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On the Moore–Penrose inverse of a closed linear relation

By TERESA ÁLVAREZ (Oviedo)

Abstract. For a closed multivalued linear operator T between complex Hilbert

spaces the concept of Moore–Penrose inverse of T , denoted T †, is introduced and studied.

We prove that if y ∈ D(T †), then T †y is the least square solution of minimal norm of

the relation equation y ∈ Tx. We also approximate T † by a sequence of bounded finite

rank operators. Such results generalize the existing results to the case of densely defined

closed operators.

1. Introduction

This paper is devoted to solve the relation equation y ∈ Tx where T is a

closed multivalued linear operator between complex Hilbert spaces H1 and H2

and y is a given element in H2.

In the last years, several authors (see, for instance [1], [6], [8], [10], [14], [15]

and the references therein) have paid attention to study this equation when T is

a densely defined closed operator. In such case, the Moore–Penrose inverse of T

has proved helpful when the operator equation does not have a solution and we

look for the least square (best approximate) solutions instead. It is well known

the following result:

(∗) Let T be a densely defined closed operator from H1 to H2 and T † stands

for the Moore–Penrose inverse of T . For every y ∈ D(T †), let L(y) the set of all

least square solutions of the equation y = Tx. Then T †y ∈ L(y) and ∥T †y∥ ≤ ∥x∥
for all x ∈ L(y).
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We remark that the properties of the adjoint of T play a crucial role in the

proof of the previous properties of T †. On the other hand, we can observe that

for a densely defined closed operator, computing its Moore–Penrose inverse may

be difficult. In a recent paper [7], Kulkarni and Ramesh proved the following

result:

(∗∗) Let T be a densely defined closed operator from H1 to H2. For each

n ∈ N, there exists a bounded finite rank operator Tn such that limn→∞ T †
ny = T †y

for all y ∈ D(T †).

This approximation of T † is very interesting since reduces the infinite dimen-

sional problem (operator equation) to a sequence of finite dimensional operator

equations (matrix equations) which can be solved with the help of the known

techniques of the finite dimensional case (see, for instance, [9], [11], [12], [13]).

The important point here is to note that as remarked by Kulkarni and

Ramesh [7], a large number of problems which arise naturally in applications of

Quantum Mechanics and Partial Differential equations can be modeled by equa-

tions governed by non densely defined operators. The adjoints of such operators

are multivalued linear operators. Hence, it would be useful if the results men-

tioned above could be extended to the case of closed multivalued linear operators

not necessarily densely defined. This is the main purpose of this paper which is

organized as follows: The Section 2 contains basic notions and results concern-

ing multivalued linear operators in Hilbert spaces which will be frequently used

throughout the remaining part of the paper. In the third section we introduce

the notion of Moore–Penrose inverse of a closed multivalued linear operator and

discuss some of its properties. In Section 4 we apply the results proved in the

previous sections to obtain an approximation of Moore–Penrose inverse of a closed

multivalued linear operator by a sequence of bounded finite rank operators which

generalizes the above result (**).

2. Notations and preliminaries

In this section we set up notations and state some of the definitions and

results which will be needed in the sequel.

Let H,H1,H2, . . . denote infinite dimensional complex Hilbert spaces. The

inner product and the induced norm are denoted respectively by ⟨, ⟩ and ∥.∥.
If M is a closed subspace of H, then PM is the orthogonal projection onto

M and M⊥ is the orthogonal complement of M in H. For subspaces M1 and M2

of H, the orthogonal direct sum is denoted by M1 ⊕M2.
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A multivalued linear operator or linear relation from H1 to H2 is a mapping

T from a subspace D(T ) ⊂ H1, called the domain of T , into the collection of

nonempty subsets of H2 such that T (αx1 + βx2) = αTx1 + βTx2 for all nonzero

α, β scalars and x1, x2 ∈ D(T ). If T maps the points of its domain to singletons,

then T is said to be a single valued or simply an operator. The linear relation T

is uniquely determined by its graph, G(T ), which is defined by G(T ) := {(x, y) ∈
H1 ×H2 : x ∈ D(T ), y ∈ Tx}, so that in the following T will be identified with

its graph. The inverse of T is defined by T−1 := {(y, x) : (x, y) ∈ G(T )}. The

subsets T (0), N(T ) := T−1(0) and R(T ) := T (D(T )) are subspaces and if M

is a subspace of H1 such that D(T ) ∩ M ̸= ∅, then T |D(T )∩M is defined by

T |D(T )∩M := {(x, y) : x ∈ D(T ) ∩M, (x, y) ∈ T}.
For linear relations T1 and T2 from H1 to H2, the sum T1 + T2 is the linear

relation defined by T1+T2 := {(x, y+z) : (x, y) ∈ T1, (x, z) ∈ T2} and the notation

T1 ⊂ T2 means thatG(T1) ⊂ G(T2). Let T and S be linear relations fromH1 toH2

and from H2 to H3 respectively. Then the product ST is the linear relation from

H1 to H3 defined by G(ST ) := {(x, z) : (x, y) ∈ T, (y, z) ∈ S for some y ∈ H2}.
Let now T be a linear relation from H to H and let λ ∈ K, then λ− T := λI − T

where I is the identity operator in H, so that λ− T := {(x, λx− y) : (x, y) ∈ T}.
Let T be a linear relation from H1 to H2. Then y ∈ Tx if and only if

Tx = y + T (0); in particular x ∈ N(T ) if and only if Tx = T (0). Moreover, T is

single valued if and only if T (0) = {0}, so that PT (0)⊥T is an operator and thus

we say that T is continuous if PT (0)⊥T is continuous, bounded if T is continuous

with D(T ) = H1, finite rank if dimR(T ) < ∞ and T is called closed if its graph

is a closed subspace of H1 ⊕H2. We note that if T is closed so is its inverse and

the subspaces T (0) and N(T ) are closed subspaces and further we have a Closed

Graph theorem, that is, T is bounded if T is closed and everywhere defined.

The adjoint of T is the closed linear relation T ∗ from H2 to H1 defined by

T ∗ := {(u, v) ∈ H2 ×H1 : ⟨u, y⟩ = ⟨v, x⟩ for all (x, y) ∈ T}.

We note that (T ∗)−1 = (T−1)∗ and that T ∗∗ coincides with T where T is the

linear relation whose graph is the closure of G(T ); in particular T = T ∗∗ if T is

closed.

By direct computation we obtain the following properties concerning the

behaviour of the adjoint in sums and products:

Let S and T be linear relations from H1 to H2 and let R be a linear relation

from H2 to H3. Then

S∗ + T ∗ ⊂ (S + T )∗ with equality if S is a bounded operator.

S∗R∗ ⊂ (RS)∗ with equality if R is a bounded operator.
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In the sequel, CR(H1,H2) stands for the class of all closed linear relations

from H1 to H2.

Assume now that T ∈ CR(H1, H2). The following properties are straightfor-

ward:

R(T ) is closed if and only if R(T ∗) is closed.

T ∗T (0) = T ∗(0) = D(T )⊥, T ∗(0)⊥ = D(T ), N(TT ∗) = N(T ∗) = R(T )⊥ and

N(T ∗)⊥ = R(T ) = R(TT ∗).

The orthogonal decomposition H2 = T (0)⊕T (0)⊥ together with the equality

T (0)⊥ = D(T ∗) shows that ⟨u, v⟩ = 0 for all u ∈ D(T ∗), v ∈ T (0) and since y ∈ Tx

if and only if Tx = y + T (0) we infer that

for any y ∈ Tx, ⟨u, y⟩ = ⟨u, PT (0)⊥Tx⟩.

This last assertion suggests the following notion.

Definition 2.1. Let T ∈ CR(H1,H2). Then

⟨u, Tx⟩ := ⟨u, PT (0)⊥Tx⟩ for all u ∈ D(T ∗), x ∈ D(T ).

Lemma 2.2. Let T ∈ CR(H1,H2). We have:

(i) ⟨u, Tx⟩ = ⟨T ∗u, x⟩ for all u ∈ D(T ∗), x ∈ D(T ).

(ii) If A is a subspace of D(T ), then

(TA)⊥ ∩D(T ∗) = (T ∗)−1(A⊥).

Proof. (i) Take u ∈ D(T ∗) and x ∈ D(T ). Then u ∈ T (0)⊥, so that u =

PT (0)⊥u and since (PT (0)⊥T )
∗ = T ∗PT (0)⊥ it follows from the above definition

that

⟨u, Tx⟩ = ⟨u, PT (0)⊥Tx⟩ = ⟨T ∗PT (0)⊥u, x⟩ = ⟨T ∗u, x⟩.

Hence (i) holds.

(ii) Let z ∈ (TA)⊥∩D(T ∗), so that z ∈ T (0)⊥ and for any y ∈ TA, 0 = ⟨z, y⟩.
Hence if a ∈ A and y ∈ Ta we infer from (i) that 0 = ⟨z, Ta⟩ = ⟨T ∗z, a⟩ which

implies that T ∗z ∈ A⊥. Therefore z ∈ (T ∗)−1T ∗z ⊂ (T ∗)−1(A⊥) whence z ∈
(TA)⊥ ∩D(T ∗). For the reverse inclusion, suppose that z ∈ (T ∗)−1(A⊥). Then

z ∈ R((T ∗)−1) = D(T ∗) and z ∈ (T ∗)−1b for some b ∈ A⊥. One may conclude

from this and (i) that 0 = ⟨T ∗z, c⟩ = ⟨z, T c⟩ for any c ∈ A⊥ which implies that

z ∈ (TA)⊥, as desired. �

We recall that a linear relation T from H to H is called selfadjoint if T = T ∗.

We close this section by the following useful proposition.
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Proposition 2.3. Let T ∈ CR(H1,H2). Then

(i) The products T ∗T and TT ∗ are selfadjoint linear relations in H1 and H2

respectively.

(ii) ∆T := (I + T ∗T )−1 and ∆T∗ := (I + TT ∗)−1 are bounded operators in H1

and H2 respectively. Moreover, N(∆T ) = T ∗(0) and N(∆T∗) = T (0).

(iii) T∆T is a bounded linear relation with (PT (0)⊥T∆T )
∗ = PT∗(0)⊥T

∗∆T∗ .

Moreover, ∆T∗T is an operator satisfying ∆T∗T ⊂ T∆T and ∆T∗T =

PT (0)⊥T∆T |D(T ).

(iv) I −∆T = PT∗(0) + PT∗(0)⊥T
∗T∆T = PT∗ + PT∗(0)⊥T

∗PT (0)⊥T∆T and

R(I −∆T ) = R(T ∗T ).

(v) ∆T∗N(TT ∗) = N(TT ∗) and ∆T∗R(T ) = R(T ) ∩ T (0)⊥.

Proof. (i) and (ii) The proofs are along the lines of the proofs of the anal-

ogous results provided in [3, Proposition 2.1 and Corollary 2.5] for the case when

H1 = H2.

(iii) As in [3, Proposition 2.1 and Corollary 2.2] we can prove that T∆T is a

bounded linear relation and (PT (0)⊥T∆T )
∗ = PT∗(0)⊥T

∗∆T∗ .

To see that ∆T∗T is single valued, let z ∈ ∆T∗T (0). Then there exists x ∈ H2

such that z = ∆T∗x and (0, x) ∈ T which implies that (0, x) ∈ TT ∗ and (z, x) ∈
∆−1

T∗ := I+TT ∗. Hence (0, x) and (z, x−z) belong to TT ∗, so that (z,−z) ∈ TT ∗.

This leads to (z, y) ∈ T ∗ and (y,−z) ∈ T for some y ∈ H1 and thus according to

the definition of T ∗ we infer that −∥z∥2 = ∥y∥2 and hence z = 0. Consequently

∆T∗T (0) = {0}, that is, ∆T∗T is single valued, as desired.

Next, we verify that ∆T∗T ⊂ T∆T . Let (x, z) ∈ ∆T∗T . Then there is y ∈ H2

for which (x, y) ∈ T and (y, z) ∈ ∆T∗ , so that (z, y−z) ∈ TT ∗ which implies that

(z, u) ∈ T ∗ and (u, y − z) ∈ T for some u ∈ H1. In consequence, (x − u, z) ∈ T

and since (z, u) ∈ T ∗, it follows that (x − u, u) ∈ T ∗T and hence (x − u, x) ∈
I+T ∗T . This last equality together with the fact that (x−u, z) ∈ T ensures that

(x, z) ∈ T∆T , as desired. Hence ∆T∗T ⊂ T∆T . This last inclusion implies that

PT (0)⊥∆T∗T ⊂ PT (0)⊥T∆T and noting that if x ∈ D(T ) then ∆T∗Tx ∈ D(T ∗) ⊂
T (0)⊥ we conclude that ∆T∗T = PT (0)⊥T∆T |D(T ).

(iv) By the part (iii) T∆T is everywhere defined and since T ∗T (0) = T ∗(0)

we obtain that PT∗(0)⊥T
∗T∆T is an everywhere defined operator. Furthermore,

according to the definitions, I −∆T ⊂ T ∗T∆T , so that

PT∗(0)⊥(I −∆T ) ⊂ PT∗(0)⊥T
∗T∆T

and since both linear relations are everywhere defined operators we have the
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equality. Therefore

PT∗(0)⊥(I −∆T ) = PT∗(0)⊥T
∗T∆T ,

so that,

I −∆T = PT∗(0) + PT∗(0)⊥T
∗T∆T .

Finally, it is clear that PT∗(0)⊥T
∗PT (0)⊥T∆T ⊂ PT∗(0)⊥T

∗T∆T and since

both operators have the same domain we have the equality. This completes the

first part of (iv) and that R(I−∆T ) = R(T ∗T ) follows easily from the definitions.

(v) Using the definitions and the facts TT ∗ is selfadjoint and R(TT ∗) =

R(I −∆T∗) proved in (i) and (iv) we deduce that ∆T∗N(TT ∗) = N(TT ∗). This

equality combined with the equalities H2 = N(TT ∗) ⊕ N(TT ∗)⊥ = N(TT ∗) ⊕
R(TT ∗) = N(TT ∗)⊕R(T ) gives

R(∆T∗) = N(TT ∗)⊕∆T∗R(T )

But

R(∆T∗) = D(TT ∗) = N(TT ∗)⊕ (D(TT ∗) ∩N(TT ∗)⊥).

From this we can conclude that

∆T∗R(T ) = D(TT ∗) ∩N(TT ∗)⊥

and as

D(TT ∗) ∩N(TT ∗)⊥ = D(TT ∗) ∩N(TT ∗)⊥ = TT ∗(0)⊥ ∩N(TT ∗)⊥

= T (0)⊥ ∩N(T ∗)⊥ = T (0)⊥ ∩R(T )

we infer that

∆T∗R(T ) = T (0)⊥ ∩R(T ).

This proves (v). �

3. Moore–Penrose inverse of a closed linear relation

This section is devoted to establish some properties of the linear relation T †

which is defined below.

Let us first recall some facts about densely defined closed operators in Hilbert

spaces.

Proposition 3.1. Let T be a densely defined closed operator from H1 to

H2. Then there exists a unique, densely defined closed operator T † from H2 to

H1 with domain D(T †) = R(T )⊕R(T )⊥ having the following properties:
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(i) TT †y = P
R(T )

y, for all y ∈ D(T †).

(ii) T †Tx = PN(T⊥x, for all x ∈ D(T ).

(iii) N(T †) = R(T )⊥.

The above Proposition is proved in [1], where the operator T † is called the

Moore–Penrose inverse of T .

Definition 3.2. The Moore–Penrose inverse of T ∈ CR(H1, H2) is the linear

relation
T † := PN(T )⊥T

−1PN(T∗)⊥ .

Proposition 3.3. Let T ∈ CR(H1,H2). Then

(i) T † is single valued with D(T †) = R(T )⊕R(T )⊥, N(T †) = T (0)⊕R(T )⊥ and

R(T †) ⊂ D(T ) ∩N(T )⊥.

(ii) TT † = TT−1PN(T∗)⊥ .

(iii) T †T is single valued with

G(T †T ) = {(x, PN(T )⊥x) : x ∈ D(T )}.

Proof. (i) Let x ∈ T †(0), so that (0, x) = (b, PN(T )⊥a) for some (a, b) ∈ T .

Hence b = 0 and x = PN(T )⊥a. Consequently, a ∈ N(T ) and x = PN(T )⊥a = 0

which ensures that T †(0) = {0}, that is, T † is an operator.

To establish that D(T †) = R(T ) ⊕ R(T )⊥ and N(T †) = T (0) ⊕ R(T )⊥ it is

enough to observe that

D(T †) := {y ∈ D(PN(T∗)⊥)=H2 : PN(T∗)⊥y ∈D(PN(T )⊥T
−1)=D(T−1) = R(T )}

N(T †) = P−1
N(T∗)⊥

TN(PN(T )⊥) = P−1
N(T∗)⊥

TT−1(0) = P−1
N(T∗)⊥

T (0)

and

H2 = N(T ∗)⊕N(T ∗)⊥ = R(T )⊥ ⊕R(T ).

(ii) It follows from T † ⊂ T−1PN(T∗)⊥ that TT † ⊂ TT−1PN(T∗)⊥ . To

prove the converse inclusion, let (x, y) ∈ TT−1PN(T∗)⊥ , so that (z, y) ∈ T and

(PN(T∗)⊥x, z) ∈ T−1 for some z ∈ H1. Decompose z = z1 + z2 with z1 ∈ N(T )⊥

and z2 ∈ N(T ). Then

(PN(T∗)⊥x, z1) = (PN(T∗)⊥x, z)− (0, z2) ∈ T−1

and

(z1, y) = (z, y)− (z2, 0) ∈ T.

.
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Since z1 ∈ N(T )⊥ it follows that (x, z1) ∈ T †, so that (x, y) ∈ TT †. Therefore

TT−1PN(T∗)⊥ ⊂ TT †, as required.

(iii) We note the following chain of equalities:

T †T (0) = PN(T )⊥T
−1PN(T∗)⊥T (0) = PN(T )⊥T

−1P
R(T )

T (0)

= PN(T )⊥T
−1T (0) = PN(T )⊥T

−1(0) = PN(T )⊥N(T ) = {0}.

Hence T †T (0) = {0} which shows that T †T is single valued.

Let now (a, b) ∈ T †T , so that (a, c) ∈ T and b = T †c for some c ∈ H2. Then,

according to the definition of T † one has b = PN(T )⊥d for some d ∈ H1 such that

(d, PN(T∗)⊥c) ∈ T . One may conclude from this and the fact that c = PN(T∗)⊥c

that (a − d, 0) ∈ T , that is, a − d ∈ N(T ) which proves that PN(T )⊥a = b and

thus (iii) follows. �

As a consequence of the previous result we get the following corollary which

shows that our definition of T † coincides with the standard definition for densely

defined closed operators considered in Proposition 3.1.

Corollary 3.4. If T is a densely defined closed operator from H1 to H2,

then its Moore–Penrose inverse has the following properties:

(i) D(T †) = R(T )⊕R(T )⊥ and N(T †) = R(T )⊥.

(ii) TT †y = P
R(T )

y for all y ∈ D(T †).

(iii) T †Tx = PN(T )⊥x for all x ∈ D(T ).

Proof. By virtue of Proposition 3.3 it only remains to establish that TT †y =

P
R(T )

y for all y ∈ D(T †). Let y ∈ D(T †). Then y = u + v with u ∈ R(T ) ⊂
N(T ∗)⊥ and v ∈ R(T )⊥ = N(T ∗). Let x ∈ D(T ) such that Tx = u. Then TT †y =

TT−1PN(T∗)⊥y (by the condition (ii) of Proposition 3.3) = TT−1PN(T∗)⊥u +

TT−1PN(T∗)⊥v = TT−1Tx = Tx = u = P
R(T )

u + P
R(T )

v = P
R(T )

y. This com-

pletes the proof. �

A different notion of Moore–Penrose inverse of T ∈ CR(H1,H2) is introduced

in [4], as follows:

Definition 3.5. Let T∈CR(H1,H2). The linear relation (T−1)s:=PN(T )⊥T
−1

is called a generalized inverse or Moore–Penrose inverse of T .

Note that the above definition of Moore–Penrose inverse of T coincides with

our definition when R(T ) is a dense subspace of H2.

We recall the notion of a least square solution of the operator equation

y = Tx.
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Definition 3.6. Let T be a densely defined closed operator from H1 to H2.

For every y ∈ D(T †), let

L(y) := {x ∈ D(T ) : ∥Tx− y∥ ≤ ∥Tu− y∥ for all u ∈ D(T )}.

Any u ∈ L(y) is called a least square solution of the operator equation

Tx = y.

For a deeper discussion on the notions of Moore–Penrose inverse of T and

the set of least square solutions of the operator equation Tx = y when T is a

densely defined closed operator between Hilbert spaces we refer to [1].

The above concept of least square solution of the operator equation Tx = y

can be naturally generalized for the case when T is a closed multivalued linear

operator not necessarily densely defined.

Definition 3.7. Let T ∈ CR(H1,H2) and let y ∈ H2. We say that u ∈ H1 is a

least square solution of the relation y ∈ Tx if u ∈ D(T ) and d(y,R(T )) = ∥y − z∥
for some z ∈ Tu, where d(y,R(T )) is the distance between y and R(T ).

Note that if such a z exists, then it is unique. Of course, u need not be

unique.

We now state the first main result of this paper.

Theorem 3.8. Let T ∈ CR(H1,H2) and let y ∈ H2. We have:

(i) An element u ∈ H1 is a least square solution of the relation y ∈ Tx if and

only if u ∈ D(T ) and y ∈ Tu+N(T ∗).

(ii) If y ∈ D(T †), then T †y is a least square solution of y ∈ Tx.

(iii) If u ∈ H1 is a least square solution of y ∈ Tx, then u ∈ T †y +N(T ).

(iv) ∥T †y∥ ≤ ∥u ∥ for all least square solution u of y ∈ Tx. Moreover, if u is a

least square solution of y ∈ Tx with ∥ u ∥≤∥ T †y ∥, then u = T †y.

Proof. (i) Let u ∈ H1 be a least square solution of y ∈ Tx. Then u ∈ D(T )

and there exists z ∈ Tu for which ∥ y − z ∥= d(y,R(T )).

∥PR(T )⊥y∥2 = d(y,R(T ))2 = ∥y − z∥2 = ∥P
R(T )

y − z∥2 + ∥PR(T )⊥y∥2

which implies that P
R(T )

y = z. Therefore y = z + PN(T∗)y ∈ Tu+N(T ∗).

Conversely, assume that u ∈ D(T ) and that y = a+ b for some a ∈ Tu and

b ∈ N(T ∗). Then

d(y,R(T )) = ∥PR(T )⊥y∥ = ∥PR(T )⊥a+ PR(T )⊥b∥ = ∥b∥ := ∥y − a∥.
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(ii) Let y ∈D(T †). According to Proposition 3.3 we have that y=PN(T∗)⊥y+

PN(T∗)y ∈ TT−1PN(T∗)⊥y + PN(T∗)y = TT †y + PN(T∗)y. This together with the

part (i) leads to (ii).

(iii) If u ∈ H1 is a least square solution of y ∈ Tx, then from Proposition 3.3

and the part (i) we infer that T †y ∈ T †Tu and T †y = PN(T )⊥u which yields

u = PN(T )⊥u+ PN(T )u ∈ T †y +N(T ).

This proves (iii).

(iv) By virtue of (iii) we have that if u ∈ H1 is a least square solution of y ∈
Tx, then u ∈ T †y+ v for some v ∈ N(T ) and noting that T †y ∈ R(T †) ⊂ N(T )⊥

we deduce that

∥u∥2 = ∥T †y∥2 + ∥v∥2.
Hence (iv) holds. �

4. Approximation of Moore–Penrose inverse of a closed linear relation

Our main objective in this section is to prove that if T ∈ CR(H1,H2) then

there exists a sequence of finite rank linear relations (Tn) such that for each

y ∈ D(T †), T †y = limn→∞ T †
ny.

We begin with the following result which is crucial for our purpose.

Proposition 4.1. Let T ∈ CR(H1, H2) such that T (0) is a proper subspace

of R(T ). Let (Yn) be an increasing sequence of finite dimensional subspaces

of R(T ) satisfying ∪∞
n=1Yn = R(T ). For each n ∈ N, let Zn := ∆T∗Yn and

Xn := T ∗Zn ∩D(T ). Then

(i) ∪∞
n=1Zn = R(T ) ∩ T (0)⊥.

(ii) (Xn) is an increasing sequence of subspaces of R(T ∗) ∩ D(T ) such that

PT∗(0)⊥Xn = Xn, PT∗(0)Xn = {0} and dimXn < ∞.

(iii) ∪∞
n=1Xn = R(T ∗) ∩ T ∗(0)⊥.

Proof. (i) By the equality ∆T∗R(T ) = R(T ) ∩ T (0)⊥ which was proved in

Proposition 2.3 (v) we obtain that

R(T ) ∩ T (0)⊥ = ∆T∗R(T ) = ∆T∗(∪∞
n=1Yn) = ∪∞

n=1∆T∗Yn = ∪∞
n=1Zn.

(ii) Since T ∗(0)⊥ = D(T ),∆T∗ and PT∗(0)⊥T
∗ are operators and dimZn < ∞

we have the assertion (ii).
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(iii) By (ii), it is clear that ∪∞
n=1Xn ⊂ D(T ) ∩ R(T ∗) = T ∗(0)⊥ ∩ R(T ∗).

Suppose that this inclusion is strict. Then there exists 0 ̸= z ∈ N(T )⊥ ∩ D(T )

such that z ∈ (∪∞
n=1Xn)

⊥, that is, 0 = ⟨z, w⟩ for all w ∈ ∪∞
n=1Xn and thus it

follows from the Definition 2.1 that

0 = ⟨z, T ∗∆T∗y⟩ = ⟨z, PT∗(0)⊥T
∗∆T∗y⟩ for all y ∈ R(T )

and by the continuity of PT∗(0)⊥T
∗∆T∗ , this holds for all y ∈ R(T ). We claim

that is holds for all y ∈ H2. Let y ∈ H2. Then y = u + v for some u ∈ R(T )

and v ∈ R(T )⊥ = N(T ∗) ⊂ D(T ∗). Then by Proposition 2.3 (iii) we obtain that

PT∗(0)⊥T
∗∆T∗v = ∆TT

∗v = 0. Therefore

⟨z, PT∗(0)⊥T
∗∆T∗y⟩ = ⟨z, PT∗(0)⊥T

∗∆T∗u⟩ = 0.

This proves the claim.

On the other hand, since D(T ) ∩ N(T )⊥ ⊂ D(T ) ∩N(T )⊥, there exists a

sequence (zn) ⊂ D(T ) ∩ N(T )⊥ such that zn → z. Hence for all y ∈ H2, by

Proposition 2.3 (iii)

0 = ⟨z, PT∗(0)⊥T
∗∆T∗y⟩ = lim

n→∞
⟨zn, PT∗(0)⊥T

∗∆T∗y⟩

= lim
n→∞

⟨(PT∗(0)⊥T
∗∆T∗)∗zn, y⟩ = lim

n→∞
⟨PT (0)⊥T∆T zn, y⟩.

This shows that PT (0)⊥T∆T zn → 0 (weakly) and since PT (0)⊥T∆T is a bounded

operator, we have PT (0)⊥T∆T z = 0, so that PT∗(0)⊥T
∗PT (0)⊥T∆T z = 0. Com-

bining this equality with Proposition 2.3 (iv) and the fact in this setting PT∗(0)z ∈
PT∗(0)T

∗(0)⊥ = {0} we obtain that z = ∆T z with PT (0)⊥T∆T z = 0. Hence

∆T z ∈ N(PT (0)⊥T ) = T−1N(PT (0)⊥) = T−1T (0) = T−1(0) = N(T ). Conse-

quently, z ∈ N(T )∩N(T )⊥, a contradiction to our assumption. This proves (iii).

�

This result generalizes an analogous result for densely defined closed opera-

tors proved in [7, Lemma 3.1].

It should be noted that the class of all linear relations T such that R(T ) =

T (0) coincides with the class of all singular linear relations introduced in [5], in

order to study some canonical decompositions of linear relations.

Recall the following very well known property of the limit of an increasing

sequence of orthogonal projections.

Lemma 4.2. Let (Mn) be an increasing sequence of closed subspaces of a

Hilbert space H. Then the strong limP of (PMn) exists and P is the projection

onto ∪∞
n=1Mn.
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We also recall the following elementary property of the inverse of a linear

relation.

Lemma 4.3 (2, Corollary I.2.11). We have that TT−1y = y+T (0) whenever

y ∈ R(T ).

Now we are able to state our second main result.

Theorem 4.4. Let T ∈ CR(H1,H2) with separable range and T (0) is a

proper subspace of R(T ). Then for each n ∈ N, there exists a finite rank linear

relation Tn such that
lim

n→∞
T †
ny = T †y for all y ∈ D(T †).

Proof. Since R(T ) is separable, we can find an increasing sequence of finite

dimensional subspaces of R(T ), say (Yn), such that ∪∞
n=1Yn = R(T ).

Let Zn and Xn be as Proposition 4.1. Let Pn : H2 → H2 and Qn : H1 → H1

be sequences of orthogonal projections with R(Pn) = Zn and R(Qn) = Xn. For

each n ∈ N, we define Tn := PnT .

Then the sequence (Tn) has the following properties:

(1) D(Tn) = D(T ), N(Tn) = X⊥
n ∩ D(T ), R(Tn) = R(Pn) = Zn, N(T ∗

n) = Z⊥
n

and R(T ∗
n) = Xn.

Indeed, we have that

D(Tn) := {x ∈ D(T ) : Tx ∩D(Pn) ̸= ∅} = {x ∈ D(T ) : Tx ̸= ∅} := D(T )

and

N(Tn) := (PnT )
−1(0) = T−1N(Pn) = T−1(Z⊥

n ) = (T ∗Zn)
⊥ ∩D(T )

(by Lemma 2.2 (ii)):= X⊥
n ∩D(T ).

Next we claim that R(Tn) = R(Pn) = Zn. It is clear that R(Tn) ⊂ R(Pn) =

Zn. In order to show the converse inclusion it is enough to state that N(T ∗
n) ⊂

N(Pn). To see this, we note that N(T ∗
n) ⊂ N(Pn) ⇒ N(Pn)

⊥ = Zn ⊂ N(T ∗
n)

⊥ =

R(Tn) = R(Tn). Let now z ∈ N(T ∗
n) = N(T ∗Pn), so that Pnz ∈ N(T ∗) = R(T )⊥

and since Pnz ∈ R(Pn) = Zn ⊂ R(T ) (by the condition (i) of Proposition 4.1) we

infer that Pnz = 0, that is, z ∈ N(Pn), as desired. Therefore R(Tn) = R(Pn) =

Zn which further implies that N(T ∗
n) = Z⊥

n and clearly R(T ∗
n) = T ∗Zn = Xn.

Hence (1) holds.

(2) y ∈ TT †y for all y ∈ R(T ).

Follows immediately from Proposition 3.3 and Lemma 4.3.

(3) Qnx → x for all x ∈ D(T ) ∩N(T )⊥.

Follows immediately from Proposition 4.1 and Lemma 4.2.
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(4) D(T †
n) = H2.

It follows from Proposition 2.3 (i) that D(T †
n) = R(Tn)⊕R(Tn)

⊥ and by (1)

R(Tn) = Zn which is finite dimensional. Therefore T †
n is everywhere defined.

Our next aim is to prove that T †y = limn→ T †
ny for all y ∈ D(T †). Let

y ∈ D(T †). Then

(5) QnT
†y → T †y.

This statement follows immediately combining (3) with the fact that T †y ∈
D(T ) ∩N(T )⊥.

Next we show that (6) QnT
†y = T †

ny for all y ∈ D(T †).

From the facts QnT
†y ∈ Xn ⊂ D(T ) ∩ N(T )⊥, (Qn − I)T †y ∈ N(Tn) =

X⊥
n ∩D(T ) (by (1)) and Proposition 2.3 (iii) we get that

QnT
†y = T †

nTnQnT
†y.

In view of the foregoing, we have that

T †
nTnQnT

†y = T †
nTnQnT

†y − T †
nPny + T †

nPny = T †
n(TnQnT

†y − Pny)

+ T †
nPny ⊂ T †

n(TnQnT
†y − PnTT

†y) + T †
nPny

= T †
n(TnQn − PnT )T

†y + T †
nPny = T †

n(TnQn − Tn)T
†y

+ T †
nPny ⊂ T †

nTn(Qn − I)T †y + T †
nPny ⊂ T †

nTnT
−1
n (0) + T †

nPny

= T †
nTn(0) + T †

nPny = T †
nPny.

This proves (6). The result now follows from (5) and (6). �

The above result for densely defined closed operators was proved by Kulka-

rni and Ramesh in a recent paper [7, Theorem 3.3].
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