p1)S2(g)‖ = ‖S1(f)h‖ · ‖S2(g)h‖
<

ε

‖S2(g)‖ · ‖S2(g)‖ = ε.

As ε was chosen arbitrarily, T1(f)(y)T2(g)(y) = 0. A similar argument implies

that if T1(f)(y)T2(g)(y) = 0, then S1(f)(x)S2(g)(x) = 0. In either situation,

|S1(f)(x)S2(g)(x)| = |T1(f)(y)T2(g)(y)|.
Suppose that S1(f)(x)S2(g)(x) 6= 0. Then S1(f)(x) 6= 0, S2(g)(x) 6= 0, and

Lemma 2.2 implies that there exist functions h1, h2 ∈ Px(A) ⊂ Mxτ (A) such

that ‖S1(f)h1‖ = |S1(f)(x)| and ‖S2(g)h2‖ = |S2(g)(x)|. Let k1, k2 ∈ A be such

that S1(k1) = h2 and S2(k2) = h1, then S1(k1)S2(k2) ∈ Mxτ (A) and Lemma 3.3

gives that T1(k1)T2(k2) ∈ Myϕ(B). Thus
|T1(f)(y)T2(g)(y)| = |T1(f)(y)T2(k2)(y)T1(k1)(y)T2(g)(y)|
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≤ ‖T1(f)T2(k2)T1(k1)T2(g)‖ ≤ ‖T1(f)T2(k2)‖ · ‖T1(k1)T2(g)‖
= ‖S1(f)S2(k2)‖ · ‖S1(k1)S2(g)‖ = ‖S1(f)h1‖ · ‖S2(g)h2‖
= |S1(f)(x)S2(g)(x)|.

An analogous argument gives the reverse inequality. ¤

We conclude this section with the following corollary to this lemma.

Corollary 3.1. Let f, g ∈ A; let x ∈ Ch(A); and let y ∈ Ψ(xτ ). Then

x ∈ M(S1(f)S2(g)) if and only if y ∈ M(T1(f)T2(g)).

4. Jointly peripherally multiplicative maps

Suppose that T1, T2 : A → B and S1, S2 : A → A are surjective mappings

between real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) that satisfy

σπ(T1(f)T2(g)) = σπ(S1(f)S2(g)) (4)

for all f, g ∈ A. Any such foursome satisfies (1), thus Proposition 3.1 yields that

there exists a bijective mapping Ψ : Chτ (A) → Chϕ(B), and given an x ∈ Ch(A),

then |T1(f)(y)T2(g)(y)| = |S1(f)(x)S2(g)(x)| for all f, g ∈ A, and all y ∈ Ψ(xτ ).

The proof of the Main Theorem will follow from a sequence of lemmas.

Lemma 4.1. Let h, k ∈ A be such that S1(h) = S2(k) = 1. Then

T1(h)T2(k) = 1.

Proof. By (4), σπ(T1(h)T2(k)) = σπ(S1(h)S2(k)) = {1}. Given y ∈ Ch(B),
there exists an x ∈ Ch(A) such that yϕ = Ψ(xτ ). As x ∈ M(S1(h)S2(k)), Corol-

lary 3.1 implies that y ∈ M(T1(h)T2(k)), thus T1(h)(y)T2(k)(y) = 1. Therefore,

T1(h)T2(k) ≡ 1 on Ch(B), hence T1(h)T2(k) = 1. ¤

Given any pair h, k ∈ A such that S1(h) = S1(k) = 1 and any f ∈ A such

that S2(f) = 1, Lemma 4.1 implies that T1(h)T2(f) = 1 = T1(k)T2(f). This

yields that T1(h) = T1(k). A similar argument implies that T2(h) = T2(k) for any

h, k ∈ A with S2(h) = S2(k) = 1. Define the function κj ∈ B to be

κj = Tj(h), (5)

where h ∈ A is such that Sj(h) = 1, and j = 1, 2. This definition is independent

of the choice of h, and κ1 · κ2 = 1.
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Define T̃1, T̃2 : A → B by

T̃1(f) = T1(f)κ2 and T̃2(f) = κ1T2(f). (6)

It is straightforward to verify that T̃1 and T̃2 are surjective mappings, and, as

T̃1·T̃2 = T1·T2, the mappings T̃1, T̃2, S1, and S2 satisfy (4). Moreover, σπ(T̃j(f)) =

σπ(Sj(f)) for all f ∈ A and j = 1, 2, and this implies that Sj(f) ∈ P(A) if and

only if T̃j(f) ∈ P(B), where j = 1, 2. The same statement holds for the (i)-peaking

functions. Given an x ∈ Ch(A) and y ∈ Ψ(xτ ), then |T̃j(f)(y)| = |Sj(f)(x)| holds
for all f ∈ A and j = 1, 2 by Lemma 3.6. This yields Sj(h) ∈ Px(A) if and only

if T̃j(h) ∈ Py(B), where j = 1, 2.

Lemma 4.2. Let x ∈ Ch(A) and let y ∈ Ψ(xτ ). Then τ(x) = x if and only

if ϕ(y) = y.

Proof. Suppose that τ(x) = x, and let g ∈ B. If g(y) = 0, then g(y) =

g(ϕ(y)). If g(y) 6= 0, then Lemma 2.3 implies that there exists a k ∈ Py(B)
such that σπ(gk) = {g(y), g(ϕ(y))}. Let f, h ∈ A be such that T̃1(f) = g and

T̃2(h) = k, then (4) implies that σπ(S1(f)S2(h)) = {g(y), g(ϕ(y))}. As y ∈
M(T̃1(f)T̃2(h)) = M(T1(f)T2(h)), Corollary 3.1 yields that x ∈ M(S1(f)S2(h)),

hence S1(f)(x)S2(h)(x) belongs to σπ(S1(f)S2(h)) = {g(y), g(ϕ(y))}. Since τ(x)

= x, we have that S1(f)(x)S2(h)(x) is a real number, so either g(y) or g(ϕ(y)) is

real. In either case, g(y) = g(ϕ(y)). Therefore, as g was chosen arbitrarily and

as B separates points, y = ϕ(y).

A similar argument demonstrates the converse. ¤

Given x ∈ Ch(A) with τ(x) 6= x, Lemma 4.2 implies that ϕ(y) 6= y,

where y ∈ Ψ(xτ ). Consequently, both iPx(A) and iPy(B) are non-empty. Fol-

lowing an argument similar to [4, Proposition 2.8], we now demonstrate that

T̃1(h)(y)T̃2(k)(y) = −1 for any choice of h ∈ S−1
1 [iPx(A)] and k ∈ S−1

2 [iPx(A)],

where y ∈ Ψ(xτ ). This type of result is paramount in the study of spectral

preservers, especially for non-unital algebras (see [5]).

Lemma 4.3. Let x ∈ Ch(A) be such that x 6= τ(x) and let y ∈ Ψ(xτ ). Then

T̃1(h)(y)T̃2(k)(y) = −1 for all h ∈ S−1
1 [iPx(A)] and k ∈ S−1

2 [iPx(A)].

Proof. h ∈ S−1
1 [iPx(A)] and k ∈ S−1

2 [iPx(A)]. Since T̃1(h), T̃2(k) ∈ iP(B)
and |T̃1(h)(y)| = |S1(h)(x)| = 1 = |S2(k)(x)| = |T̃2(k)(y)|, it follows that

T̃1(h)(y), T̃2(k)(y) = ±i. Thus T̃1(h)(y)T̃2(k)(y) = ±1, hence T̃1(h)(y)T̃2(k)(y) =

T̃1(h)(ϕ(y))T̃2(k)(ϕ(y)). Lemma 2.3 implies that there exists a g ∈ Py(B) such

that σπ(T̃1(h)T̃2(k)g) = {T̃1(h)(y)T̃2(k)(y)}. Moreover, σπ(T̃1(h)T̃2(k)g
2) =
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{T̃1(h)(y)T̃2(k)(y)}. Let f1, f2 ∈ A be such that T̃1(f1) = T̃1(h)g and T̃2(f2) =

T̃2(k)g, then (4) yields that

σπ(S1(f1)S2(f2)) = σπ(S1(f1)S2(k)) = σπ(S1(h)S2(f2)) = {T̃1(h)(y)T̃2(k)(y)}.

As y belongs to M(T̃1(f1)T̃2(k)) and M(T̃1(h)T̃2(f2)), Corollary 3.1 implies that

x belongs to M(S1(f1)S2(k)) and M(S1(h)S2(f2)). This yields that iS1(f1)(x) ∈
σπ(S1(f1)S2(k)) and iS2(f2)(x) ∈ σπ(S1(h)S2(f2)). Hence T̃1(h)(y)T̃2(k)(y) =

iS1(f1)(x) = iS2(f2)(x), thus 1 = [T̃1(h)(y)T̃2(k)(y)]
2 = −S1(f1)(x)S2(f2)(x).

Since y ∈ M(T̃1(f1)T̃2(f2)), it must be that x ∈ M(S1(f1)S2(f2)), thus −1 ∈
σπ(S1(f1)S2(f2)). Consequently, T̃1(h)(y)T̃2(k)(y) = −1. ¤

Given x ∈ Ch(A), with x 6= τ(x), h, k ∈ S−1
1 [iPx(A)], and f ∈ S−1

2 [iPx(A)],

Lemma 4.3 implies that T̃1(h)(y)T̃2(f)(y) = −1 = T̃1(k)(y)T̃2(f)(y) for any y ∈
Ψ(xτ ), hence T̃1(h)(y) = T̃1(k)(y). As T̃1(h), T̃1(k) ∈ iP(B), it follows that there
exists a unique point y′ ∈ Ψ(xτ ) such that T̃1(h)(y

′) = i for all h ∈ S−1
1 [iPx(A)].

A similar argument implies that there exists a unique y′′ ∈ Ψ(xτ ) such that

T̃2(h)(y
′′) = i for all h ∈ S−1

2 [iPx(A)], and Lemma 4.3 implies that y′ = y′′.
Define the mapping θ : Ch(A) → Ch(B) as follows:

{θ(x)} = Ψ(xτ ) if x = τ(x),

θ(x) ∈ Ψ(xτ ) such that T̃j(h)(θ(x)) = i

for all h ∈ S−1
j [iPx(A)] (j = 1, 2) if x 6= τ(x).

(7)

The mapping θ is well defined by Lemmas 4.2 and 4.3. Moreover, θ is a

surjective mapping, since Ψ is surjective.

Lemma 4.4. Let x ∈ Ch(A); let f ∈ A; and let j ∈ {1, 2}. Then
T̃j(f)(θ(x)) = Sj(f)(x).

Proof. Fix n ∈ {1, 2} such that n 6= j. Suppose that Sj(f)(x) = 0, then

|T̃j(f)(θ(x))|= |Sj(f)(x)|=0, hence T̃j(f)(θ(x))= 0=Sj(f)(x). If Sj(f)(x) 6=0,

then Lemma 2.3 implies that there exists an h ∈ Px(A) such that σπ(Sj(f)h) =

{Sj(f)(x), Sj(f)(τ(x))}. Let g1 ∈ A be such that Sn(g1) = h, then Sn(g1) ∈
Px(A), which implies that T̃n(g1) ∈ Pθ(x)(B). Since x ∈ M(Sj(f)h), Corollary 3.1

implies that θ(x) ∈ M(T̃j(f)T̃n(g1)), thus

T̃j(f)(θ(x)) ∈ σπ(T̃j(f)T̃n(g1)) = σπ(Sj(f)Sn(g1)) = {Sj(f)(x), Sj(f)(τ(x))}.

So either T̃j(f)(θ(x)) = Sj(f)(x) or T̃j(f)(θ(x)) = Sj(f)(τ(x)).
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If τ(x) = x or Sj(f)(x) = Sj(f)(τ(x)), then T̃j(f)(θ(x)) = Sj(f)(x). Thus,

we suppose that τ(x) 6= x and Sj(f)(x) 6= Sj(f)(τ(x)). Corollary 2.1 implies that

there exists a k ∈ iPx(A) such that σπ(Sj(f)k) = {iSj(f)(x),−iSj(f)(τ(x))}.
Let g2 ∈ A be such that Sn(g2) = k. As Sn(g2) ∈ iPx(A), the definition of θ

implies that T̃n(g2) ∈ iPθ(x)(B). Moreover, since x ∈ M(Sj(f)k), it must be that

θ(x) ∈ M(T̃j(f)T̃n(g2)), hence

iT̃j(f)(θ(x)) ∈ σπ(T̃j(f)T̃n(g2)) = σπ(Sj(f)Sn(g2))

= {iSj(f)(x),−iSj(f)(τ(x))}.

Now, if T̃j(f)(θ(x)) = Sj(f)(τ(x)), then iT̃j(f)(θ(x)) = iSj(f)(τ(x)), which imp-

lies that iSj(f)(τ(x)) ∈ {iSj(f)(x),−iSj(f)(τ(x))}. This is a contradiction, so it

must be that T̃j(f)(θ(x)) = Sj(f)(x). ¤

We now have the tools necessary to prove the Main Theorem.

Main Theorem. Let X and Y be compact Hausdorff spaces; let τ : X → X

and ϕ : Y → Y be topological involutions; and let A ⊂ C(X, τ) and B ⊂ C(Y, ϕ)

be real function algebras. If T1, T2 : A → B and S1, S2 : A → A are surjective

mappings that satisfy

σπ(T1(f)T2(g)) = σπ(S1(f)S2(g))

for all f, g ∈ A, then there exists a homeomorphism ψ : Ch(B) → Ch(A) such

that (ψ◦ϕ)(y) = (τ ◦ψ)(y) for all y ∈ Ch(B), and there exists functions κ1, κ2 ∈ B
that satisfy κ−1

1 = κ2 and

Tj(f)(y) = κj(y)Sj(f)(ψ(y))

for all f ∈ A, all y ∈ Ch(B), and j = 1, 2.

Proof. Suppose that T1, T2 : A → B and S1, S2 : A → A are surjective

mappings that satisfy (4). Let κ1, κ2 ∈ B be the functions defined by (5), and

let θ : Ch(A) → Ch(B) be the mapping defined by (7). Then Lemma 4.4 implies

that Tj(f)(θ(x)) = κj(θ(x))Sj(f)(x) for all x ∈ Ch(A), for all f ∈ A, and for

j ∈ {1, 2}. We will now demonstrate that θ is a bijection, and that its formal

inverse is the homeomorphism we seek.

Indeed, let x ∈ Ch(A) and let g ∈ B. If f ∈ A is such that T̃1(f) = g, then

g(ϕ(θ(x))) = T̃1(f)(ϕ(θ(x))) = T̃1(f)(θ(x)) = S1(f)(x)

= S1(f)(τ(x)) = T̃1(f)(θ(τ(x))) = g(θ(τ(x))).
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Since g was arbitrary and B separates points, it follows that ϕ(θ(x)) = θ(τ(x)).

Now, suppose that θ(x) = θ(x′) for x, x′ ∈ Ch(A), and let f ∈ A. If g ∈ A is

such that f = S1(g), then

f(x) = S1(g)(x) = T̃1(g)(θ(x)) = T̃1(g)(θ(x
′)) = S1(g)(x

′) = f(x′).

As A separates points, it follows that x = x′. This implies that θ is injective,

hence θ is a bijection.

Let ψ = θ−1, then ψ : Ch(B) → Ch(A) satisfies (ψ ◦ ϕ)(y) = (τ ◦ ψ)(y) for

all y ∈ Ch(B) and Tj(f)(y) = κj(y)Sj(f)(ψ(y)) for all f ∈ A, all y ∈ Ch(B), and
j = 1, 2. It only to show that ψ and θ are continuous. Let x ∈ Ch(A) and let

{xλ}λ∈Λ ⊂ Ch(A) be a net such that xλ → x. If g ∈ B and f ∈ A are such that

T1(f) = g, then

g(θ(xλ)) = T1(f)(θ(xλ)) = S1(f)(xλ) → S1(f)(x) = T1(f)(θ(x)) = g(θ(x))

As B separates points, the topology on Y coincides with the weak topology gene-

rated by B (see [10, Lemma 1, p. 3]). Since g(θ(xλ)) → g(θ(x)) for all g ∈ B, it
follows that θ(xλ) → θ(x). Therefore, θ is continuous, and an analogous argument

yields that ψ is continuous. ¤

5. Jointly weakly peripherally multiplicative maps

Throughout this section, T1, T2 : A → B and S1, S2 : A → A are surjective

mappings between real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, ϕ) that

satisfy

σπ(T1(f)T2(g)) ∩ σπ(S1(f)S2(g)) 6= ∅ (8)

for all f, g ∈ A. Any such four mappings satisfy (1), thus Proposition 3.1 yields

that there exists a bijective mapping Ψ : Chτ (A) → Chϕ(B), and given an x ∈
Ch(A), then |T1(f)(y)T2(g)(y)| = |S1(f)(x)S2(g)(x)| for all f, g ∈ A, and all

y ∈ Ψ(xτ ).

Lemma 5.1. Let f, g ∈ A and let x ∈ Ch(A). Then M(S1(f)S2(g)) = xτ =

{x, τ(x)} if and only if M(T1(f)T2(g)) = Ψ(xτ ), in which case σπ(S1(f)S2(g)) =

σπ(T1(f)T2(g)).

Proof. Since M(S1(f)S2(g)) = xτ if and only if M(T1(f)T2(g))∩Ch(B) =
Ψ(xτ ), Lemma 2.5 implies thatM(S1(f)S2(g)) = xτ if and onlyM(T1(f)T2(g)) =

Ψ(xτ ). In this case, σπ(S1(f)S2(g)) = {λ, λ}, where λ = S1(f)(x)S2(g)(x). Since
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M(T1(f)T2(g)) = Ψ(xτ ), the set σπ(T1(f)T2(g)) is at most a doubleton. By (8),

either λ ∈ σπ(T1(f)T2(g)) or λ ∈ σπ(T1(f)T2(g)). As σπ(T1(f)T2(g)) is closed

under conjugation, it follows that σπ(T1(f)T2(g)) = {λ, λ} = σπ(S1(f)S2(g)). ¤

An immediate consequence of this lemma and Lemma 2.6 is that Ch(A) is a

minimal boundary for A if and only if Ch(B) is a minimal boundary for B. Thus
for the remainder of this section, we will assume that either Ch(A) or Ch(B) is a
minimal boundary for its respective algebra.

Given f, g ∈ A and x ∈ Ch(A), Lemma 5.1 implies that that S1(f)S2(g) ∈
P(A) withM(S1(f)S2(g)) = xτ = {x, τ(x)} if and only if T1(f)T2(g) ∈ P(B) with
M(T1(f)T2(g)) = Ψ(xτ ). The same result holds if P(A) and P(B) are replaced

with iP(A) and iP(B). Additionally, if T1(f), T2(g) ∈ iPy(B), where y ∈ Ψ(xτ ),

are such that M(T1(f)T2(g)) = Ψ(xτ ), then σπ(S1(f)S2(g)) = σπ(T1(f)T2(g)) =

{−1} and M(S1(f)S2(g)) = xτ . An equivalent result holds for S1(f), S2(g) ∈
iPx(A). Moreover, we have the following lemma:

Lemma 5.2. Let h1, h2, k1, k2 ∈A; let y ∈ Ch(B) be such that ϕ(y) 6= y;

and let x ∈ Ch(A) be such that Ψ(xτ ) = yϕ. If T1(h1), T2(h2) ∈ Py(B) and

T1(k1), T2(k2)∈ iPy(B) with M(T1(h1))=M(T2(h2))=M(T1(k1))=M(T2(k2)) =

yϕ, then there exists an x0 ∈ xτ such that S1(k1)S2(h2) and S1(h1)S2(k2) belong

to iPx0(A).

Proof. Suppose that T1(h1), T2(h2) ∈ Py(B) and T1(k1), T2(k2) ∈ iPy(B)
and that M(T1(h1)) = M(T2(h2)) = M(T1(k1)) = M(T2(k2)) = yϕ. Since

both T1(h1)T2(k2) and T1(k1)T2(h2) belong to iPy(B) with M(T1(h1)T2(k2)) =

M(T1(k1)T2(h2)) = yϕ, it follows that S1(k1)S2(h2) and S1(h1)S2(k2) belong to

iP(A). Moreover, S1(h1)S2(h2) ∈ Px(A) and σπ(S1(k1)S2(k2)) = {−1}, thus

[S1(k1)(x)S2(h2)(x)] · [S1(h1)(x)S2(k2)(x)]

= [S1(h1)(x)S2(h2)(x)] · [S1(k1)(x)S2(k2)(x)] = (1) · (−1) = −1.

It follows that S1(k1)(x)S2(h2)(x) = S1(h1)(x)S2(k2)(x) = ±i. Therefore there

exists an x0 ∈ xτ such that S1(k1)S2(h2), S1(h1)S2(k2) ∈ iPx0(A). ¤

We note that the analogous lemma, where x ∈ Ch(A) is such that τ(x) 6= x

and the functions h1, h2, k1, and k2 satisfy S1(h1), S2(h2) ∈ Px(A) and S1(k1),

S2(k2) ∈ iPx(B) with M(S1(h1)) = M(S2(h2)) = M(S1(k1)) = M(S2(k2)) = xτ ,

is also true and proven similarly.

Using these facts, we now prove the main result of this section: any jointly

weakly peripherally multiplicative foursome of mappings is jointly peripherally

multiplicative, assuming either Ch(A) or Ch(B) is minimal.
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Lemma 5.3. The mappings S1, S2, T1, and T2 satisfy (4).

Proof. Let f, g ∈A and let λ∈σπ(T1(f)T2(g)). If λ=0, then T1(f)T2(g)= 0,

and it follows that σπ(S1(f)S2(g)) = {0} = σπ(T1(f)T2(g)).

Suppose that λ 6= 0, then there exists a y0 ∈ M(T1(f)T2(g)) such that λ =

T1(f)(y0)T2(g)(y0). In fact, we may choose y0 ∈ Ch(B), since there exists a peak-

ing function q ∈P(A) such thatM(q)= (T1(f)T2(g))
−1[{λ}]∪(T1(f)T2(g))

−1[{λ}]
and M(q) ∩ Ch(B) 6= ∅.

Now, let x ∈ Ch(A) be such that Ψ(xτ ) = {y0, ϕ(y0)}, then it follows that

x ∈ M(S1(f)S2(g)), hence S1(f)(x)S2(g)(x) ∈ σπ(S1(f)S2(g)). We claim that

S1(f)(x)S2(g)(x) is equal to either λ or λ.

Set α = T1(f)(y0) 6= 0 and β = T2(g)(y0) 6= 0. Then Corollary 2.2 implies

that there exist h1, h2 ∈ A such that T1(h1), T2(h2) ∈ Py0(B) and

M(T1(h1)) = M(T2(h2)) = M(T1(f)T2(h2)) = M(T2(g)T1(h1)) = {y0, ϕ(y0)}.

As T1(h1)T2(h2) ∈ Py0(B) with M(T1(h1)T2(h2)) = {y0, ϕ(y0)}, we have that

S1(h1)S2(h2) ∈ Px(A) with M(S1(h1)S2(h2)) = xτ . Additionally, Lemma 5.1

implies that

M(S1(f)S2(h2)) = M(S1(h1)S2(g)) = xτ ,

σπ(S1(f)S2(h2)) = σπ(T1(f)T2(h2)) = {α, α}, and

σπ(S1(h1)S2(g)) = σπ(T1(h1)T2(g)) = {β, β}.

This yields that S1(f)(x)S2(h2)(x) is equal to either α or α and S1(h1)(x)S2(g)(x)

is equal to either β or β. As,

S1(f)(x)S2(g)(x) = [S1(f)(x)S2(h2)(x)] · [S1(h1)(x)S2(g)(x)],

it follows that S1(f)(x)S2(g)(x) is equal to αβ, αβ, αβ, or αβ.

If y0 = ϕ(y0), then α = α and β = β, which yields that S1(f)(x)S2(g)(x) is

equal to either λ = αβ or λ = αβ. Now, suppose that y0 6= ϕ(y0). Corollary 2.2

implies that there exist k1, k2 ∈ A such that T1(k1), T2(k2) ∈ iPy0(B) and

M(T1(k1)) = M(T2(k2)) = M(T1(f)T2(k2)) = M(T2(g)T1(k1)) = {y0, ϕ(y0)}.

Moreover, Lemma 5.1 yields that

M(S1(f)S2(k2)) = M(S1(k1)S2(g)) = xτ ,

σπ(S1(f)S2(k2)) = σπ(T1(f)T2(k2)) = {iα,−iα}, and

σπ(S1(k1)S2(g)) = σπ(T1(k1)T2(g)) = {iβ,−iβ}.
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By Lemma 5.2, there exists an x0 ∈ xτ such that S1(h1)S2(k2) and S1(k1)S2(h2)

belong to iPx0(A). Note that S1(f)(x0)S2(h2)(x0) = α or S1(f)(x0)S2(h2)(x0) =

α. In the latter case,

iS1(f)(x0) = S1(f)(x0)S1(k1)(x0)S2(h2)(x0) = αS1(k1)(x0).

As σπ(T1(k1)T2(k2)) = {−1}, it follows that S1(k1)(x0)S2(k2)(x0) = −1, hence

−α = iS1(f)(x0)S2(k2)(x0). This implies that

iα = S1(f)(x0)S2(k2)(x0) ∈ σπ(S1(k1)S2(g)) = {iα,−iα},

which yields that α = α. Consequently, it must be that S1(f)(x0)S2(h2)(x0) = α,

and a similar argument implies that S1(h1)(x0)S2(g)(x0) = β. If x = x0, then

S1(f)(x)S2(g)(x) = λ. Likewise, if τ(x) = x0, then S1(f)(x)S2(g)(x) = λ.

As S1(f)(x)S2(g)(x) ∈ σπ(S1(f)S2(g)), it must be that λ ∈ σπ(S1(f)S2(g)).

Therefore, σπ(T1(f)T2(g)) ⊂ σπ(S1(f)S2(g)), and the reverse inclusion is proven

similarly. ¤

Under the assumption that at least one of the Choquet boundaries is a mi-

nimal boundary for its respective algebra, any foursome of mappings that satisfy

(8) automatically satisfy (4). Therefore, we can apply the Main Theorem and

arrive at the following corollary:

Corollary 5.1. Let X and Y be compact Hausdorff spaces; let τ : X → X

and ϕ : Y → Y be topological involutions; and let A ⊂ C(X, τ) and B ⊂ C(Y, ϕ)

be real function algebras. If either Ch(A) is a minimal boundary for A or Ch(B)
is a minimal boundary for B and T1, T2 : A → B and S1, S2 : A → A are surjective

mappings that satisfy

σπ(T1(f)T2(g)) ∩ σπ(S1(f)S2(g)) 6= ∅

for all f, g ∈ A, then there exists a homeomorphism ψ : Ch(B) → Ch(A) such

that (ψ ◦ϕ)(y) = (τ ◦ψ)(y) for all y ∈ Ch(B), and there exist functions κ1, κ2 ∈ B
that satisfy κ−1

1 = κ2 and

Tj(f)(y) = κj(y)Sj(f)(ψ(y))

for all f ∈ A, all y ∈ Ch(B), and j = 1, 2.
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