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On a graph of a p-solvable normal subgroup

By RUIFANG CHEN (Shanghai), XIUYUN GUO (Shanghai)
and XIANHE ZHAO (Xinxiang)

Abstract. Let N be a p-solvable normal subgroup of a group G. In this paper,

we prove that N is solvable if α > β > 1 are the two maximal sizes in csG(Np′) such

that (α, β) = 1 and β is a p′-number dividing |N/(N ∩Z(G))|. Moreover, the structure

of N is given.

1. Introduction

All groups considered in this paper are finite. Let G be a group and x an

element in G, we use xG to denote the conjugacy class of G containing x and

use |xG| to denote the size of xG. Also we write Con(G) = {xG | x ∈ G} and

cs(G) = {|B| | B ∈ Con(G)}. Furthermore, if H is a subset of G, we write

ConG(H) = {xG | x ∈ H} and csG(H) = {|B| | B ∈ ConG(H)}. If B is a

non-empty subset of a group G, following [1], we set KS = {x ∈ G | xS = S}.
Clearly, KS is a subgroup of G. Furthermore, KS is a normal subgroup of G if S

is a normal subset of G. Since S is the union of right cosets of KS , we see that

|KS | divides |S|.
In 1904, Burnside proved that a group G is not simple if some conjugacy

class size of G is a prime power, see [4] for instance. Since then, many authors

began to study how the set of conjugacy class sizes may determine the properties

of a group, say solvability, non-simplicity and so on (see, e.g., [5], [6], [7], [9]).

Mathematics Subject Classification: 20D20, 20E45.
Key words and phrases: conjugacy class size, p-nilpotent, p-closed, Schur–Zassenhaus theorem.
The research was supported by the National Natural Science Foundation of China(11371237)

and a grant of “The First-Class Discipline of Universities in Shanghai”.

Corresponding author: Xiuyun Guo.



102 Ruifang Chen, Xiuyun Guo and Xianhe Zhao

Let N be a normal subgroup of a group G. Then N is a union of several

G-conjugacy classes contained in N . Therefore, the investigation into the relation

between the structure of N and the G-conjugacy class sizes contained in it has

attracted interests of many authors (see, e.g., [8], [11], [12]).

Recall that a group G is called a quasi-Frobenius group if G/Z(G) is a Frobe-

nius group. The inverse images in G of the kernel and a complement of G/Z(G)

are called the kernel and a complement of G. And a group G is said to be

p-nilpotent or p-closed if it has a normal p-complement or a normal Sylow p-

subgroup respectively.

If N is a p-solvable normal subgroup of a group G, we use Np′ to denote the

set of all p′-elements in N . In this paper, we are interested in the relationship

between the set csG(Np′) and the property of N . We have the following theorem.

Theorem. Let N be a p-solvable normal subgroup of a group G. Suppose

that α > β > 1 are the two maximal sizes in csG(Np′) with (α, β) = 1. If β is

a p′-number and β divides |N/(N ∩ Z(G))|, then N is solvable. Furthermore, if

a p-complement K of N is not nilpotent, then K is quasi-Frobenius with abelian

kernel and complements and at least one of the following conditions is satisfied:

(1) N is p-nilpotent;

(2) N is p-closed;

(3) K = R o T with R an abelian normal Sylow r-subgroup of N and T an

abelian {p, r}-complement of N .

In the proof of this theorem, we use the graphs Γ(G) of a group G and Γp(G)

of a p-solvable group G, whose vertices are the non-central G-conjugacy classes

of elements and p′-elements in G respectively and two vertices are joined by an

edge if their cardinalities have a common primary divisor. Furthermore, we use

n(Γ(G)) and n(Γp(G)) to denote the number of components of Γ(G) and Γp(G)

respectively. Several authors have obtained interesting results about Γ(G) and

Γp(G) (see, e.g., [1], [2], [3]).

2. Preliminaries

For a positive integer m, we write π(m) = {p | p is a primary divisor of m},
and for a non-empty set K, we use π(K) to denote the set of primary divisors

of |K|.
Inspired by the works of [3] and [10], we have the following generalized results.

For completeness, we provide the corresponding proofs.
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Lemma 2.1. Let N be a p-solvable normal subgroup of a group G. Suppose

that B = bG, C = cG ∈ ConG(Np′) such that (|B|, |C|) = 1. Then

(a) G = CG(b)CG(c);

(b) BC ∈ ConG(Np′) and |BC| divides |B| |C|.

Proof. (a) This is obvious since (|G : CG(b)|, |G : CG(c)|) = (|bG|, |cG|) = 1.

(b) We first claim that BC ∈ Con(G). It suffices to prove that bgch is

conjugate to bc for any g, h ∈ G. Since gh−1 ∈ G = CG(b)CG(c), there exists

x ∈ CG(b) and y ∈ CG(c) such that gh−1 = x−1y. Then xg = yh and bgch =

bxgcyh = (bc)xg. Now, it suffices to prove that there is a p′-element in BC. In

fact, let H be a p-complement of N . Then there exists g, h ∈ G such that bg ∈ H

and ch ∈ H. Therefore, bgch is a p′-element in N and bgch ∈ BC.

Since CG(b) ∩ CG(c) ≤ CG(bc), we have that |BC| = |G : CG(bc)| divides
|G : CG(b) ∩ CG(c)| = |G : CG(b)| |G : CG(c)| = |B| |C|. ¤

Lemma 2.2. Let N be a p-solvable normal subgroup of a group G. Then

the following two properties hold:

(a) Suppose that B0 ∈ ConG(Np′) such that |B0| is the maximal size in csG(Np′).

If C ∈ ConG(Np′) such that (|B0|, |C|) = 1, then C−1CB0 = B0 and

|〈C−1C〉| divides |B0|.
(b) Suppose thatm,n are the two maximal sizes in csG(Np′) such thatm > n > 1

and (m,n) = 1. If D is a non-central class in ConG(Np′) with (|D|, n) = 1,

then |D| = m.

Proof. (a) Lemma 2.1 (b) implies that CB0 ∈ ConG(Np′), and it is obvious

that |CB0| ≥ |B0|. By the hypothesis, we see that |CB0| = |B0|. It follows that

C−1CB0 = B0, and thus 〈C−1C〉B0 = B0. So, 〈C−1C〉 ≤ KB , which yields that

|〈C−1C〉| divides |B0|.
(b) Let A,B ∈ ConG(Np′) such that |A| = n and |B| = m. Then DA ∈

ConG(Np′) by Lemma 2.1 (b). Since |DA| ≥ |A|, |DA| = m or n. If |DA| =
n, then D−1DA ∈ ConG(Np′) and thus D−1DA = A, in which case we have

〈D−1D〉A = A. Therefore, |〈D−1D〉| divides |A|. On the other hand, we see that

〈D−1D〉 ⊆ 〈AA−1〉, so |〈D−1D〉| divides |〈AA−1〉|. By (a) of this lemma, |〈AA−1〉|
divides |B|, so |〈D−1D〉| divides |B|. Therefore, |〈D−1D〉| divides (n,m) = 1, a

contradiction. So |DA| = m. We conclude that |D| = m since |DA| divides
|D| |A|. ¤
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Lemma 2.3. Suppose that N is a p-solvable normal subgroup of a group G

and B0 ∈ ConG(Np′) such that |B0| is the maximal size in csG(Np′). Let

M = 〈D | D ∈ ConG(Np′) such that (|D|, |B0|) = 1〉.

Then M is an abelian p′-subgroup of N . Furthermore, if M � Z(G), then

π(M/(Z(G) ∩M)) ⊆ π(B0) and in this case, |B0| is not a p-number.

Proof. Let

K = 〈D−1D | D ∈ ConG(Np′) such that (|D|, |B0|) = 1〉.
It is easy to see that M and K are normal subgroups of G and K = [M,G].

On the other hand, if C ∈ ConG(Np′) such that (|C|, |B0|) = 1, then

C−1CB0 = B0 by Lemma 2.2 (a), and thus KB0 = B0. Therefore, |K| divi-
des |B0|, in particular, π(K) ⊆ π(B0). So (|K|, |C|) = 1. Suppose that C = cG.

Since |K : CK(c)| divides (|K|, |C|), we have K = CK(c), and thus K ≤ Z(M).

Therefore, M is nilpotent since M/K ≤ Z(G/K). We conclude that M is a

p′-group since all of its generators are p′-elements.

Suppose that M � Z(G). Let r ∈ π(M/(Z(G) ∩ M)) and R ∈ Sylr(M).

Then R E G and 1 6= [R,G] ≤ [M,G] = K. Therefore, r ∈ π(K) ⊆ π(B0), and

thus π(M/(Z(G) ∩M)) ⊆ π(B0).

If R is a Sylow r-subgroup of M , we can assume that r ∈ π(M/(Z(G)∩M)).

For any generating class dG of M , we have that |dR| divides (|R|, |dG|) = 1.

Therefore, R = CR(d), which implies that R ≤ Z(M). Consequently, we conclude

that M is abelian. ¤

3. Main Results

In this section, we give the proof of our main result.

Theorem. Let N be a p-solvable normal subgroup of a group G. Suppose

that α > β > 1 are the two maximal sizes in csG(Np′) with (α, β) = 1. If β is

a p′-number and β divides |N/(N ∩ Z(G))|, then N is solvable. Furthermore, if

a p-complement K of N is not nilpotent, then K is quasi-Frobenius with abelian

kernel and complements and at least one of the following conditions is satisfied:

(1) N is p-nilpotent;

(2) N is p-closed;

(3) K = R o T with R an abelian normal Sylow r-subgroup of N and T an

abelian {p, r}-complement of N .
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Proof. Let K and P be a p-complement and a Sylow p-subgroup of N

respectively. If K is nilpotent, then N is solvable since it is a product of two

nilpotent groups. We only need to consider the case that K is not nilpotent. Then

N = PK and we can write K = U ×W , where W is the maximal Hall subgroup

of K contained in Z(G). Then N1 = PU is a normal subgroup of G and no Sylow

subgroup of U is contained in Z(G). It is easy to see that U/Z(U) ∼= K/Z(K)

and that the theorem is true for N if and only if it is true for N1. So, without

loss of generality, we will assume that no Sylow subgroup of N with order prime

to p is contained in Z(G).

Since K is not nilpotent by the assumption, we have |π(K)| ≥ 2.

Let
M = 〈D | D ∈ ConG(Np′) such that (|D|, α) = 1〉.

Then M is an abelian p′-subgroup of N by Lemma 2.3, and M EG.

Let a and b be p′-elements in N such that |aG| = β and |bG| = α. We will

prove this theorem by the following steps.

Step 1. CG(b) is maximal and minimal among centralizers of all non-central

p′-elements in N . In particular, b can be assumed to be a q-element for some

prime q 6= p and CN (b) = P1Q×L, with P1 ∈ Sylp(CN (b)), Q ∈ Sylq(CN (b)) and

L ≤ Z(CG(b)).

Suppose that x and y are non-central p′-elements in N such that CG(b) ≤
CG(x) and CG(y) ≤ CG(b). Then |xG| divides |bG| = α. Therefore, |xG| = α by

Lemma 2.2 (b), and thus CG(b) = CG(x). On the other hand, α = |bG| divides
|yG|, so |yG| = α and CG(b) = CG(y) by the hypothesis of this theorem.

Now, write b = b1b2 · · · bs with each bi an element of primary order and

bibj = bjbi for all i and j. We may assume that b1 /∈ Z(G) and b1 can be assumed

to be a q-element for a prime q 6= p. It is obvious that CG(b) ≤ CG(b1), so

CG(b) = CG(b1) by the above paragraph. By replacing b with b1 we can assume

that b is a q-element.

For every {p, q}′-element x in CN (b), we have CG(bx) = CG(b) ∩ CG(x) ≤
CG(b). Therefore, CG(bx) = CG(b) by the first paragraph. It follows that CG(b) ≤
CG(x), and thus x ∈ Z(CG(b)).

Step 2. q - α.
Suppose that q | α. Then q - β and thus q - |aN | = |N : CN (a)| = |CN (b) :

CN (a)∩CN (b)|. Therefore, a Sylow q-subgroup of CN (b) is contained in CN (a)∩
CN (b). Without loss of generality, we may assume that Q ≤ CN (a).

Since a ∈ CN (b) and L ≤ Z(CG(b)), we have L ≤ CN (a), and thus Q× L ≤
CN (a). Therefore, |aN |p′ divides |bN |p′ . Since β is a p′-number, we have |aN | = 1,
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that is a ∈ Z(N). Write a = aq · aq′ with aq and aq′ the q-component and q′-
component of a respectively. If aq′ /∈ Z(G), then CG(baq′) = CG(b) ∩ CG(aq′).

Therefore, CG(b) = CG(baq′) ≤ CG(aq′). By Step 1, we have |aGq′ | = α, and thus

|aG| = α, which is a contradiction. Therefore, we may assume a to be a q-element.

For any {p, q}′-element x ∈ N = CN (a), we have CG(ax) = CG(a) ∩ CG(x) ≤
CG(a), then CG(ax) = CG(a) ≤ CG(x) by the hypothesis, and thus x ∈ Z(CG(a)).

Since b ∈ CG(a), we have x ∈ CN (b) and thus x ∈ L ≤ Z(CG(b)). If x /∈ Z(G),

then CG(x) = CG(b) by Step 1. The fact that CG(ax) = CG(a)∩CG(x) gives the

contradiction that αβ divides |(ax)G|. So, x ∈ Z(G) for all {p, q}′-elements in N ,

which contradicts to the assumption of the beginning of the proof.

Step 3. KB ∩ CG(b) = {1}, where B = bG. In particular, a can be assumed

to be a q′-element.

By Step 1 we can assume that |b| = qk for some positive integer k.

Let x ∈ KB ∩ CG(b). Then xb ∈ B, and so xb = bg for some g ∈ G. As

x ∈ CG(b), we have

xqk = xqkbq
k

= (xb)q
k

= (bg)q
k

= (bq
k

)g = 1.

On the other hand, since |KB | divides |B| = α, we see that q - |KB | by Step 2.

Therefore, x = 1.

Now, let a1 = as be the q-component of a. Then a1 ∈ CG(b)
w for some

w ∈ G. For every g ∈ G. Since G = CG(a)CG(b)
w, we can write g = uv with

u ∈ CG(a) and v ∈ CG(b)
w. By Lemma 2.2 (a) and Lemma 2.3, 〈aG〉 is a normal

abelian subgroup of G and 〈A−1A〉 ≤ KB , where A = aG. Therefore,

[a1, g] = [as, g] = [a, g]s = (a−1ag)s ∈ KB .

Also,

[a1, g] = [a1, uv] = [a1, v] ∈ CG(b)
w.

Therefore,

[a1, g] ∈ KB ∩ CG(b)
w = (KB ∩ CG(b))

w = {1}.
So, a1 ∈ Z(G) and by replacing a with aa−1

1 we can assume that a is a q′-element.

Step 4. (CN (a) ∩ CN (b))p′ = Z(N)p′ = Z(G)p′ ∩N .

Let x be a p′-element in CN (a) ∩ CN (b) and write x = xq · xq′ with xq and

xq′ the q-component and q′-component of x respectively. If xq′ /∈ Z(G), then

CG(b) ≤ CG(xq′) by Step 1, and thus CG(b) = CG(xq′) again by Step 1. It

follows that a ∈ CG(b), and so CG(b) ≤ CG(a), which is a contradiction. Since

xq ∈ CG(a), we have CG(axq) = CG(a) ∩ CG(xq) ≤ CG(a). Then the hypothesis

implies that CG(axq) = CG(a) ≤ CG(xq). If xq /∈ Z(G), then xq ∈ M , and thus
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q ∈ π(M/M∩Z(G)) ⊆ π(α), which contradicts to Step 2. So (CN (a)∩CN (b))p′ ≤
Z(G).

Now the equalities are obvious since Z(N)p′ ≤ (CN (a)∩CN (b))p′ ≤ Z(G)p′ ∩
N ≤ Z(N)p′ .

Step 5. π(aN ) = π(β) and π(bN ) = π(α).

It is well known that π(aN ) ⊆ π(β). On the other hand, if there exists a

prime r ∈ π(β)\π(aN ), then r /∈ π(α), and thus r /∈ π(bN ). By replacing b with

a suitable conjugation, we can assume that a Sylow r-subgroup of N , say R, is

contained in both CN (a) and CN (b), and thus in CN (a) ∩ CN (b). Therefore,

R ≤ (CN (a) ∩CN (b))p′ ≤ Z(G) by Step 4, which contradicts to the beginning of

the proof. Hence, π(aN ) = π(β). Similarly we have π(bN ) = π(α).

Step 6. n(Γp(N)) = 2.

For any non-central p′-element x in N , we can write x = xq · xq′ . Since

q - |bN | by Step 2, we can assume that x ∈ Q. We will prove that |xG| = α when

xq /∈ Z(G) and |xG| = β when xq ∈ Z(G).

First suppose that xq /∈ Z(G). If |xG
q | = α, then clearly |xG| = α. If |xG

q | = β,

then xq ∈ M by the definition of M and thus q ∈ π(α), which is a contradiction.

We next show that |xG
q | < β may not happen. If L � Z(G), then we choose z

a non-central {p, q}′-element in CN (b). Then CG(b) = CG(z) by Step 1. Now

xq ∈ CN (b) = CN (z), it follows that CG(zxq) = CG(z) ∩ CG(xq) ≤ CG(z).

Therefore, α = |zG| divides |(zxq)
G|, which gives that CG(zxq) = CG(z) =

CG(b) ≤ CG(xq). Again by Step 1, we have |xG
q | = α, which contradicts to

our assumption. Therefore, in this case L ≤ Z(G). It follows that |aN | = |N :

CN (a)| = |CN (b) : CN (a) ∩ CN (b)| = |PQL : (CN (a) ∩ CN (b))pZ(N)p′ | is a

q-number. And so β is a q-number by Step 5. Since 〈xq〉 acts coprimely on

the abelian group Mq′ , Mq′ = [Mq′ , 〈xq〉] × CMq′ (xq). As a ∈ Mq′ , we may

write a = uw with u ∈ [Mq′ , 〈xq〉] and w ∈ CMq′ (xq). Let g = wxq. Then

CG(g) = CG(w) ∩ CG(xq) ≤ CG(xq) and so |xG
q | divides |gG|. It is easy to see

that |gG| 6= α, β. Hence |gG| < β. Choose Q0 to be a Sylow q-subgroup of G such

that Q ≤ Q0. It follows that Mq′Q0 ≤ G and

|Mq′Q0 : CMq′Q0(g)| ≤ |gG| < β = |Q0| : |CG(a)|q.

Moreover, we have

CMq′Q0(g) = CMq′Q0(w) ∩ CMq′Q0(xq) = Mq′CQ0(w) ∩ CMq′ (xq)CQ0(xq)

= CMq′ (xq)(CQ0(w) ∩ CQ0(xq)).
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Set D = CQ0
(w) ∩ CQ0

(xq). Then

|Q0|
|CG(a)|q >

|Mq′ | |Q0|
|CMq′ (xq)| |D| ,

which implies that |D| : |CG(a)|q > |Mq′ | : |CMq′ (xq)| = |[Mq′ , 〈xq〉]|. On the

other hand, since D ≤ CG(xq) and Mq′ EG, D acts on [Mq′ , 〈xq〉] by conjugation.

Noticing that

CD(u) = CG(u) ∩D = CQ0(u) ∩ CQ0(w) ∩ CQ0(xq) = CQ0(a) ∩ CQ0(xq),

we have

|CD(u)| = |CQo
(a) ∩ CQ0

(xq)| ≤ |CG(a)|q.
Therefore,

|uD| = |D| : |CD(u)| ≥ |D| : |CG(a)|q > |[Mq′ , 〈xq〉]|,
which is a contradiction. Therefore, if xq /∈ Z(G), then |xG| = α.

Now, suppose that xq ∈ Z(G). Then xq′ /∈ Z(G). If |xG
q′ | = α, then |xG| = α.

Suppose that |xG
q′ | 6= α. For any p′-element y ∈ CN (xq′) ∩ CN (b), we will prove

that y ∈ Z(G). For otherwise, write y = yq · yq′ with yq and yq′ the q-component

and q′-component of y respectively. If yq′ /∈ Z(G), then CG(b) ≤ CG(yq′) and

thus CG(yq′) = CG(b) by Step 1 Therefore, xq′ ∈ CG(b) and thus we see that

CG(b) ≤ CG(xq′). Again by Step 1 we have |xG
q′ | = α, which is a contradiction.

Now, y can be assumed to be a q-element. Then |yG| = α by the above paragraphs.

Arguing similarly as above, we have the contradiction that |xG
q′ | = α. Therefore,

we have (CN (xq′) ∩ CN (b))p′ ≤ Z(G). Noticing that N = CN (a)CN (b), we have

|N | = |aN | |bN | |CN (a)∩CN (b)|. Since β is a p′-number dividing |N/(N ∩Z(G))|,
we see that β divides |N |p′ : |N ∩ Z(G)|p′ = |N |p′ : |Z(N)|p′ , and thus β divides

|aN |. Therefore, |aG| = β = |aN | = |CN (b) : CN (a) ∩ CN (b)| = |CN (b)|p′ :

|CN (a) ∩ CN (b)|p′ = |CN (b)|p′ : |Z(N)|p′ . Let T be a p-complement of CN (b).

Now, consider the factor group T/Z(N)p′ and the set xN
q′ . If zZ(N)p′ is an

element in T/Z(N)p′ , we may assume that z ∈ T . For any y ∈ tN , we define

yzZ(N)p′ = yz. Then T/Z(N)p′ acts on the set xN
q′ . By the above paragraph we

have xN
q′ ∩ T = ∅. Therefore, T/Z(N)p′ acts on xN

q′ without fixed point, which

implies that |T/Z(N)p′ | divides |xN
q′ |. Consequently, |xN

q′ | = |xG| = β. Hence

|xG| = |xG
q′ | = β.

Consequently, if we denote

I = {x | x is a p′-element in N such that |xG| = α}
and

J = {x | x is a p′-element in N such that |xG| = β}.
Then, from the above paragraphs and Step 4 we see that Np′ = Z(N)p′∪I∪J and
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that |xN | 6= 1 and |yN | 6= 1 for every x ∈ I and y ∈ J . Therefore, n(Γp(N)) = 2

by [2, Theorem 1].

Step 7. Final conclusion.

Since Γp(N) has two components by Step 6, we use X1 and X2 to denote the

two components and assume that xN ∈ X2 where |xN | is maximal in csN (Np′).

Furthermore, for i = 1 and 2, we write

πi = {r | r is a primary divisor of |A|, where A = xN ∈ Xi}.

If p does not divide α, then all p′-elements in N have conjugacy class size in N

coprime to p. Therefore, N = P ×K, where P is a Sylow p-subgroup in N and K

is a p-complement of N by [2, Proposition 2]. In this case, cs(K) = csN (Np′) and

thus n(Γ(K)) = 2. So K is quasi-Frobenius with abelian kernel and complements

by [1, Theorem 2].

Now suppose that p divides α. If the maximal size of conjugacy classes

in ConN (Np′) divides β, then p ∈ π(α) = π1. Therefore, N is p-nilpotent by

[3, Theorem 8] and K is quasi-Frobenius with abelian kernel and complements.

Otherwise, the maximal size of conjugacy classes in ConN (Np′) divides α, it

follows that p ∈ π(α) = π2. If |π2| ≥ 3, then N has a normal Sylow p-subgroup

and K is quasi-Frobenius with abelian kernel and complements by [3, Theorem

12]. It is easy to see that N is solvable in the above cases.

If |π2| < 3, then |π2| = 2 by Lemma 2.3 and we may assume that π2 = {p, r}
for some prime r 6= p. By [3, Theorem 9], we see that N is π2-separable and has

abelian π2-complements. Therefore, there exists a π2-complement T and a Sylow

r-subgroup R of K such that K = RT . Since r does not divide β, a Sylow r-

subgroup of N is contained in CN (a). it is easy to see that M is the p-complement

of CN (a), so R ≤ M . It follows that REN , by Schur–Zassenhaus theorem, there

is a complement V of R in N . Therefore, V is a product of a Sylow p-subgroup

and an abelian p-complement, hence it is solvable. Consequently, we deduce that

N is solvable since N/R ∼= V . We will finally show that K is quasi-Frobenius

with abelian kernel and complements.

If x ∈ Z(K), then |xN | is a p-number. Since β is a p′-number and |xN |
divides |xG|, |xG| 6= β. If |xG| = α, then α is a p-number since π(xN ) = π(α) by

Step 5, which contradicts to Lemma 2.3. Therefore, |xG| = 1. It follows that x is

a p′-element in Z(G)∩N and thus x ∈ Z(N)p′ . Therefore, Z(K) ⊆ Z(N)p′ . The

fact that Z(N)p′ ⊆ Z(K) is easy to see. So, Z(N)p′ = Z(K).

Write K = K/Z(K), R = RZ(K)/Z(K) and T = TZ(K)/Z(K). Then

K = R o T . It suffices to show that CT (g) = 1 for any 1 6= g ∈ R. Suppose on

contrary that there exists 1 6= t ∈ CT (g) for some 1 6= g ∈ R. Since R ∩ T = 1
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and t /∈ Z(N), we see t /∈ M and thus |tG| = α by Step 6. On the other hand,

since M ≤ CN (g), |gN | divides |N : M | = |aN | · ps for some integer s ≥ 0. If

|gG| = α, then |gN | divides α. Therefore, |gN | is a p-number and so α is a p-

number too, which contradicts to Lemma 2.3. Therefore, |gG| = β by Step 6 and

so (CN (t) ∩ CN (g))p′ ≤ Z(G)p′ .

But on the other hand, since (|t|, |g|) = 1, we see that gt
|g|

= t
|g| 6= 1. Hence,

gt
|g|

= t
|g| ∈ CN (t) ∩ CN (gt) = CN (t) ∩ CN (gt) = CN (t) ∩ CN (g),

which means that CN (t)∩CN (g) contains a non-central p′-element, contradicting

to the above paragraph. ¤
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