On a graph of a p-solvable normal subgroup

By RUIFANG CHEN (Shanghai), XIUYUN GUO (Shanghai) and XIANHE ZHAO (Xinxiang)

Abstract

Let N be a p-solvable normal subgroup of a group G. In this paper, we prove that N is solvable if $\alpha>\beta>1$ are the two maximal sizes in $\operatorname{cs}_{G}\left(N_{p^{\prime}}\right)$ such that $(\alpha, \beta)=1$ and β is a p^{\prime}-number dividing $|N /(N \cap Z(G))|$. Moreover, the structure of N is given.

1. Introduction

All groups considered in this paper are finite. Let G be a group and x an element in G, we use x^{G} to denote the conjugacy class of G containing x and use $\left|x^{G}\right|$ to denote the size of x^{G}. Also we write $\operatorname{Con}(G)=\left\{x^{G} \mid x \in G\right\}$ and $c s(G)=\{|B| \mid B \in \operatorname{Con}(G)\}$. Furthermore, if H is a subset of G, we write $\operatorname{Con}_{G}(H)=\left\{x^{G} \mid x \in H\right\}$ and $\operatorname{cs}_{G}(H)=\left\{|B| \mid B \in \operatorname{Con}_{G}(H)\right\}$. If B is a non-empty subset of a group G, following [1], we set $K_{S}=\{x \in G \mid x S=S\}$. Clearly, K_{S} is a subgroup of G. Furthermore, K_{S} is a normal subgroup of G if S is a normal subset of G. Since S is the union of right cosets of K_{S}, we see that $\left|K_{S}\right|$ divides $|S|$.

In 1904, Burnside proved that a group G is not simple if some conjugacy class size of G is a prime power, see [4] for instance. Since then, many authors began to study how the set of conjugacy class sizes may determine the properties of a group, say solvability, non-simplicity and so on (see, e.g., [5], [6], [7], [9]).

[^0]Let N be a normal subgroup of a group G. Then N is a union of several G-conjugacy classes contained in N. Therefore, the investigation into the relation between the structure of N and the G-conjugacy class sizes contained in it has attracted interests of many authors (see, e.g., [8], [11], [12])

Recall that a group G is called a quasi-Frobenius group if $G / Z(G)$ is a Frobenius group. The inverse images in G of the kernel and a complement of $G / Z(G)$ are called the kernel and a complement of G. And a group G is said to be p-nilpotent or p-closed if it has a normal p-complement or a normal Sylow p subgroup respectively.

If N is a p-solvable normal subgroup of a group G, we use $N_{p^{\prime}}$ to denote the set of all p^{\prime}-elements in N. In this paper, we are interested in the relationship between the set $c s_{G}\left(N_{p^{\prime}}\right)$ and the property of N. We have the following theorem.

Theorem. Let N be a p-solvable normal subgroup of a group G. Suppose that $\alpha>\beta>1$ are the two maximal sizes in $c s_{G}\left(N_{p^{\prime}}\right)$ with $(\alpha, \beta)=1$. If β is a p^{\prime}-number and β divides $|N /(N \cap Z(G))|$, then N is solvable. Furthermore, if a p-complement K of N is not nilpotent, then K is quasi-Frobenius with abelian kernel and complements and at least one of the following conditions is satisfied:
(1) N is p-nilpotent;
(2) N is p-closed;
(3) $K=R \rtimes T$ with R an abelian normal Sylow r-subgroup of N and T an abelian $\{p, r\}$-complement of N.

In the proof of this theorem, we use the graphs $\Gamma(G)$ of a group G and $\Gamma_{p}(G)$ of a p-solvable group G, whose vertices are the non-central G-conjugacy classes of elements and p^{\prime}-elements in G respectively and two vertices are joined by an edge if their cardinalities have a common primary divisor. Furthermore, we use $n(\Gamma(G))$ and $n\left(\Gamma_{p}(G)\right)$ to denote the number of components of $\Gamma(G)$ and $\Gamma_{p}(G)$ respectively. Several authors have obtained interesting results about $\Gamma(G)$ and $\Gamma_{p}(G)$ (see, e.g., [1], [2], [3]).

2. Preliminaries

For a positive integer m, we write $\pi(m)=\{p \mid p$ is a primary divisor of $m\}$, and for a non-empty set K, we use $\pi(K)$ to denote the set of primary divisors of $|K|$.

Inspired by the works of [3] and [10], we have the following generalized results. For completeness, we provide the corresponding proofs.

Lemma 2.1. Let N be a p-solvable normal subgroup of a group G. Suppose that $B=b^{G}, C=c^{G} \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $(|B|,|C|)=1$. Then
(a) $G=C_{G}(b) C_{G}(c)$;
(b) $B C \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ and $|B C|$ divides $|B||C|$.

Proof. (a) This is obvious since $\left(\left|G: C_{G}(b)\right|,\left|G: C_{G}(c)\right|\right)=\left(\left|b^{G}\right|,\left|c^{G}\right|\right)=1$.
(b) We first claim that $B C \in \operatorname{Con}(G)$. It suffices to prove that $b^{g} c^{h}$ is conjugate to $b c$ for any $g, h \in G$. Since $g h^{-1} \in G=C_{G}(b) C_{G}(c)$, there exists $x \in C_{G}(b)$ and $y \in C_{G}(c)$ such that $g h^{-1}=x^{-1} y$. Then $x g=y h$ and $b^{g} c^{h}=$ $b^{x g} c^{y h}=(b c)^{x g}$. Now, it suffices to prove that there is a p^{\prime}-element in $B C$. In fact, let H be a p-complement of N. Then there exists $g, h \in G$ such that $b^{g} \in H$ and $c^{h} \in H$. Therefore, $b^{g} c^{h}$ is a p^{\prime}-element in N and $b^{g} c^{h} \in B C$.

Since $C_{G}(b) \cap C_{G}(c) \leq C_{G}(b c)$, we have that $|B C|=\left|G: C_{G}(b c)\right|$ divides $\left|G: C_{G}(b) \cap C_{G}(c)\right|=\left|G: C_{G}(b)\right|\left|G: C_{G}(c)\right|=|B||C|$.

Lemma 2.2. Let N be a p-solvable normal subgroup of a group G. Then the following two properties hold:
(a) Suppose that $B_{0} \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $\left|B_{0}\right|$ is the maximal size in $\operatorname{cs}_{G}\left(N_{p^{\prime}}\right)$. If $C \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $\left(\left|B_{0}\right|,|C|\right)=1$, then $C^{-1} C B_{0}=B_{0}$ and $\left|\left\langle C^{-1} C\right\rangle\right|$ divides $\left|B_{0}\right|$.
(b) Suppose that m, n are the two maximal sizes in $\operatorname{cs}_{G}\left(N_{p^{\prime}}\right)$ such that $m>n>1$ and $(m, n)=1$. If D is a non-central class in $\operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ with $(|D|, n)=1$, then $|D|=m$.

Proof. (a) Lemma 2.1 (b) implies that $C B_{0} \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$, and it is obvious that $\left|C B_{0}\right| \geq\left|B_{0}\right|$. By the hypothesis, we see that $\left|C B_{0}\right|=\left|B_{0}\right|$. It follows that $C^{-1} C B_{0}=B_{0}$, and thus $\left\langle C^{-1} C\right\rangle B_{0}=B_{0}$. So, $\left\langle C^{-1} C\right\rangle \leq K_{B}$, which yields that $\left|\left\langle C^{-1} C\right\rangle\right|$ divides $\left|B_{0}\right|$.
(b) Let $A, B \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $|A|=n$ and $|B|=m$. Then $D A \in$ $\operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ by Lemma 2.1 (b). Since $|D A| \geq|A|,|D A|=m$ or n. If $|D A|=$ n, then $D^{-1} D A \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ and thus $D^{-1} D A=A$, in which case we have $\left\langle D^{-1} D\right\rangle A=A$. Therefore, $\left|\left\langle D^{-1} D\right\rangle\right|$ divides $|A|$. On the other hand, we see that $\left\langle D^{-1} D\right\rangle \subseteq\left\langle A A^{-1}\right\rangle$, so $\left|\left\langle D^{-1} D\right\rangle\right|$ divides $\left|\left\langle A A^{-1}\right\rangle\right|$. By (a) of this lemma, $\left|\left\langle A A^{-1}\right\rangle\right|$ divides $|B|$, so $\left|\left\langle D^{-1} D\right\rangle\right|$ divides $|B|$. Therefore, $\left|\left\langle D^{-1} D\right\rangle\right|$ divides $(n, m)=1$, a contradiction. So $|D A|=m$. We conclude that $|D|=m$ since $|D A|$ divides $|D||A|$.

Lemma 2.3. Suppose that N is a p-solvable normal subgroup of a group G and $B_{0} \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $\left|B_{0}\right|$ is the maximal size in $c s_{G}\left(N_{p^{\prime}}\right)$. Let

$$
\left.M=\langle D| D \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right) \text { such that }\left(|D|,\left|B_{0}\right|\right)=1\right\rangle
$$

Then M is an abelian p^{\prime}-subgroup of N. Furthermore, if $M \not \leq Z(G)$, then $\pi(M /(Z(G) \cap M)) \subseteq \pi\left(B_{0}\right)$ and in this case, $\left|B_{0}\right|$ is not a p-number.

Proof. Let

$$
\left.K=\left\langle D^{-1} D\right| D \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right) \text { such that }\left(|D|,\left|B_{0}\right|\right)=1\right\rangle
$$

It is easy to see that M and K are normal subgroups of G and $K=[M, G]$.
On the other hand, if $C \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right)$ such that $\left(|C|,\left|B_{0}\right|\right)=1$, then $C^{-1} C B_{0}=B_{0}$ by Lemma 2.2 (a), and thus $K B_{0}=B_{0}$. Therefore, $|K|$ divides $\left|B_{0}\right|$, in particular, $\pi(K) \subseteq \pi\left(B_{0}\right)$. So $(|K|,|C|)=1$. Suppose that $C=c^{G}$. Since $\left|K: C_{K}(c)\right|$ divides $(|K|,|C|)$, we have $K=C_{K}(c)$, and thus $K \leq Z(M)$. Therefore, M is nilpotent since $M / K \leq Z(G / K)$. We conclude that M is a p^{\prime}-group since all of its generators are p^{\prime}-elements.

Suppose that $M \not \leq Z(G)$. Let $r \in \pi(M /(Z(G) \cap M))$ and $R \in \operatorname{Syl}_{r}(M)$. Then $R \unlhd G$ and $1 \neq[R, G] \leq[M, G]=K$. Therefore, $r \in \pi(K) \subseteq \pi\left(B_{0}\right)$, and thus $\pi(M /(Z(G) \cap M)) \subseteq \pi\left(B_{0}\right)$.

If R is a Sylow r-subgroup of M, we can assume that $r \in \pi(M /(Z(G) \cap M))$. For any generating class d^{G} of M, we have that $\left|d^{R}\right|$ divides $\left(|R|,\left|d^{G}\right|\right)=1$. Therefore, $R=C_{R}(d)$, which implies that $R \leq Z(M)$. Consequently, we conclude that M is abelian.

3. Main Results

In this section, we give the proof of our main result.
Theorem. Let N be a p-solvable normal subgroup of a group G. Suppose that $\alpha>\beta>1$ are the two maximal sizes in $c s_{G}\left(N_{p^{\prime}}\right)$ with $(\alpha, \beta)=1$. If β is a p^{\prime}-number and β divides $|N /(N \cap Z(G))|$, then N is solvable. Furthermore, if a p-complement K of N is not nilpotent, then K is quasi-Frobenius with abelian kernel and complements and at least one of the following conditions is satisfied:
(1) N is p-nilpotent;
(2) N is p-closed;
(3) $K=R \rtimes T$ with R an abelian normal Sylow r-subgroup of N and T an abelian $\{p, r\}$-complement of N.

Proof. Let K and P be a p-complement and a Sylow p-subgroup of N respectively. If K is nilpotent, then N is solvable since it is a product of two nilpotent groups. We only need to consider the case that K is not nilpotent. Then $N=P K$ and we can write $K=U \times W$, where W is the maximal Hall subgroup of K contained in $Z(G)$. Then $N_{1}=P U$ is a normal subgroup of G and no Sylow subgroup of U is contained in $Z(G)$. It is easy to see that $U / Z(U) \cong K / Z(K)$ and that the theorem is true for N if and only if it is true for N_{1}. So, without loss of generality, we will assume that no Sylow subgroup of N with order prime to p is contained in $Z(G)$.

Since K is not nilpotent by the assumption, we have $|\pi(K)| \geq 2$.
Let

$$
\left.M=\langle D| D \in \operatorname{Con}_{G}\left(N_{p^{\prime}}\right) \text { such that }(|D|, \alpha)=1\right\rangle .
$$

Then M is an abelian p^{\prime}-subgroup of N by Lemma 2.3, and $M \unlhd G$.
Let a and b be p^{\prime}-elements in N such that $\left|a^{G}\right|=\beta$ and $\left|b^{G}\right|=\alpha$. We will prove this theorem by the following steps.

Step 1. $C_{G}(b)$ is maximal and minimal among centralizers of all non-central p^{\prime}-elements in N. In particular, b can be assumed to be a q-element for some prime $q \neq p$ and $C_{N}(b)=P_{1} Q \times L$, with $P_{1} \in \operatorname{Syl}_{p}\left(C_{N}(b)\right), Q \in \operatorname{Syl}_{q}\left(C_{N}(b)\right)$ and $L \leq Z\left(C_{G}(b)\right)$.

Suppose that x and y are non-central p^{\prime}-elements in N such that $C_{G}(b) \leq$ $C_{G}(x)$ and $C_{G}(y) \leq C_{G}(b)$. Then $\left|x^{G}\right|$ divides $\left|b^{G}\right|=\alpha$. Therefore, $\left|x^{G}\right|=\alpha$ by Lemma $2.2(\mathrm{~b})$, and thus $C_{G}(b)=C_{G}(x)$. On the other hand, $\alpha=\left|b^{G}\right|$ divides $\left|y^{G}\right|$, so $\left|y^{G}\right|=\alpha$ and $C_{G}(b)=C_{G}(y)$ by the hypothesis of this theorem.

Now, write $b=b_{1} b_{2} \cdots b_{s}$ with each b_{i} an element of primary order and $b_{i} b_{j}=b_{j} b_{i}$ for all i and j. We may assume that $b_{1} \notin Z(G)$ and b_{1} can be assumed to be a q-element for a prime $q \neq p$. It is obvious that $C_{G}(b) \leq C_{G}\left(b_{1}\right)$, so $C_{G}(b)=C_{G}\left(b_{1}\right)$ by the above paragraph. By replacing b with b_{1} we can assume that b is a q-element.

For every $\{p, q\}^{\prime}$-element x in $C_{N}(b)$, we have $C_{G}(b x)=C_{G}(b) \cap C_{G}(x) \leq$ $C_{G}(b)$. Therefore, $C_{G}(b x)=C_{G}(b)$ by the first paragraph. It follows that $C_{G}(b) \leq$ $C_{G}(x)$, and thus $x \in Z\left(C_{G}(b)\right)$.

Step 2. $q \nmid \alpha$.
Suppose that $q \mid \alpha$. Then $q \nmid \beta$ and thus $q \nmid\left|a^{N}\right|=\left|N: C_{N}(a)\right|=\mid C_{N}(b):$ $C_{N}(a) \cap C_{N}(b) \mid$. Therefore, a Sylow q-subgroup of $C_{N}(b)$ is contained in $C_{N}(a) \cap$ $C_{N}(b)$. Without loss of generality, we may assume that $Q \leq C_{N}(a)$.

Since $a \in C_{N}(b)$ and $L \leq Z\left(C_{G}(b)\right)$, we have $L \leq C_{N}(a)$, and thus $Q \times L \leq$ $C_{N}(a)$. Therefore, $\left|a^{N}\right|_{p^{\prime}}$ divides $\left|b^{N}\right|_{p^{\prime}}$. Since β is a p^{\prime}-number, we have $\left|a^{N}\right|=1$,
that is $a \in Z(N)$. Write $a=a_{q} \cdot a_{q^{\prime}}$ with a_{q} and $a_{q^{\prime}}$ the q-component and q^{\prime} component of a respectively. If $a_{q^{\prime}} \notin Z(G)$, then $C_{G}\left(b a_{q^{\prime}}\right)=C_{G}(b) \cap C_{G}\left(a_{q^{\prime}}\right)$. Therefore, $C_{G}(b)=C_{G}\left(b a_{q^{\prime}}\right) \leq C_{G}\left(a_{q^{\prime}}\right)$. By Step 1, we have $\left|a_{q^{\prime}}^{G}\right|=\alpha$, and thus $\left|a^{G}\right|=\alpha$, which is a contradiction. Therefore, we may assume a to be a q-element. For any $\{p, q\}^{\prime}$-element $x \in N=C_{N}(a)$, we have $C_{G}(a x)=C_{G}(a) \cap C_{G}(x) \leq$ $C_{G}(a)$, then $C_{G}(a x)=C_{G}(a) \leq C_{G}(x)$ by the hypothesis, and thus $x \in Z\left(C_{G}(a)\right)$. Since $b \in C_{G}(a)$, we have $x \in C_{N}(b)$ and thus $x \in L \leq Z\left(C_{G}(b)\right)$. If $x \notin Z(G)$, then $C_{G}(x)=C_{G}(b)$ by Step 1. The fact that $C_{G}(a x)=C_{G}(a) \cap C_{G}(x)$ gives the contradiction that $\alpha \beta$ divides $\left|(a x)^{G}\right|$. So, $x \in Z(G)$ for all $\{p, q\}^{\prime}$-elements in N, which contradicts to the assumption of the beginning of the proof.

Step 3. $K_{B} \cap C_{G}(b)=\{1\}$, where $B=b^{G}$. In particular, a can be assumed to be a q^{\prime}-element.

By Step 1 we can assume that $|b|=q^{k}$ for some positive integer k.
Let $x \in K_{B} \cap C_{G}(b)$. Then $x b \in B$, and so $x b=b^{g}$ for some $g \in G$. As $x \in C_{G}(b)$, we have

$$
x^{q^{k}}=x^{q^{k}} b^{q^{k}}=(x b)^{q^{k}}=\left(b^{g}\right)^{q^{k}}=\left(b^{q^{k}}\right)^{g}=1 .
$$

On the other hand, since $\left|K_{B}\right|$ divides $|B|=\alpha$, we see that $q \nmid\left|K_{B}\right|$ by Step 2 . Therefore, $x=1$.

Now, let $a_{1}=a^{s}$ be the q-component of a. Then $a_{1} \in C_{G}(b)^{w}$ for some $w \in G$. For every $g \in G$. Since $G=C_{G}(a) C_{G}(b)^{w}$, we can write $g=u v$ with $u \in C_{G}(a)$ and $v \in C_{G}(b)^{w}$. By Lemma 2.2 (a) and Lemma 2.3, $\left\langle a^{G}\right\rangle$ is a normal abelian subgroup of G and $\left\langle A^{-1} A\right\rangle \leq K_{B}$, where $A=a^{G}$. Therefore,

$$
\left[a_{1}, g\right]=\left[a^{s}, g\right]=[a, g]^{s}=\left(a^{-1} a^{g}\right)^{s} \in K_{B}
$$

Also,

$$
\left[a_{1}, g\right]=\left[a_{1}, u v\right]=\left[a_{1}, v\right] \in C_{G}(b)^{w} .
$$

Therefore,

$$
\left[a_{1}, g\right] \in K_{B} \cap C_{G}(b)^{w}=\left(K_{B} \cap C_{G}(b)\right)^{w}=\{1\} .
$$

So, $a_{1} \in Z(G)$ and by replacing a with $a a_{1}^{-1}$ we can assume that a is a q^{\prime}-element.
Step 4. $\left(C_{N}(a) \cap C_{N}(b)\right)_{p^{\prime}}=Z(N)_{p^{\prime}}=Z(G)_{p^{\prime}} \cap N$.
Let x be a p^{\prime}-element in $C_{N}(a) \cap C_{N}(b)$ and write $x=x_{q} \cdot x_{q^{\prime}}$ with x_{q} and $x_{q^{\prime}}$ the q-component and q^{\prime}-component of x respectively. If $x_{q^{\prime}} \notin Z(G)$, then $C_{G}(b) \leq C_{G}\left(x_{q^{\prime}}\right)$ by Step 1, and thus $C_{G}(b)=C_{G}\left(x_{q^{\prime}}\right)$ again by Step 1. It follows that $a \in C_{G}(b)$, and so $C_{G}(b) \leq C_{G}(a)$, which is a contradiction. Since $x_{q} \in C_{G}(a)$, we have $C_{G}\left(a x_{q}\right)=C_{G}(a) \cap C_{G}\left(x_{q}\right) \leq C_{G}(a)$. Then the hypothesis implies that $C_{G}\left(a x_{q}\right)=C_{G}(a) \leq C_{G}\left(x_{q}\right)$. If $x_{q} \notin Z(G)$, then $x_{q} \in M$, and thus
$q \in \pi(M / M \cap Z(G)) \subseteq \pi(\alpha)$, which contradicts to Step 2. So $\left(C_{N}(a) \cap C_{N}(b)\right)_{p^{\prime}} \leq$ $Z(G)$.

Now the equalities are obvious since $Z(N)_{p^{\prime}} \leq\left(C_{N}(a) \cap C_{N}(b)\right)_{p^{\prime}} \leq Z(G)_{p^{\prime}} \cap$ $N \leq Z(N)_{p^{\prime}}$.

Step 5. $\pi\left(a^{N}\right)=\pi(\beta)$ and $\pi\left(b^{N}\right)=\pi(\alpha)$.
It is well known that $\pi\left(a^{N}\right) \subseteq \pi(\beta)$. On the other hand, if there exists a prime $r \in \pi(\beta) \backslash \pi\left(a^{N}\right)$, then $r \notin \pi(\alpha)$, and thus $r \notin \pi\left(b^{N}\right)$. By replacing b with a suitable conjugation, we can assume that a Sylow r-subgroup of N, say R, is contained in both $C_{N}(a)$ and $C_{N}(b)$, and thus in $C_{N}(a) \cap C_{N}(b)$. Therefore, $R \leq\left(C_{N}(a) \cap C_{N}(b)\right)_{p^{\prime}} \leq Z(G)$ by Step 4, which contradicts to the beginning of the proof. Hence, $\pi\left(a^{N}\right)=\pi(\beta)$. Similarly we have $\pi\left(b^{N}\right)=\pi(\alpha)$.

Step 6. $n\left(\Gamma_{p}(N)\right)=2$.
For any non-central p^{\prime}-element x in N, we can write $x=x_{q} \cdot x_{q^{\prime}}$. Since $q \nmid\left|b^{N}\right|$ by Step 2, we can assume that $x \in Q$. We will prove that $\left|x^{G}\right|=\alpha$ when $x_{q} \notin Z(G)$ and $\left|x^{G}\right|=\beta$ when $x_{q} \in Z(G)$.

First suppose that $x_{q} \notin Z(G)$. If $\left|x_{q}^{G}\right|=\alpha$, then clearly $\left|x^{G}\right|=\alpha$. If $\left|x_{q}^{G}\right|=\beta$, then $x_{q} \in M$ by the definition of M and thus $q \in \pi(\alpha)$, which is a contradiction. We next show that $\left|x_{q}^{G}\right|<\beta$ may not happen. If $L \not 又 Z(G)$, then we choose z a non-central $\{p, q\}^{\prime}$-element in $C_{N}(b)$. Then $C_{G}(b)=C_{G}(z)$ by Step 1. Now $x_{q} \in C_{N}(b)=C_{N}(z)$, it follows that $C_{G}\left(z x_{q}\right)=C_{G}(z) \cap C_{G}\left(x_{q}\right) \leq C_{G}(z)$. Therefore, $\alpha=\left|z^{G}\right|$ divides $\left|\left(z x_{q}\right)^{G}\right|$, which gives that $C_{G}\left(z x_{q}\right)=C_{G}(z)=$ $C_{G}(b) \leq C_{G}\left(x_{q}\right)$. Again by Step 1, we have $\left|x_{q}^{G}\right|=\alpha$, which contradicts to our assumption. Therefore, in this case $L \leq Z(G)$. It follows that $\left|a^{N}\right|=\mid N$: $C_{N}(a)\left|=\left|C_{N}(b): C_{N}(a) \cap C_{N}(b)\right|=\left|P Q L:\left(C_{N}(a) \cap C_{N}(b)\right)_{p} Z(N)_{p^{\prime}}\right|\right.$ is a q-number. And so β is a q-number by Step 5. Since $\left\langle x_{q}\right\rangle$ acts coprimely on the abelian group $M_{q^{\prime}}, M_{q^{\prime}}=\left[M_{q^{\prime}},\left\langle x_{q}\right\rangle\right] \times C_{M_{q^{\prime}}}\left(x_{q}\right)$. As $a \in M_{q^{\prime}}$, we may write $a=u w$ with $u \in\left[M_{q^{\prime}},\left\langle x_{q}\right\rangle\right]$ and $w \in C_{M_{q^{\prime}}}\left(x_{q}\right)$. Let $g=w x_{q}$. Then $C_{G}(g)=C_{G}(w) \cap C_{G}\left(x_{q}\right) \leq C_{G}\left(x_{q}\right)$ and so $\left|x_{q}^{G}\right|$ divides $\left|g^{G}\right|$. It is easy to see that $\left|g^{G}\right| \neq \alpha, \beta$. Hence $\left|g^{G}\right|<\beta$. Choose Q_{0} to be a Sylow q-subgroup of G such that $Q \leq Q_{0}$. It follows that $M_{q^{\prime}} Q_{0} \leq G$ and

$$
\left|M_{q^{\prime}} Q_{0}: C_{M_{q^{\prime}} Q_{0}}(g)\right| \leq\left|g^{G}\right|<\beta=\left|Q_{0}\right|:\left|C_{G}(a)\right|_{q}
$$

Moreover, we have

$$
\begin{aligned}
C_{M_{q^{\prime}}} Q_{0}(g) & =C_{M_{q^{\prime}}} Q_{0}(w) \cap C_{M_{q^{\prime}}}\left(Q_{0}\right)=M_{q^{\prime}} C_{Q_{0}}(w) \cap C_{M_{q^{\prime}}}\left(x_{q}\right) C_{Q_{0}}\left(x_{q}\right) \\
& =C_{M_{q^{\prime}}}\left(x_{q}\right)\left(C_{Q_{0}}(w) \cap C_{Q_{0}}\left(x_{q}\right)\right) .
\end{aligned}
$$

Set $D=C_{Q_{0}}(w) \cap C_{Q_{0}}\left(x_{q}\right)$. Then

$$
\frac{\left|Q_{0}\right|}{\left|C_{G}(a)\right|_{q}}>\frac{\left|M_{q^{\prime}}\right|\left|Q_{0}\right|}{\left|C_{M_{q^{\prime}}}\left(x_{q}\right)\right||D|},
$$

which implies that $|D|:\left|C_{G}(a)\right|_{q}>\left|M_{q^{\prime}}\right|:\left|C_{M_{q^{\prime}}}\left(x_{q}\right)\right|=\left|\left[M_{q^{\prime}},\left\langle x_{q}\right\rangle\right]\right|$. On the other hand, since $D \leq C_{G}\left(x_{q}\right)$ and $M_{q^{\prime}} \unlhd G, D$ acts on $\left[M_{q^{\prime}},\left\langle x_{q}\right\rangle\right]$ by conjugation. Noticing that

$$
C_{D}(u)=C_{G}(u) \cap D=C_{Q_{0}}(u) \cap C_{Q_{0}}(w) \cap C_{Q_{0}}\left(x_{q}\right)=C_{Q_{0}}(a) \cap C_{Q_{0}}\left(x_{q}\right),
$$

we have

$$
\left|C_{D}(u)\right|=\left|C_{Q_{o}}(a) \cap C_{Q_{0}}\left(x_{q}\right)\right| \leq\left|C_{G}(a)\right|_{q} .
$$

Therefore,

$$
\left|u^{D}\right|=|D|:\left|C_{D}(u)\right| \geq|D|:\left|C_{G}(a)\right|_{q}>\left|\left[M_{q^{\prime}},\left\langle x_{q}\right\rangle\right]\right|,
$$

which is a contradiction. Therefore, if $x_{q} \notin Z(G)$, then $\left|x^{G}\right|=\alpha$.
Now, suppose that $x_{q} \in Z(G)$. Then $x_{q^{\prime}} \notin Z(G)$. If $\left|x_{q^{G}}^{G}\right|=\alpha$, then $\left|x^{G}\right|=\alpha$. Suppose that $\left|x_{q^{G}}^{G}\right| \neq \alpha$. For any p^{\prime}-element $y \in C_{N}\left(x_{q^{\prime}}\right) \cap C_{N}(b)$, we will prove that $y \in Z(G)$. For otherwise, write $y=y_{q} \cdot y_{q^{\prime}}$ with y_{q} and $y_{q^{\prime}}$ the q-component and q^{\prime}-component of y respectively. If $y_{q^{\prime}} \notin Z(G)$, then $C_{G}(b) \leq C_{G}\left(y_{q^{\prime}}\right)$ and thus $C_{G}\left(y_{q^{\prime}}\right)=C_{G}(b)$ by Step 1 Therefore, $x_{q^{\prime}} \in C_{G}(b)$ and thus we see that $C_{G}(b) \leq C_{G}\left(x_{q^{\prime}}\right)$. Again by Step 1 we have $\left|x_{q^{\prime}}^{G}\right|=\alpha$, which is a contradiction. Now, y can be assumed to be a q-element. Then $\left|y^{G}\right|=\alpha$ by the above paragraphs. Arguing similarly as above, we have the contradiction that $\left|x_{q^{G}}^{G}\right|=\alpha$. Therefore, we have $\left(C_{N}\left(x_{q^{\prime}}\right) \cap C_{N}(b)\right)_{p^{\prime}} \leq Z(G)$. Noticing that $N=C_{N}(a) C_{N}(b)$, we have $|N|=\left|a^{N}\right|\left|b^{N}\right|\left|C_{N}(a) \cap C_{N}(b)\right|$. Since β is a p^{\prime}-number dividing $|N /(N \cap Z(G))|$, we see that β divides $|N|_{p^{\prime}}:|N \cap Z(G)|_{p^{\prime}}=|N|_{p^{\prime}}:|Z(N)|_{p^{\prime}}$, and thus β divides $\left|a^{N}\right|$. Therefore, $\left|a^{G}\right|=\beta=\left|a^{N}\right|=\left|C_{N}(b): C_{N}(a) \cap C_{N}(b)\right|=\left|C_{N}(b)\right|_{p^{\prime}}:$ $\left|C_{N}(a) \cap C_{N}(b)\right|_{p^{\prime}}=\left|C_{N}(b)\right|_{p^{\prime}}:|Z(N)|_{p^{\prime}}$. Let T be a p-complement of $C_{N}(b)$. Now, consider the factor group $T / Z(N)_{p^{\prime}}$ and the set $x_{q^{\prime}}^{N}$. If $z Z(N)_{p^{\prime}}$ is an element in $T / Z(N)_{p^{\prime}}$, we may assume that $z \in T$. For any $y \in t^{N}$, we define $y^{z Z(N)_{p^{\prime}}}=y^{z}$. Then $T / Z(N)_{p^{\prime}}$ acts on the set $x_{q^{\prime}}^{N}$. By the above paragraph we have $x_{q^{\prime}}^{N} \cap T=\emptyset$. Therefore, $T / Z(N)_{p^{\prime}}$ acts on $x_{q^{\prime}}^{N}$ without fixed point, which implies that $\left|T / Z(N)_{p^{\prime}}\right|$ divides $\left|x_{q^{\prime}}^{N}\right|$. Consequently, $\left|x_{q^{\prime}}^{N}\right|=\left|x^{G}\right|=\beta$. Hence $\left|x^{G}\right|=\left|x_{q^{G}}^{G}\right|=\beta$.

Consequently, if we denote

$$
I=\left\{x \mid x \text { is a } p^{\prime} \text {-element in } N \text { such that }\left|x^{G}\right|=\alpha\right\}
$$

and

$$
J=\left\{x \mid x \text { is a } p^{\prime} \text {-element in } N \text { such that }\left|x^{G}\right|=\beta\right\} .
$$

Then, from the above paragraphs and Step 4 we see that $N_{p^{\prime}}=Z(N)_{p^{\prime}} \cup I \cup J$ and
that $\left|x^{N}\right| \neq 1$ and $\left|y^{N}\right| \neq 1$ for every $x \in I$ and $y \in J$. Therefore, $n\left(\Gamma_{p}(N)\right)=2$ by [2, Theorem 1].

Step 7. Final conclusion.
Since $\Gamma_{p}(N)$ has two components by Step 6, we use X_{1} and X_{2} to denote the two components and assume that $x^{N} \in X_{2}$ where $\left|x^{N}\right|$ is maximal in $\operatorname{cs}_{N}\left(N_{p^{\prime}}\right)$. Furthermore, for $i=1$ and 2, we write

$$
\pi_{i}=\left\{r \mid r \text { is a primary divisor of }|A|, \text { where } A=x^{N} \in X_{i}\right\}
$$

If p does not divide α, then all p^{\prime}-elements in N have conjugacy class size in N coprime to p. Therefore, $N=P \times K$, where P is a Sylow p-subgroup in N and K is a p-complement of N by [2, Proposition 2]. In this case, $c s(K)=c s_{N}\left(N_{p^{\prime}}\right)$ and thus $n(\Gamma(K))=2$. So K is quasi-Frobenius with abelian kernel and complements by [1, Theorem 2].

Now suppose that p divides α. If the maximal size of conjugacy classes in $\operatorname{Con}_{N}\left(N_{p^{\prime}}\right)$ divides β, then $p \in \pi(\alpha)=\pi_{1}$. Therefore, N is p-nilpotent by [3, Theorem 8] and K is quasi-Frobenius with abelian kernel and complements. Otherwise, the maximal size of conjugacy classes in $\operatorname{Con}_{N}\left(N_{p^{\prime}}\right)$ divides α, it follows that $p \in \pi(\alpha)=\pi_{2}$. If $\left|\pi_{2}\right| \geq 3$, then N has a normal Sylow p-subgroup and K is quasi-Frobenius with abelian kernel and complements by [3, Theorem 12]. It is easy to see that N is solvable in the above cases.

If $\left|\pi_{2}\right|<3$, then $\left|\pi_{2}\right|=2$ by Lemma 2.3 and we may assume that $\pi_{2}=\{p, r\}$ for some prime $r \neq p$. By [3, Theorem 9], we see that N is π_{2}-separable and has abelian π_{2}-complements. Therefore, there exists a π_{2}-complement T and a Sylow r-subgroup R of K such that $K=R T$. Since r does not divide β, a Sylow r subgroup of N is contained in $C_{N}(a)$. it is easy to see that M is the p-complement of $C_{N}(a)$, so $R \leq M$. It follows that $R \unlhd N$, by Schur-Zassenhaus theorem, there is a complement V of R in N. Therefore, V is a product of a Sylow p-subgroup and an abelian p-complement, hence it is solvable. Consequently, we deduce that N is solvable since $N / R \cong V$. We will finally show that K is quasi-Frobenius with abelian kernel and complements.

If $x \in Z(K)$, then $\left|x^{N}\right|$ is a p-number. Since β is a p^{\prime}-number and $\left|x^{N}\right|$ divides $\left|x^{G}\right|,\left|x^{G}\right| \neq \beta$. If $\left|x^{G}\right|=\alpha$, then α is a p-number since $\pi\left(x^{N}\right)=\pi(\alpha)$ by Step 5 , which contradicts to Lemma 2.3. Therefore, $\left|x^{G}\right|=1$. It follows that x is a p^{\prime}-element in $Z(G) \cap N$ and thus $x \in Z(N)_{p^{\prime}}$. Therefore, $Z(K) \subseteq Z(N)_{p^{\prime}}$. The fact that $Z(N)_{p^{\prime}} \subseteq Z(K)$ is easy to see. So, $Z(N)_{p^{\prime}}=Z(K)$.

Write $\bar{K}=K / Z(K), \bar{R}=R Z(K) / Z(K)$ and $\bar{T}=T Z(K) / Z(K)$. Then $\bar{K}=\bar{R} \rtimes \bar{T}$. It suffices to show that $C_{\bar{T}}(\bar{g})=1$ for any $1 \neq \bar{g} \in \bar{R}$. Suppose on contrary that there exists $1 \neq \bar{t} \in C_{\bar{T}}(\bar{g})$ for some $1 \neq \bar{g} \in \bar{R}$. Since $\bar{R} \cap \bar{T}=1$
and $t \notin Z(N)$, we see $t \notin M$ and thus $\left|t^{G}\right|=\alpha$ by Step 6 . On the other hand, since $M \leq C_{N}(g),\left|g^{N}\right|$ divides $|N: M|=\left|a^{N}\right| \cdot p^{s}$ for some integer $s \geq 0$. If $\left|g^{G}\right|=\alpha$, then $\left|g^{N}\right|$ divides α. Therefore, $\left|g^{N}\right|$ is a p-number and so α is a p number too, which contradicts to Lemma 2.3. Therefore, $\left|g^{G}\right|=\beta$ by Step 6 and so $\left(C_{N}(t) \cap C_{N}(g)\right)_{p^{\prime}} \leq Z(G)_{p^{\prime}}$ 。

But on the other hand, since $(|\bar{t}|,|\bar{g}|)=1$, we see that $\overline{g t}^{|\bar{g}|}=\bar{t}^{|\bar{g}|} \neq 1$. Hence,

$$
\left.\overline{g t} \bar{g}\right|_{|\bar{g}|} ^{\bar{t}^{|\bar{g}|} \in \overline{C_{N}(t)} \cap \overline{C_{N}(g t)}}=\overline{C_{N}(t) \cap C_{N}(g t)}=\overline{C_{N}(t) \cap C_{N}(g)},
$$

which means that $C_{N}(t) \cap C_{N}(g)$ contains a non-central p^{\prime}-element, contradicting to the above paragraph.

Acknowledgments. The authors wish to thank the referees for their helpful suggestion.

References

[1] E. A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, Bull. London Math. Soc. 22 (1990), 569-575.
[2] A. Beltrán and M. J. Felipe, On the diameter of a p-regular conjugacy class graph of the finite groups, Comm. Algebra 30 (2002), 5861-5873.
[3] A. Beltrán qes M. J. Felipe, Finite groups with a disconnected p-regular conjugacy class graph, Comm. Algebra 32 (2004), 3503-3516.
[4] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1911.
[5] A. R. Camina, Arithmetical conditions on the conjugacy class numbers of a finite group, J. London Math. Soc. 5 (1972), 127-132.
[6] A. R. Camina and R. D. Camina, Implications of conjugacy class size, J. Group Theory 1 (1998), 257-269.
[7] D. Chillag and M. Herzog, On the lengths of the conjugacy classes of finite groups, J. Algebra 131 (1990), 110-125.
[8] X. Y. Guo, X. H. Zhao and K. P. Shum, On p-regular G-conjugacy classes and the p-structure of normal subgroups, Comm. Algebra 37 (2009), 2052-2059.
[9] A. V. López and J. V. López, Classification of finite groups according to the number of conjugacy classes II, Israel J. Math. 56 (1986), 188-221.
[10] Z. Q. Lu and J. P. Zhang, On the diameter of a graph related to p-regular conjugacy class of finite groups, J. Algebra 231 (2000), 705-712.
[11] X. H. Zhao and X. Y. Guo, On conjugacy class sizes of the p^{\prime}-elements with prime power order, Algebra Colloq. 16 (2009), 541-548.
[12] X. H. Zhao and X. Y. Guo, On the normal subgroups with exactly two G-conjugacy class sizes, Chin. Ann. Math. 30B (2009), 427-432.

RUIFANG CHEN
DEPARTMENT OF MATHEMATICS
SHANGHAI UNIVERSITY
SHANGHAI, 200444
P.R. CHINA

E-mail: fang119128@126.com
XIUYUN GUO
DEPARTMENT OF MATHEMATICS
SHANGHAI UNIVERSITY
SHANGHAI, 200444
P.R. CHINA

E-mail: xyguo@shu.edu.cn
XIANHE ZHAO
COLLEGE OF MATHEMATICS
AND INFORMATION SCIENCE
HENAN NORMAL UNIVERSITY
XINXIANG, HENAN, 453007
P.R. CHINA

E-mail: zhaoxianhe989@yahoo.com.cn
(Received March 28, 2013; revised September 9, 2013)

[^0]: Mathematics Subject Classification: 20D20, 20E45.
 Key words and phrases: conjugacy class size, p-nilpotent, p-closed, Schur-Zassenhaus theorem. The research was supported by the National Natural Science Foundation of China(11371237) and a grant of "The First-Class Discipline of Universities in Shanghai".
 Corresponding author: Xiuyun Guo.

