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Strong convergence theorem for Vilenkin–Fejér means

By ISTVÁN BLAHOTA (Nýıregyháza) and GIORGI TEPHNADZE (Lule̊a)

Abstract. As main result we prove strong convergence theorems of Vilenkin–Fejér

means when 0 < p ≤ 1/2.

1. Introduction

It is well-known that Vilenkin system does not form basis in the space

L1(Gm). Moreover, there is a function in the Hardy space H1(Gm), such that the

partial sums of f are not bounded in L1-norm. However, in Gát [7] the following

strong convergence result was obtained for all f ∈ H1:

lim
n→∞

1

log n

n∑

k=1

‖Skf − f‖1
k

= 0,

where Skf denotes the k-th partial sum of the Vilenkin–Fourier series of f . (For

the trigonometric analogue see in Smith [17], for the Walsh–Paley system in

Simon [15]). Simon [16] (see also [23]) proved that there exists an absolute

constant cp, depending only on p, such that

1

log[p] n

n∑

k=1

‖Skf‖pp
k2−p

≤ cp‖f‖pHp
, (0 < p ≤ 1) (1)
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for all f ∈ Hp and n ∈ P+, where [p] denotes integer part of p. In [21] it was

proved that sequence {1/k2−p}∞k=1 (0 < p < 1) in (1) are given exactly.

Weisz [27] considered the norm convergence of Fejér means of Walsh–Fourier

series and proved the following:

Theorem W1 (Weisz). Let p > 1/2 and f ∈ Hp. Then there exists an

absolute constant cp, depending only on p, such that for all f ∈ Hp and k =

1, 2, . . .

‖σkf‖p ≤ cp‖f‖Hp
.

Theorem W1 implies that

1

n2p−1

n∑

k=1

‖σkf‖pp
k2−2p

≤ cp‖f‖pHp
, (1/2 < p < ∞, n = 1, 2, . . . ).

If Theorem W1 holds for 0 < p ≤ 1/2, then we would have

1

log[1/2+p] n

n∑

k=1

‖σkf‖pp
k2−2p

≤ cp‖f‖pHp
, (0 < p ≤ 1/2, n = 2, 3, . . . ). (2)

However, in [18] it was proved that the assumption p > 1/2 in Theorem W1

is essential. In particular, the following is true:

Theorem T1. There exists a martingale f ∈ H1/2 such that

sup
n

‖σnf‖1/2 = +∞.

For the Walsh system in [22] it was proved that (2) holds, though Theorem T1

is not true for 0 < p < 1/2.

As main result we generalize inequality (2) for bounded Vilenkin systems.

The results for summability of Fejér means of Walsh–Fourier series can be

found in [3], [4], [5], [8], [9], [10], [11], [12], [13], [14].

2. Definitions and notations

Let P+ denote the set of the positive integers, P := P+ ∪ {0}.
Let m := (m0,m1, . . . ) denote a sequence of the positive integers not less

than 2.

Denote by

Zmk
:= {0, 1, . . . ,mk − 1}
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the additive group of integers modulo mk.

Define the group Gm as the complete direct product of the group Zmj with

the product of the discrete topologies of Zmj
’s.

The direct product µ of the measures

µk({j}) := 1/mk (j ∈ Zmk
)

is the Haar measure on Gm with µ(Gm) = 1.

In this paper we discuss bounded Vilenkin groups only, that is

sup
n

mn < ∞.

The elements of Gm are represented by sequences

x := (x0, x1, . . . , xk, . . . ) (xk ∈ Zmk
).

It is easy to give a base for the neighbourhood of Gm

I0(x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ P)

Denote In := In(0) for n ∈ P and In := Gm\In.
Let

en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ Gm (n ∈ P).
Denote

Ik,lN :=





IN (0, . . . , 0, xk 6= 0, 0, . . . , 0, xl 6= 0, xl+1, . . . , xN−1, xN , xN+1, . . . ),

k < l < N,

IN (0, . . . , 0, xk 6= 0, 0, . . . , 0, xN , xN+1, . . . ),

l = N.

and

IN =

(
N−2⋃

K=0

N−1⋃

l=k+1

Ik,lN

)⋃(
N−1⋃

K=0

Ik,NN

)
. (3)

If we define the so-called generalized number system based on m in the fol-

lowing way:

M0 := 1, Mk+1 := mkMk (k ∈ P)
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then every n ∈ P can be uniquely expressed as

n =

∞∑

j=0

njMj ,

where nj ∈ Zmj
(j ∈ P) and only a finite number of nj ’s differ from zero. Let

|n| := max{j ∈ P; nj 6= 0}.
For n =

∑r
i=1 siMni

, where n1 > n2 > · · · > nr ≥ 0 and 1 ≤ si < mni
for

all 1 ≤ i ≤ r we denote

A0,2 =

{
n ∈ P : n = M0 +M2 +

r−2∑

i=1

siMni

}
.

The norm (or quasi-norm) of the space Lp(Gm) is defined by

‖f‖p :=

(∫

Gm

|f(x)|p dµ(x)
)1/p

(0 < p < ∞) .

The space Lp,∞(Gm) consists of all measurable functions f for which

‖f‖pLp,∞ := sup
λ>0

λpµ{f > λ} < +∞.

Next, we introduce onGm an orthonormal system which is called the Vilenkin

system.

At first, define the complex valued function rk(x) : Gm → C, the generalized
Rademacher functions as

rk(x) := exp(2πıxk/mk) (ı2 = −1, x ∈ Gm, k ∈ P).

It is known that
mn−1∑

k=0

rkn(x) =

{
mn, xn = 0,

0, xn 6= 0,
(4)

Now, define the Vilenkin system ψ := (ψn : n ∈ P) on Gm as:

ψn :=

∞∏

k=0

rnk

k (x) (n ∈ P).

Specially, we call this system the Walsh–Paley one if m ≡ 2.

The Vilenkin system is orthonormal and complete in L2(Gm), [1], [24].
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Now we introduce analogues of the usual definitions in Fourier-analysis. If

f ∈ L1(Gm) we can establish the the Fourier coefficients, the partial sums of the

Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the

Vilenkin system in the usual manner:

f̂(n) :=

∫

Gm

fψndµ, (n ∈ P+)

Snf :=

n−1∑

k=0

f̂(k)ψk, (n ∈ P+),

σnf :=
1

n

n∑

k=1

Skf, (n ∈ P+),

Dn :=

n−1∑

k=0

ψk, (n ∈ P+),

Kn :=
1

n

n∑

k=1

Dk, (n ∈ P+).

Recall that

DMn(x) =

{
Mn, if x ∈ In,

0, if x /∈ In,
. (5)

and

Dn = ψn

∞∑

j=0

DMj

mj−1∑
p=mj−nj

rpj . (6)

It is well-known that

sup
n

∫

Gm

|Kn(x)| dµ(x) ≤ c < ∞. (7)

The σ-algebra generated by the intervals {In(x) : x ∈ Gm} will be denoted

by zn (n ∈ P). Denote by f = (f (n), n ∈ P) a martingale with respect to zn

(n ∈ P) (for details see e.g. [25]). The maximal function of a martingale f is

defined by

f∗ = sup
n∈P

∣∣f (n)
∣∣.

In case f ∈L1(Gm), then it is easy to show that the sequence (SMn(f) :n∈P)
is a martingale. Moreover, the maximal functions are also be given by

f∗(x) = sup
n∈P

1

|In(x)|

∣∣∣∣
∫

In(x)

f (u)µ (u)

∣∣∣∣
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For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all mart-

ingales for which

‖f‖Hp
:= ‖f∗‖p < ∞.

If f = (f (n), n ∈ P) is martingale then the Vilenkin–Fourier coefficients must

be defined in a slightly different manner:

f̂(i) := lim
k→∞

∫

Gm

f (k)(x)ψi(x)dµ(x).

The Vilenkin–Fourier coefficients of f ∈ L1(Gm) are the same as those of the

martingale (SMn
(f) : n ∈ P) obtained from f .

A bounded measurable function a is p-atom, if there exist a dyadic interval I,

such that ∫

I

adµ = 0, ‖a‖∞ ≤ µ/(I)−1/p, supp (a) ⊂ I.

3. Formulation of main result

Theorem 1. Let 0 < p ≤ 1/2. Then there exists an absolute constant

cp > 0, depending only on p, such that for all f ∈ Hp and n = 2, 3, . . .

1

log[1/2+p] n

n∑

k=1

‖σkf‖pp
k2−2p

≤ cp ‖f‖pHp
,

where [x] denotes integer part of x.

Corollary 1. Let f ∈ H1/2. Then

1

log n

n∑

k=1

‖σkf − f‖1/21/2

k
→ 0, as n → ∞.

Theorem 2. Let 0 < p < 1/2 and Φ : P+ → [1, ∞) be any non-decreasing

function, satisfying the conditions Φ(n) ↑ ∞ and

lim
n→∞

n2−2p

Φ(n)
= ∞. (8)

Then there exists a martingale f ∈ Hp, such that

∞∑

k=1

‖σkf‖pLp,∞

Φ(k)
= ∞.
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4. Auxiliary propositions

Lemma 1 ([26] (see also [25])). A martingale f = (f (n), n ∈ P) is in Hp(0 <

p ≤ 1) if and only if there exist a sequence (ak, k ∈ P) of p-atoms and a sequence

(µk, k ∈ P) of a real numbers such that for every n ∈ P

∞∑

k=0

µkSMnak = f (n),

∞∑

k=0

|µk|p < ∞. (9)

Moreover, ‖f‖Hp v inf
(∑∞

k=0 |µk|p
)1/p

, where the infimum is taken over all

decomposition of f of the form (9).

Lemma 2 ([6]). Let n > t, t, n ∈ P, x ∈ It\It+1. Then

KMn(x) =




0, if x− xtet /∈ In,

Mt

1− rt(x)
, if x− xtet ∈ In.

Lemma 3 ([19], [20]). Let x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1.

Then ∫

IN

|Kn (x− t)| dµ (t) ≤ cMlMk

nMN
, when n ≥ MN .

Let x ∈ Ik,NN , k = 0, . . . , N − 1. Then

∫

IN

|Kn (x− t)| dµ (t) ≤ cMk

MN
, when n ≥ MN .

Lemma 4. Let n =
∑r

i=1 siMni , where n1 > n2 > · · · > nr ≥ 0 and

1 ≤ si < mni for all 1 ≤ i ≤ r as well as n(k) = n−∑k
i=1 siMni , where 0 < k ≤ r.

Then

nKn =

r∑

k=1

( k−1∏

j=1

rsjnj

)
skMnk

KskMnk
+

r−1∑

k=1

( k−1∏

j=1

rsjnj

)
n(k)DskMnk

.

Proof. It is easy to see that if k, s, n ∈ P, 0 ≤ k < Mn, then

Dk+sMn = DsMn +

sMn+k−1∑

i=sMn

ψi = DsMn +

k−1∑

i=0

ψi+sMn = DsMn + rsnDk.
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With help of this fact we get

nKn =

n∑

k=1

Dk =

s1Mn1∑

k=1

Dk +

n∑

k=s1Mn1
+1

Dk = s1Mn1Ks1Mn1
+

n(1)∑

k=1

Dk+s1Mn1

= s1Mn1
Ks1Mn1

+

n(1)∑

k=1

(
Ds1Mn1

+ rs1n1
Dk

)

= s1Mn1Ks1Mn1
+ n(1)Ds1Mn1

+ rs1n1
n(1)Kn(1) .

If we unfold n(1)Kn(1) in similar way, we have

n(1)Kn(1) = s2Mn2Ks2Mn2
+ n(2)Ds2Mn2

+ rs2n2
n(2)Kn(2) ,

so

nKn = s1Mn1Ks1Mn1
+ rs1n1

s2Mn2Ks2Mn2
+ rs1n1

rs2n2
n(2)Kn(2)

+ n(1)Ds1Mn1
+ rs1n1

n(2)Ds2Mn2
.

Using this method with n(2)Kn(2) , . . . , n(r−1)Kn(r−1) , we obtain

nKn =

r∑

k=1

( k−1∏

j=1

rsjnj

)
skMnk

KskMnk
+

( r∏

j=1

rsjnj

)
n(r)Kn(r)

+

r−1∑

k=1

( k−1∏

j=1

rsjnj

)
n(k)DskMnk

.

According to n(r) = 0 it yields the statement of the Lemma 4. ¤

Lemma 5 ([2]). Let s, n ∈ P. Then

DsMn = DMn

s−1∑

k=0

ψkMn = DMn

s−1∑

k=0

rkn.

Lemma 6. Let s, t, n ∈ N, n > t, s < mn, x ∈ It\It+1. If x − xtet /∈ In,

then

KsMn(x) = 0.

Proof. In [6] G. Gát proved similar statement to KMn(x) = 0. We will

use his method. Let x ∈ It\It+1. Using (5) and (6) we have

sMnKsMn(x) =

sMn∑

k=1

Dk(x) =

sMn∑

k=1

ψk(x)

( t−1∑

j=0

kjMj +Mt

mt−1∑

i=mt−kt

rit(x)

)
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=

sMn∑

k=1

ψk(x)

t−1∑

j=0

kjMj +

sMn∑

k=1

ψk(x)Mt

mt−1∑

i=mt−kt

rit(x) = J1 + J2.

Let k :=
∑n

j=0 kjMj . Applying (4) we get
∑mt−1

kt=0 rkt
t (x) = 0, for x ∈ It\It+1. It

follows that

J1=

m0−1∑

k0=0

· · ·
mt−1−1∑

kt−1=0

mt+1−1∑

kt+1=0

· · ·
mn−1−1∑

kn−1=0

s−1∑

kn=0

(
n∏

l=0
l 6=t

rkl

l (x)

)
t−1∑

j=0

kjMj

mt−1∑

kt=0

rkt
t (x) = 0.

On the other hand

J2 =

m0−1∑

k0=0

· · ·
mt−1−1∑

kt−1=0

mt+1−1∑

kt+1=0

· · ·
mn−1−1∑

kn−1=0

s−1∑

kn=0

(
n∏

l=0
l 6=t

rkl

l (x)

)
Mt

kt−1∑

i=0

rit(x)

=

n−1∏

l=0
l 6=t

(
ml−1∑

kl=0

rkl

l (x)

)(
s∑

kp=0

rkp
p (x)

)
Mt

kt−1∑

i=0

rit(x).

Since x − xtet /∈ In, at least one of
∑ml−1

kl=0 rkl

l (x) will be zero, if l = p 6= t and

0 ≤ p ≤ n− 1, that is J2 = 0. ¤

5. Proof of the theorems

Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be comp-

lete, if we show that with a constant cp

1

log[1/2+p] n

n∑

k=1

‖σka‖pp
k2−2p

≤ cp < ∞ (n = 2, 3, . . . ).

for every p-atom a, where [1/2+ p] denotes the integers part of 1/2+ p. We may

assume that a be an arbitrary p-atom with support I, µ(I) = M−1
N and I = IN .

It is easy to see that σn(a) = 0, when n ≤ MN . Therefore we can suppose that

n > MN .

Let x ∈ IN . Since σn is bounded from L∞ to L∞ (the boundedness follows

from (7)) and ‖a‖∞ ≤ cM
1/p
N we obtain

∫

IN

|σma(x)|p dµ(x) ≤ c ‖a‖p∞ /MN ≤ cp < ∞, 0 < p ≤ 1/2.
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Hence

1

log[1/2+p] n

n∑
m=1

∫
IN

|σma(x)|pdµ(x)
m2−2p

≤ c

log[1/2+p] n

n∑
m=1

1

m2−2p
≤ cp < ∞. (10)

It is easy to show that

|σma(x)| ≤
∫

IN

|a(t)| |Km(x− t)| dµ(t)

≤ ‖a‖∞
∫

IN

|Km(x− t)| dµ(t) ≤ cM
1/p
N

∫

IN

|Km(x− t)| dµ(t).

Let x ∈ Ik,lN , 0 ≤ k < l < N . Then from Lemma 3 we get

|σma(x)| ≤ cMlMkM
1/p−1
N

m
. (11)

Let x ∈ Ik,NN 0 ≤ k < N . Then from Lemma 3 we have

|σma(x)| ≤ cMkM
1/p−1
N . (12)

Since
N−2∑

k=0

1/M1−2p
k ≤ N [1/2+p], for 0 < p ≤ 1/2

by combining (3) and (11–12) we obtain

∫

IN

|σma(x)|pdµ(x) =
N−2∑

k=0

N−1∑

l=k+1

mj−1∑

xj=0,j∈{l+1,...,N−1}

∫

Ik,l
N

|σma(x)|pdµ(x)

+

N−1∑

k=0

∫

Ik,N
N

|σma(x)|pdµ(x)

≤ c

N−2∑

k=0

N−1∑

l=k+1

ml+1 . . .mN−1

MN

(MlMk)
pM1−p

N

mp
+

N−1∑

k=0

1

MN
Mp

kM
1−p
N

≤ cM1−p
N

mp

N−2∑

k=0

N−1∑

l=k+1

(MlMk)
p

Ml
+

N−1∑

k=0

Mp
k

Mp
N

=
cM1−p

N

mp

N−2∑

k=0

1

M1−2p
k

N−1∑

l=k+1

M1−p
k

M1−p
l

+

N−1∑

k=0

Mp
k

Mp
N

≤ cM1−p
N N [1/2+p]

mp
+ cp. (13)
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It is easy to show that

n∑

m=MN+1

1

m2−p
≤ c

M1−p
N

, for 0 < p ≤ 1/2.

By applying (10) and (13) we get

1

log[1/2+p] n

n∑
m=1

‖σma‖pp
m2−2p

≤ 1

log[1/2+p] n

n∑

m=MN+1

∫
IN

|σma(x)|pdµ(x)
m2−2p

+
1

log[1/2+p] n

n∑

m=MN+1

∫
IN

|σma(x)|pdµ(x)
m2−2p

≤ 1

log[1/2+p] n

n∑

m=MN+1

(
cpM

1−p
N N [1/2+p]

m2−p
+

cp
m2−p

)
+ cp

≤ cpM
1−p
N N [1/2+p]

log[1/2+p] n

n∑

m=MN+1

1

m2−p
+

1

log[1/2+p] n

n∑

m=MN+1

1

m2−p
+ cp

≤ cp < ∞.

which completes the proof of Theorem 1. ¤

Proof of Theorem 2. Under condition (8) there exists a sequence of inc-

reasing numbers {nk : k ≥ 0}, such that

lim
k→∞

cn2−2p
k

Φ(nk)
= ∞.

It is evident that for every nk there exists a positive integer λk such that

M|λk|+1 ≤ nk < M|λk|+2 ≤ λM|nk|+1,

where λ = supn mn. Since Φ(n) is a nondecreasing function we have

limk→∞
M2−2p

|λk|+1

Φ(M|λk|+1)
≥ lim

k→∞
cn2−2p

k

Φ(nk)
= ∞. (14)

Applying (14) there exists a sequence {αk : k ≥ 0} ⊂ {λk : k ≥ 0} such that

|αk| ≥ 2, for k ∈ P, (15)

lim
k→∞

M1−p
|αk|

Φ1/2(M|αk|+1)
= ∞ (16)
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and ∞∑
η=0

Φ1/2(M|αη|+1)

M1−p
|αη|

= m1−p
|αη|

∞∑
η=0

Φ1/2(M|αη|+1)

M1−p
|αη|+1

< c < ∞. (17)

Let

fA =
∑

{k:|αk|<A}
λkak,

where

λk = λ · Φ
1/2p(M|αk|+1)

M
1/p−1
|αk|

and

ak =
M

1/p−1
|αk|
λ

(
DM|αk|+1 −DM|αk|

)
,

where λ := supn∈Pmn. Since

SMnak =

{
ak, |αk| < n,

0, |αk| ≥ n,

and

supp(ak) = I|αk|,
∫

I|αk|
akdµ = 0, ‖ak‖∞ ≤ M

1/p
|αk| = (supp ak)

−1/p

if we apply Lemma 1 and (17) we conclude that f ∈ Hp.

It is easy to show that

f̂(j)

=

{
Φ1/2p

(
M|αk|+1

)
, if j ∈ {

M|αk|, . . . , M|αk|+1−
}
, k = 0, 1, 2, . . . ,

0, if j /∈ ⋃∞
k=0

{
M|αk|, . . . , M|αk|+1 − 1

}
.

(18)

By using (18) we can write that

σαk
f =

1

αk

M|αk|∑

j=1

Sjf +
1

αk

αk∑

j=M|αk|+1

Sjf = I + II. (19)

It is simple to show that

Sjf =

{
Φ1/2p

(
M|α0|+1

)
, if M|α0| < j ≤ M|α0|+1

0, if 0 ≤ j ≤ M|α0|.
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Suppose that M|αs| < j ≤ M|αs|+1, for some s = 1, 2, . . . , k. Then by

applying (18) we have that

Sjf =

M|αs−1|∑
v=0

f̂(v)wv +

j−1∑

v=M|αs|+1

f̂(v)wv

=

s−1∑
η=0

M|αη|+1−1∑

v=M|αη|

f̂(v)wv +

j−1∑

v=M|αs|+1

f̂(v)wv

=
s−1∑
η=0

M|αη|+1−1∑

v=M|αη|

Φ1/2p(M|αη|+1)wv +Φ1/2p(M|αs|+1)

j−1∑

v=M|αs|+1

wv

=

s−1∑
η=0

Φ1/2p(M|αη|+1)
(
DM|αη|+1

−DM|αη|

)

+Φ1/2p(M|αs|+1)
(
Dj −DM|αs|

)
. (20)

Let M|αs|+1 < j ≤ M|αs+1|, for some s = 1, 2, . . . , k. Analogously to (20) we

get that

Sjf =

M|αs|+1∑
v=0

f̂(v)wv =

s∑
η=0

Φ1/2p(M|αη|+1)
(
DM|αη|+1

−DM|αη|

)
. (21)

Let x ∈ I0,12 = (x0 = 1, x1 = 1, x2, . . . ). Since (see (5) and Lemma 2)

KMn(x) = DMn(x) = 0, for n ≥ 2 (22)

from (15) and (20)–(21) we obtain that

I =
1

n

k−1∑
η=0

Φ1/2p
(
M|αη|+1

) M|αη|+1∑

v=M|αη|+1

Dv

=
1

n

k−1∑
η=0

Φ1/2p
(
M|αη|+1

) (
M|αη|+1KM|αη|+1

(x)−M|αη|KM|αη|(x)
)
= 0. (23)

By applying (20), when s = k in II we get that

II =
αk −M|nk|

αk

k−1∑
η=0

Φ1/2p
(
M|αη|+1

) (
DM|αη|+1

−DM|αη|

)

+
Φ1/2p

(
M|nk|+1

)

αk

αk∑

j=M|nk|+1

(
Dj −DM|nk|

)
= II1 + II2. (24)
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By using (22) we have that

II1 = 0, for x ∈ I0,12 . (25)

Let αk ∈ A0,2 and x ∈ I0,12 . Since αk −M|αk| ∈ A0,2 and

Dj+M|αk| = DM|αk| + w
M|αk|

Dj , when j < M|αk|

By combining (5) Lemmas 4 and 6 we obtain that

|II2| =
Φ1/2p(M|αk|+1)

αk

∣∣∣∣∣
αk−M|αk|∑

j=1

(
Dj+M|αk|(x)−DM|αk|(x)

)
∣∣∣∣∣

=
Φ1/2p(M|αk|+1)

αk

∣∣∣∣∣
αk−M|αk|∑

j=1

Dj (x)

∣∣∣∣∣

=
Φ1/2p(M|αk|+1)

αk

∣∣∣(αk −M|αk|)Kαk−M|αk|(x)
∣∣∣

=
Φ1/2p(M|αk|+1)

αk
|M0KM0 | ≥

Φ1/2p(M|αk|+1)

αk
. (26)

Let 0 < p < 1/2, n ∈ A0,2 and M|αk| < n < M|αk|+1. By combining (19–26)

we have that

‖σnf‖pLp,∞ ≥ cΦ1/2(M|αk|+1)

αp
k

µ

{
x ∈ I0,12 : |II2| ≥

cΦ1/2p(M|αk|+1)

αk

}

≥ cΦ1/2(M|αk|+1)

αp
k

µ
{
I0,12

} ≥ cΦ1/2(M|αk|+1)

Mp
|αk|+1

.

By using (16) we get that

∞∑
n=1

‖σnf‖pLp,∞

Φ(n)
≥

∑

{n∈A0,2:M|αk|<n<M|αk|+1}

‖σnf‖pLp,∞

Φ(n)

≥ 1

Φ1/2(M|αk|+1)

∑
{
n∈A0,2:M|αk|<n<M|αk|+1

}
1

Mp
|αk|+1

≥
cM1−p

|αk|
Φ1/2(M|αk|+1)

→ ∞, when k → ∞.

Theorem 2 is proved. ¤
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SWEDEN

E-mail: giorgitephnadze@gmail.com

(Received June 3, 2013; revised December 21, 2013)


