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A second order periodic boundary value problem with
a parameter and vanishing Green’s functions

By HONG-XU LI (Chengdu) and YANG-WEN ZHANG (Chengdu)

Abstract. We consider the following second order periodic boundary value prob-

lem with a parameter λ ∈ (0,∞), i = 1, 2 · · · , n,x′′
i + ai(t)xi = λgi(t)f i(x), 0 ≤ t ≤ T,

xi(0) = xi(T ), x′
i(0) = x′

i(T ).

By using fixed point theorems in a cone, some existence and nonexistence results for

nonnegative solutions are established under different combinations of superlinearity and

sublinearity of functions f i at zero and infinity for an appropriately chosen parameter λ

in the case where the associated nonnegative Green’s functions may have zeros. The

results are illustrated by an example.

1. Introduction

In this paper, we consider the following periodic boundary value problem of

second order non-autonomous dynamical systems with a parameter λ ∈ (0,∞),

i = 1, 2, . . . , n, x′′
i + ai(t)xi = λgi(t)f i(x), 0 ≤ t ≤ T,

xi(0) = xi(T ), x′
i(0) = x′

i(T ),
(1.1)
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where ai ∈ C[0, T ], gi : [0, T ] → (0,∞) is continuous, f i ∈ C(Rn
+,R+) with

R+ = [0,∞) and f i(x) > 0 for x ̸= 0. We assume that the above basic conditions

on ai, f
i, gi are always satisfied throughout the paper.

The studies of existence and multiplicity of nonnegative solutions for periodic

boundary value problems have attracted lots of mathematician these years (see

[1], [13], [14], [17], [10], [12], [18], [11], [22], [24] and references therein), where

the major assumption is that the associated Green’s functions are of one sign.

Recently, Graef et al. [7] extended the studies to the case where the associated

Green’s function needs only to be nonnegative, and established an existence result

of nonnegative solutions of (1.1) for λ = 1 and n = 1. Then Cabada and Cid

[2] present some more results on the existence and nonexistence of nonnegative

solutions of (1.1) for n = 1. Moreover, we note that several results on the existence

of one or two positive solutions of periodic boundary value problems have been

obtained in the framework of integral equations with nonnegative kernel in [21].

Here we give further study on this line in this work.

The main purpose of this paper is to establish some existence and nonexis-

tence results of nonnegative solutions of (1.1) in terms of different parameters λ

by using fixed point theorems in a cone under the assumption that the associated

Green’s functions are nonnegative. Our results extends the corresponding results

in [7], [2] (see Remark 3.1). For more studies of the boundary value problem with

a parameter we refer the readers to [3], [5], [19], [8], [20], [16], [23].

The paper is organized as follows. In Section 2, some preliminary results

and notation are presented. In Section 3, the statements of the main results

are given in Subsection 3.1. Then the proofs of the main results are presented

in Subsection 3.2. Finally, an example is given to illustrate the main results in

Subsection 3.3.

2. Preliminaries

Throughout the paper, let Rn be endowed with norm |x| =
∑n

i=1 |xi| for
x = (x1, x2, . . . , xn) ∈ Rn, C[0, T ] be endowed with norm ∥u∥ = max0≤t≤T |u(t)|
for u ∈ C[0, T ]. Let X = C([0, T ],Rn). Then X can be regarded as (C[0, T ])n.

So X is endowed with norm ∥x∥ =
∑n

i=1 ∥xi∥ for x = (x1, x2, . . . , xn) ∈ X. Even

though the notation ∥·∥ is used for norms in different spaces, no confusion should

arise. Let

P = {x ∈ X : xi(t) ≥ 0, t ∈ [0, T ], i = 1, 2 . . . , n} .
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Then P is a normal cone in X. For x1, x2 ∈ X, we write x1 ≤ x2 if x2 − x1 ∈ P.
For a set E, denote by Ē and ∂E the closure and boundary of E, respectively.

We also denote Ωr = {x ∈ X : ∥x∥ < r} for r > 0.

A function x = (x1, x2, . . . , xn) with xi ∈ C2[0, T ], i = 1, 2, . . . , n is said to

be a nontrivial solution of (1.1) if x satisfies (1.1) and x(t) ̸≡ 0. Moreover, x is

said to be a nonnegative solution of (1.1) if in addition x ∈ P.
For each i = 1, 2 . . . , n, define f̂ i(α) :R+→R+ by f̂ i(α)= max{f i(u) :u∈Rn

+,

0 ≤ |u| ≤ α}. Clearly, f̂ i ∈ C(R+,R+) and is nondecreasing on R+. For conve-

nience, we introduce the notation

lim
|x|→0

f i(x)

|x|
= f i

0, lim
|x|→∞

f i(x)

|x|
= f i

∞, lim
α→0

f̂ i(α)

α
= f̂ i

0, lim
α→∞

f̂ i(α)

α
= f̂ i

∞.

Then we have the following lemma.

Lemma 2.1 ([20]). f i
0 = f̂ i

0 and f i
∞ = f̂ i

∞, i = 1, 2, . . . , n.

We always assume that Gi(t, s), i = 1, 2, . . . , n are the nonnegative Green’s

functions associated with (1.1), which may have zeros, and
β = min

1≤i≤n,0≤s≤T

∫ T

0

Gi(t, s)dt > 0,

M = max
1≤i≤n

Mi,Mi = max
0≤s,t≤T

Gi(t, s), i = 1, 2, . . . , n.
(2.1)

Define a cone

K =

{
x ∈ P :

∫ T

0

|x(t)|dt ≥ β

M
∥x∥

}
.

For λ > 0, let Tλ = (T 1
λ , T

2
λ , . . . , T

n
λ ) : X → X be given by

T i
λx(t) = λ

∫ T

0

Gi(t, s)g
i(s)f i(x(s))ds, 0 ≤ t ≤ T, i = 1, 2, . . . , n.

It is clear that x is a nonnegative solution of (1.1) if and only if x is a fixed point

of Tλ.

Lemma 2.2. Tλ(K) ⊂ K and Tλ is completely continuous.

Proof. The complete continuity of Tλ can be proved easily by the standard

method, and we omit the details. Let x ∈ K. By (2.1),∫ T

0

|Tλx(t)|dt = λ
n∑

i=1

∫ T

0

gi(s)f i(x(s))

∫ T

0

Gi(t, s)dtds

≥ λβ

n∑
i=1

∫ T

0

gi(s)f i(x(s))ds
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and

∥Tλx∥ =

n∑
i=1

∥T i
λx∥ = λ

n∑
i=1

max
0≤t≤T

∫ T

0

Gi(t, s)g
i(s)f i(x(s))ds

≤ λM
n∑

i=1

∫ T

0

gi(s)f i(x(s))ds.

Then ∫ T

0

|Tλx(t)|dt ≥
β

M
∥Tλx∥.

This implies that Tλx ∈ K, and Tλ(K) ⊂ K. �

The following fixed-point theorem of cone expansion/compression type is

crucial in the proofs of our results.

Lemma 2.3 ([9], [15]). Let P be a cone in a Banach space X. Assume

that Q1, Q2 are bounded open subsets of X with 0 ∈ Q1, Q̄1 ⊂ Q2, and let

A : P ∩ (Q̄2 \ Q1) → P be completely continuous. Then A has a fixed point in

P ∩ (Q̄2 \Q1) if one of the following statements is true:

(i) Ax � x for x ∈ P ∩ ∂Q1 and Ax � x for x ∈ P ∩ ∂Q2.

(ii) Ax � x for x ∈ P ∩ ∂Q1 and Ax � x for x ∈ P ∩ ∂Q2.

3. Existence and nonexistence of nonnegative solutions

3.1. Statements of the main results. The following assumptions on f will

be used later.

(H1) f i
0 = 0, i = 1, 2, . . . , n.

(H2) f i
∞ = 0, i = 1, 2, . . . , n.

(H3) f i
0 = ∞ for some i ∈ {1, 2, . . . , n}.

(H4) f i
∞ = ∞ and f i is convex for some i ∈ {1, 2, . . . , n}.

(H5) f i
0 < ∞, f i

∞ < ∞, i = 1, 2 . . . , n.

Now we are in a position to state our main results, which will be proved in

the next Subsection.

Theorem 3.1. If (H1) and (H4) hold or (H2) and (H3) hold, (1.1) has a

nonnegative solution for λ > 0.

Theorem 3.2. The following statements hold:
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(i) For any a ∈ (0,∞), there exists λa > 0 such that (1.1) has a nonnegative

solution x with ∥x∥ < a for λ ∈ (0, λa) if (H3) holds.

(ii) For any b ∈ (0,∞), there exists λb > 0 such that (1.1) has a nonnegative

solution x with ∥x∥ > b for λ ∈ (0, λb) if (H4) holds.

By Theorem 3.2, we can get the following corollary immediately.

Corollary 3.1. If (H3) and (H4) hold, there exists λ0 > 0 such that (1.1)

has two nonnegative solutions for λ ∈ (0, λ0).

Theorem 3.3. If (H5) holds, there exists λ0 > 0 such that (1.1) has no

nonnegative solution for λ ∈ (0, λ0).

Remark 3.1. (i) If λ = 1 and n = 1, a result similar to Theorem 3.1 was

presented in [7]. Moreover, if n = 1, the second part of Theorem 3.1 was given in

[2, Theorem 3.7 (2)].

(ii) Theorem 3.2 and Corollary 3.1 extend Theorem 3.7 (1), (4) from n = 1

to arbitrary n.

(iii) Some nonexistence results were also given in [2, 7]. However, the condi-

tion of Theorem 3.3 is different from them.

3.2. Proofs of the main results. Let us start with some lemmas.

Lemma 3.1. (i) If (H1) holds, given λ0 > 0, there exists r0 > 0 such that

for λ ∈ (0, λ0) and r ∈ (0, r0],

Tλx � x, x ∈ ∂Ωr ∩K. (3.1)

(ii) If (H2) holds, given λ0 > 0, there exists r0 > 0 such that (3.1) holds for

λ ∈ (0, λ0) and r ≥ r0.

(iii) Given r0 > 0, there exists λ0 > 0 such that (3.1) holds for λ ∈ (0, λ0) and

r = r0.

Proof. If (3.1) is not true for some λ > 0 and r > 0, i.e. there exists

y ∈ ∂Ωr ∩K such that Tλy(t) ≥ y(t) for t ∈ [0, T ], then

r = ∥y∥ ≤ ∥Tλy∥ = λ

n∑
i=1

max
0≤t≤T

∫ T

0

Gi(t, s)g
i(s)f i(y(s))ds

≤ λ
n∑

i=1

Mi

∫ T

0

gi(s)f i(y(s))ds. (3.2)
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(i) Given λ0 > 0, let

η =

(
λ0

n∑
i=1

Mi

∫ T

0

gi(s)ds

)−1

> 0.

If (H1) holds, f̂ i
0 = 0, i = 1, 2, . . . , n by lemma 2.1, and then there exists r0 > 0

such that for r ∈ (0, r0],

f̂ i(r) ≤ ηr, i = 1, 2, . . . , n. (3.3)

Suppose that (3.1) is not true for some λ ∈ (0, λ0) and r ∈ (0, r0], then there

exists y ∈ ∂Ωr ∩K such that (3.2) holds, and thus

r ≤ λ
n∑

i=1

Mi

∫ T

0

gi(s)f i(y(s))ds ≤ λ
n∑

i=1

Mi

∫ T

0

gi(s)f̂ i(r)ds

< λ0ηr
n∑

i=1

Mi

∫ T

0

gi(s)ds = r. (3.4)

This contradiction implies that (i) is true.

(ii) Given λ > 0. If (H2) holds, f̂ i
∞ = 0, i = 1, 2, . . . , n by lemma 2.1, and

then there exists r0 > 0 such that (3.3) holds for r ≥ r0. If (3.1) is not true for

some λ ∈ (0, λ0) and r ≥ r0, the deduction of contradiction (3.4) will also be

valid, and this implies that (ii) holds.

(iii) Given r0 > 0, let

λ0 = r0

(
n∑

i=1

Mif̂
i(r0)

∫ T

0

gi(s)ds

)−1

> 0.

Suppose that (3.1) is not true for r = r0 and λ ∈ (0, λ0). Then there exists

y ∈ ∂Ωr0 ∩K such that (3.2) holds, and

r0 ≤ λ
n∑

i=1

Mi

∫ T

0

gi(s)f i(y(s))ds < λ0

n∑
i=1

Mif̂
i(r0)

∫ T

0

gi(s)ds = r0.

This contradiction implies that (iii) holds. �

Lemma 3.2. (i) If (H3) holds, given λ0 > 0, there exists r0 > 0 such that

for λ > λ0 and r ∈ (0, r0],

Tλx � x for x ∈ ∂Ωr ∩K. (3.5)
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(ii) If (H4) holds, given λ0 > 0, there exists r0 > 0 such that (3.5) holds for

λ > λ0 and r ≥ r0.

Proof. Let
g = min

1≤i≤n,0≤t≤T
gi(t) > 0.

If (3.5) is not true for some λ > 0, r > 0, i.e., there exists y ∈ ∂Ωr ∩K such that

Tλy(t) ≤ y(t) for t ∈ [0, T ], then

r = ∥y∥ ≥ ∥Tλy∥ ≥ 1

T

∫ T

0

|Tλy(t)|dt

=
λ

T

n∑
i=1

∫ T

0

∫ T

0

Gi(t, s)g
i(s)f i(y(s))dtds ≥

λgβ

T

n∑
i=1

∫ T

0

f i(y(s))ds. (3.6)

(i) Given λ0 > 0, let η = MT (λ0gβ
2)−1 > 0. If (H3) holds, there exists

r0 > 0 such that for r ∈ (0, r0],

f j(x) ≥ η|x|, |x| ≤ r for some j ∈ {1, 2, . . . , n}.

Suppose that (3.5) is not true for some λ > λ0 and r ∈ (0, r0]. Then there exists

y ∈ ∂Ωr ∩K such that (3.6) holds, and thus

r ≥
λgβ

T

n∑
i=1

∫ T

0

f i(y(s))ds ≥
λgβ

T

∫ T

0

f j(y(s))ds

≥
ηλgβ

T

∫ T

0

|y(s)|ds >
ηλ0gβ

2

MT
∥y∥ = ∥y∥ = r.

This contradiction implies that (i) holds.

(ii) Given λ0 > 0, let η be as in (i). If (H4) holds, there exists r0 > 0 such

that for r ≥ r0,

f j(x) ≥ η|x|, |x| ≥ βr

M
for some j ∈ {1, 2, . . . , n}.

Noticing that f j is convex, then for z ∈ Ωr ∩K,∫ T

0

|z(s)|ds ≥ β

M
∥z∥ =

βr

M
,

and thus, in view of Jensen’s Inequality (see e.g. [21, Lemma 2.8]), we have∫ T

0

f j(z(s))ds≥Tf j

(
1

T

∫ T

0

z(s)ds

)
≥Tη

∣∣∣∣∣ 1T
∫ T

0

z(s)ds

∣∣∣∣∣ = η

∫ T

0

|z(s)|ds≥ ηβr

M
.
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Suppose that (3.5) is not true for some λ > λ0 and r ≥ r0, then there exists

y ∈ ∂Ωr ∩K such that (3.6) holds, and hence

r ≥
λgβ

T

n∑
i=1

∫ T

0

f i(y(s))ds ≥
λgβ

T

∫ T

0

f j(y(s))ds >
ηλ0gβ

2

MT
r = r.

This contradiction implies that (ii) holds. �

Proof of Theorem 3.1. Fix λ > 0. If (H1) is true, it follows from Lem-

ma 3.1 that, given λ0 > λ, there exists r0 > 0 such that (3.1) holds for r = r0
and the above λ ∈ (0, λ0). Meanwhile, if (H4) holds, it follows from Lemma 3.2

that, given λ′
0 ∈ (0, λ), there exists r′0 > 0 such that (3.5) holds for r ≥ r′0 and

the above λ > λ′
0. Let r1 > max{r0, r′0}. Then (3.5) holds for r = r1. Now by

Lemma 2.2 and 2.3, Tλ has a fixed point in K ∩ (Ω̄r1 \ Ωr0). That is (1.1) has

a nonnegative solution for λ > 0 if (H1) and (H4) hold. Similarly, we can prove

that (1.1) has a nonnegative solution for λ > 0 if (H2) and (H3) hold. �

Proof of Theorem 3.2. We prove only the case when (H3) holds. The

case when (H4) holds can be proved similarly, and we omit the details. For any

a > 0, let r1 ∈ (0, a). By Lemma 3.1, there is λa > 0 such that (3.1) holds for

λ ∈ (0, λa) and r = r1. Fix any λ ∈ (0, λa), and let λ0 ∈ (0, λ). Assume that (H3)

is true. Then by Lemma 3.2, there is r0 > 0 such that (3.5) holds for r ∈ (0, r0]

and the above λ > λ0. Let r2 ∈ (0,min{r1, r0}). Then for the above λ, (3.5)

holds with r = r2. Now it follows from Lemma 2.2 and 2.3 that Tλ has a fixed

point in x ∈ K ∩ (Ω̄r1 \ Ωr2) for λ ∈ (0, λa). That is (1.1) has a nonnegative

solution x ∈ K ∩ (Ω̄r1 \ Ωr2) for λ ∈ (0, λa). This completes the proof. �

Proof of Theorem 3.3. It follows from assumption (H5) that there exists

a constant η such that

f i(x) ≤ η|x| for x ∈ Rn
+, i = 1, 2, . . . , n.

Let

λ0 =

(
η

n∑
i=1

Mi

∫ T

0

gi(s)ds

)−1

.

Suppose that (1.1) has a nonnegative solution x for some λ ∈ (0, λ0). Then

∥x∥ = ∥Tλx∥ = λ

n∑
i=1

max
0≤t≤T

∫ T

0

Gi(t, s)g
i(s)f i(x(s))ds

≤ λη
n∑

i=1

Mi

∫ T

0

gi(s)|x(s)|ds < λ0η∥x∥
n∑

i=1

Mi

∫ T

0

gi(s)ds = ∥x∥.

This is a contradiction. So (1.1) has no nonnegative solution for λ ∈ (0, λ0). �
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3.3. Example. We now present an example to illustrate our results. We note

that similar examples were discussed in [4], [6], [12], [7], [19]. Consider the fol-

lowing periodic boundary value problem: for λ ∈ (0,∞), i = 1, 2, . . . , n,
x′′
i +

π2

T 2
xi = λgi(t)(ai|x|α/2 + |x|α), 0 ≤ t ≤ T,

xi(0) = xi(T ), x′
i(0) = x′

i(T ),

(3.7)

where gi(t), i = 1, 2, . . . , n are positive continuous functions on [0, T ] and α > 0,

ai ≥ 0. It is easy to get the Green’s functions associated with (3.7): for i =

1, 2, . . . , n,

Gi(t, s) =


T

2π
sin

π

T
(t− s), 0 ≤ s ≤ t ≤ T,

T

2π
sin

π

T
(s− t), 0 ≤ t ≤ s ≤ T.

Let

Ḡi(x) =
T

2π
sin

πx

T
, x ∈ [0, T ].

Clearly, Ḡi is increasing on [0, T/2] and decreasing on [T/2, T ], and Gi(t, s) =

Ḡi(|t− s|) for t, s ∈ [0, 1]. Moreover,

0 = Ḡi(0) ≤ Gi(t, s) ≤ Ḡi

(
T

2

)
=

T

2π
,

β = min
1≤i≤n,0≤s≤T

∫ T

0

Gi(t, s)dt =
T 2

π2
.

For the convenience of writing, we denote

(A1) ai > 0 for some i ∈ {1, 2, . . . , n}.
(A2) ai = 0 for all i = 1, 2, . . . , n.

Then we can get easily that

• (H1) holds if α ∈ (2,∞) and (A1) holds or if α ∈ (1,∞) and (A2) holds.

• (H2) holds if α ∈ (0, 1).

• (H3) holds if α ∈ (0, 2) and (A1) holds or if α ∈ (0, 1) and (A2) holds.

• (H4) holds if α ∈ (1,∞).

• (H5) holds if α = 1 and (A2) holds.

Now we can apply Theorem 3.1–3.3 to obtain the following.

Corollary 3.2. (i) (3.7) has a nonnegative solution for all λ > 0 if one of

the following statements is true:
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(a) α ∈ (2,∞) and (A1) holds.

(b) α ∈ (1,∞) and (A2) holds.

(c) α ∈ (0, 1).

(ii) The following statements hold:

(a) For any a ∈ (0,∞), there exists λa > 0 such that (3.7) has a nonnegative

solution x with ∥x∥ < a for λ ∈ (0, λa) if α ∈ (0, 2) and (A1) holds or if

α ∈ (0, 1) and (A2) holds.

(b) For any b ∈ (0,∞), there exists λb > 0 such that (3.7) has a nonnegative

solution x with ∥x∥ > b for λ ∈ (0, λb) if α ∈ (1,∞).

(iii) There exists λ0 > 0 such that (3.7) has two nonnegative solutions for λ ∈
(0, λ0) if α ∈ (1, 2) and (A1) holds.

(iv) There exists λ0 > 0 such that (3.7) has no nonnegative solution for λ ∈ (0, λ0)

if α = 1 and (A2) holds.

Acknowledgements. The authors are grateful to the referees for the valu-

able comments and corrections.

References

[1] F. M. Aticiand G. Sh. Guseinov, On the existence of positive solutions for nonlinear
differential equations with periodic boundary conditions, J. Comput. Appl. Math. 132

(2001), 341–356.
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