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Blaschke–Minkowski homomorphisms and affine surface area

By YIBIN FENG (Yichang) and WEIDONG WANG (Yichang)

Abstract. Schuster introduced the notion of Blaschke–Minkowski homomorphisms

and first considered related Shephard type problems. In this paper, we obtain affirma-

tive and negative parts of a generalization of the Winterniz problem for affine surface

area with respect to Blaschke–Minkowski homomorphisms.

1. Introduction and main results

Let Kn denote the set of convex bodies (compact, convex subsets with non-

empty interiors) in Euclidean space Rn. For the set of origin-symmetric convex

bodies in Rn, we write Kn
e . Let Sn−1 denote the unit sphere in Rn, and V (K)

denote the n-dimensional volume of a body K. For the standard unit ball B in

Rn, we denote by ωn = V (B) its volume.

If K ∈ Kn, then its support function, hK = h(K, ·) : Rn → (−∞,∞), is

defined by (see [8], [43])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.

The projection body ΠK of K ∈ Kn is the origin-symmetric convex body

whose support function is defined by (see [8], [43])

hΠK(u) =
1

2

∫
Sn−1

|u · v|dS(K, v),

Mathematics Subject Classification: 52A20, 52A40.
Key words and phrases: Blaschke–Minkowski homomorphisms, Winterniz problem, affine sur-

face area.
Research is supported by the Natural Science Foundation of China (Grant No.11371224).



298 Yibin Feng and Weidong Wang

for u, v ∈ Sn−1. Here S(K, ·) denotes the surface area measure of K. The classical

projection body is a very important notion for the study of projections in the

Brunn–Minkowski theory, and has received considerable attention over the last

decades (see [6]–[8], [11], [12], [22], [23], [31], [32], [43]).

In [51] Shephard posed the following problem: Let K and L be origin-

symmetric convex bodies in Rn, is there the implication

ΠK ⊆ ΠL ⇒ V (K) ≤ V (L)? (1.1)

Petty and Schneider both showed that the answer to this problem is affirmative

if the body L belongs to the class of projection bodies (zonoids). In addition,

Schneider showed that if K is sufficiently smooth and has positive curvature but

is not a zonoid, then there is an L such that (1.1) does not hold.

A convex body K ∈ Kn is said to have a curvature function f(K, ·) : Sn → R
(see [33]), if its surface area measure S(K, ·) is absolutely continuous with respect

to spherical Lebesgue measure S, and

dS(K, ·)
dS

= f(K, ·). (1.2)

Let Fn denote the set of convex bodies in Kn that have a positive continuous

curvature function. For F ∈ Fn, the classical affine surface area of K, Ω(K), is

defined by (see [33])

Ω(K) =

∫
Sn−1

f(K,u)
n

n+1 dS(u). (1.3)

When the volume in (1.1) is replaced by the affine surface area Ω, the question is

called the Winterniz problem and was solved by Lutwak [33].

The study of affine surface areas went back to Blaschke in [5] about one

hundred years ago, and its Lp counterpart was first introduced by Lutwak in

[35]. Important applications of the Lp-affine surface areas can be found in the

articles [30], [38], [52], [53], [56], [57]. One of the most important results regarding

the Lp-affine surface area is its related Lp-affine isoperimetric inequality (see [35],

[58]). The classification of valuations about affine surface area see the more recent

contributions [16], [28], [29]. Recently, the Lp-affine surface area was further

extended to the Orlicz Brunn–Minkowski theory, which are natural extensions of

the Lp-affine surface area (see [16], [25], [29]).

A function Φ defined on the space Kn of convex bodies in Rn and taking

values in an ablelian semigroup is called a valuation if

Φ(K ∪ L) + Φ(K ∩ L) = ΦK +ΦL, (1.4)
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whenever K,L,K ∪ L,K ∩ L ∈ Kn.

The theory of real valued valuation is at the center of convex geometry.

A systematic study was initiated by Blaschke in the 1930s and continued by

Hadwiger culminating in his famous classification of continuous and rigid motion

invariant valuations on convex bodies. The surveys (see [36], [37]) and the book

(see [21]) are excellent sources for the classical theory of valuations. For some of

the more recent results, see [1]–[4], [13], [17]–[19], [24], [26], [39]–[41], [49], [50],

[54], [59]–[61]. Motivated by recent results of Ludwig [22], [23] characterizing

the projection body map as unique Minkowski valuation (that is, valuation with

respect to Minkowski addition) intertwining linear translations, Schuster [46]

gave the following definition:

A map Φ : Kn → Kn is called a Blaschke–Minkowski homomorphism if it

satisfies the following conditions:

(a) Φ is continuous.

(b) Φ is Blaschke Minkowski additive, i.e., for all K,L ∈ Kn

Φ(K#L) = ΦK +ΦL.

(c) Φ intertwines rotations, i.e., for all K ∈ Kn and ϑ ∈ SO(n)

Φ(ϑK) = ϑΦK.

Here ΦK+ΦL denotes the Minkowski sum (see (2.1)) of the Blaschke–Minkowski

homomorphisms ΦK and ΦL and K#L is the Blaschke sum of the convex bodies

K and L (see (2.9)). SO(n) is the group of rotations in n dimensions. Note that

every Blaschke–Minkowski homomorphism is a Minkowski valuation.

Together with the definition of Blaschke–Minkwoski homomorphisms, Schus-

ter [47] started an investigation of Shephard type problems for them and ob-

tained the following results:

Theorem 1.A. Let Φ : Kn → Kn be a Blaschke–Minkowski homomorphism.

If K ∈ Kn and a translate of L is contained in ΦKn, then

ΦK ⊆ ΦL ⇒ V (K) ≤ V (L),

and V (K) = V (L) if and only if K and L are translates of each other.

Here ΦKn denotes the range of Φ.
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Theorem 1.B. Let Φ : Kn → Kn be a Blaschke–Minkowski homomorphism

and Kn
e ⊆ Kn(Φ). If K ∈ Kn

e is a polynomial convex body and has positive

curvature, then if K /∈ ΦKn, there exists a convex body L ∈ Kn
e , such that

ΦK ⊆ ΦL,

but

V (K) > V (L).

Here Kn(Φ) denotes the injectivity set of Φ (see [47]) and a convex body is

called polynomial if the spherical harmonics expansion of its support function is

finite.

In this article, we investigate a generalization of the Winterniz problem for

Blaschke–Minkowski homomorphisms.

Theorem 1.1. Let K ∈ Fn. If L ∈ Wn and ΦK ⊆ ΦL, then

Ω(K) ≤ Ω(L),

with equality if and only if K is a translate of L.

Here

Wn = {Q ∈ Fn : there exists Z ∈ ΦKn with f(Q, ·) = h(Z, ·)−(n+1)},

where f(Q, ·) is the curvature function of Q.

Theorem 1.2. Let Φ : Kn → Kn be an even Blaschke–Minkowski homo-

morphism and L ∈ Kn. If L is not an origin-symmetric convex body, then there

exists K ∈ Kn
e , such that

ΦK ⊆ ΦL,

but

Ω(K) > Ω(L).

2. Preliminaries

2.1. Mixed volumes. Here, we recall some basic notions and notations about

mixed volumes which can be found in the books [8] and [43].

For K1,K2 ∈ Kn and λ1, λ2 ≥ 0 (not both zero), the support function of the

Minkowski linear combination λ1K1 + λ2K2 is

h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·). (2.1)
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The volume of a Minkowski linear combination λ1K1 + · · · + λmKm of convex

bodies K1, . . . ,Km is an n-homogeneous polynomial given by

V (λ1K1 + · · ·+ λmKm) =
∑

i1,...,in

V (Ki1 , . . . ,Kin)λi1 . . . λin . (2.2)

The coefficients V (Ki1 , . . . ,Kin) are called mixed volumes of Ki1 , . . . ,Kin . These

functions are nonnegative, symmetric and translation invariant. Moreover, they

are monotone (with respect to set inclusion), multilinear with respect to Minkows-

ki addition and their diagonal form is ordinary volume, i.e., V (K, . . . ,K) = V (K).

Denote by Vi(K,L) the mixed volume V (K, . . . ,K, L, . . . , L), where K ap-

pears n− i times and L appears i times.

For K1, . . . ,Kn−1 ∈ Kn, there exists a Borel measure on Sn−1,

S(K1, . . . ,Kn−1, ·), called the mixed surface area measure of K1, . . . ,Kn−1 which

is symmetric and has the property that, for each K ∈ Kn,

V (K1, . . . ,Kn−1,K) =
1

n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1, u). (2.3)

The measures Si(K, ·) = S(K, . . . ,K,B, . . . , B, ·), where B appears i times andK

appears n − i − 1 times, are called the surface area measures of order n − i − 1

of K. If i = 0, then we write S(K, ·) for S0(K, ·), for the surface area measure

of K. Thus from the definition of Vi(K,L), and (2.3), we have

V1(K,L) =
1

n

∫
Sn−1

h(L, u)dS(K,u). (2.4)

2.2. Mixed affine surface area. Lutwak in [34] defined the ith mixed affine

surface area as follows: For K,L ∈ Fn and real i, the ith mixed affine surface

area, Ωi(K,L), of K and L is defined by

Ωi(K,L) =

∫
Sn−1

f(K,u)
n−i
n+1 f(L, u)

i
n+1 dS(u). (2.5)

From definitions (1.3) and (2.5), it obviously follows that

Ωi(K,K) = Ω(K). (2.6)

Further, Lutwak in [34] proved the following cyclic inequality for the ith

mixed affine surface area.
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Theorem 2.A. If K,L ∈ Fn, i, j, k ∈ R and i < j < k, then

Ωi(K,L)k−jΩk(K,L)j−i ≥ Ωj(K,L)k−i, (2.7)

with equality if and only if K and L are homothetic.

If we take i = −1, j = 0, k = n in (2.7), it follows from (1.3) and (2.5) that

if K,L ∈ Fn, then

Ω−1(K,L)n ≥ Ω(K)n+1Ω(L)−1, (2.8)

with equality if and only if K and L are homothetic.

From (2.8), we easily obtain

Theorem 2.1. Let K,L ∈ Fn, then

Ω−1(K,Q) = Ω−1(L,Q)

for all Q ∈ Fn if and only if K and L are homothetic.

The Blaschke combination of convex bodies with non-empty interiors is as

follows (see [8], [43]): If K,L ∈ Kn and λ, µ ≥ 0 (not both zero), then there exists

a convex body λ⊙K#µ⊙ L, such that

S(λ⊙K#µ⊙ L, ·) = λS(K, ·) + µS(L, ·). (2.9)

This addition and scalar multiplication are called Blaschke addition and scalar

multiplication.

Blaschke addition is the most important operation between sets in convex

geometry, and has found many applications in geometry. For example, it was

applied by Petty [42] and Schneider [44] in their independent solutions of

Shephard’s problem for origin-symmetric convex bodies. Blaschke sums also ap-

pear in the theory of valuations (see [14], [15], [20], [27], [45], [48]). Moreover, for

the characterization related to Blaschke addition, we refer to [9], [10].

Taking λ = µ = 1
2 and L = −K in the Blaschke combination λ⊙K#µ⊙ L,

leads to the Blaschke body, ∇K, of K ∈ Kn (see [8, 43]):

∇K =
1

2
⊙K#

1

2
⊙ (−K). (2.10)

From the definitions of the affine surface area and the Blaschke body, Lut-

wak in [34] obtained the following result.

Theorem 2.B. If K ∈ Fn, then

Ω(∇K) ≥ Ω(K), (2.11)

with equality if and only if K is an origin-symmetric convex body.
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2.3. Spherical convolution. In the following we state some material on con-

volutions, which can be found in the reference [48].

As usual, SO(n) and Sn−1 will be equipped with the invariant probability

measures. Let C(SO(n)) and C(Sn−1) be the spaces of continuous functions on

SO(n) and Sn−1 with uniform topology and let M(SO(n)) and M(Sn−1) denote

their dual spaces of signed finite Borel measures with the weak topology. If

µ, σ ∈ M(SO(n)), the convolution µ ∗ σ is defined by∫
SO(n)

f(ϑ)d(µ ∗ σ)(ϑ) =
∫
SO(n)

∫
SO(n)

f(ητ)dµ(η)dσ(τ), (2.12)

for every f ∈ C(SO(n)) and ϑ ∈ SO(n). The sphere Sn−1 can be identified

with the homogeneous space SO(n)/SO(n − 1), where SO(n − 1) denotes the

subgroup of rotations leaving the pole ê of Sn−1 fixed. The projection from

SO(n) onto Sn−1 is ϑ 7→ ϑ̂ := ϑê. Every f ∈ C(Sn−1) gives rise to a right

SO(n− 1) invariant function on SO(n) defined by f̌(ϑ) = f(ϑ̂). In fact, C(Sn−1)

is isomorphic to the subspace of right SO(n− 1)-invariant function in C(SO(n))

and this correspondence carries over to an identification of the space M(Sn−1)

with right SO(n− 1)-invariant measures in M(SO(n)).

For µ ∈ M(SO(n)), the convolutions µ∗f ∈ C(SO(n)) and f ∗µ ∈ C(SO(n))

with a function f ∈ C(SO(n)) are defined by

(f ∗ µ)(η) =
∫
SO(n)

f(ηϑ−1)dµ(ϑ), (µ ∗ f)(η) =
∫
SO(n)

ϑf(η)dµ(ϑ). (2.13)

For ϑ ∈ SO(n), the left translation ϑf of f ∈ C(SO(n)) is defined by

ϑf(η) = f(ϑ−1η). (2.14)

A function f ∈ C(Sn−1) is called zonal, if ϑf = f for every ϑ ∈ SO(n − 1).

Zonal functions depend only on the value u · ê. The set of continuous zonal

function on Sn−1 will be denoted by C(Sn−1, ê) and the definition of M(Sn−1, ê)

is analogous.

Theorem 2.C ([48]). If Φ : Kn → Kn is a Blaschke–Minkowski homomor-

phism, then there is a generating function g ∈ C(Sn−1, ê), unique up to addition

of a linear function, such that

h(ΦK, ·) = S(K, ·) ∗ g. (2.15)
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3. Proofs of the main results

In this section, we complete the proofs of Theorems 1.1 and 1.2. For the

proof of Theorem 1.1, we need the following lemma:

Lemma 3.1 ([47]). If Φ : Kn → Kn is a Blaschke–Minkowski homomor-

phism, then for K,L ∈ Kn

V1(K,ΦL) = V1(L,ΦK). (3.1)

Proof of Theorem 1.1. Since Q ∈ Wn, there exists Z ∈ ΦKn such that

f(Q, ·)−
1

n+1 = h(Z, ·).

Since Z ∈ ΦKn, there exists M ∈ Kn such that Z = ΦM . Hence, using (1.2),

(2.5) and (3.1), we have

Ω−1(L,Q)

Ω−1(K,Q)
=

∫
Sn−1 f(Q,u)−

1
n+1 dS(L, u)∫

Sn−1 f(Q,u)−
1

n+1 dS(K,u)
=

∫
Sn−1 h(Z, u)dS(L, u)∫
Sn−1 h(Z, u)dS(K,u)

=
V1(L,Z)

V1(K,Z)

=
V1(L,ΦM)

V1(K,ΦM)
=

V1(M,ΦL)

V1(M,ΦK)
=

∫
Sn−1 h(ΦL, u)dS(M,u)∫
Sn−1 h(ΦK,u)dS(M,u)

.

Since ΦK ⊆ ΦL, it follows that

Ω−1(K,Q) ≤ Ω−1(L,Q). (3.2)

By Theorem 2.1, we know that equality holds in (3.2) if and only ifK is a translate

of L. Since L ∈ Wn, taking Q = L in (3.2), and using (2.6) and inequality (2.8),

we get

Ω(L) ≥ Ω−1(K,L) ≥ Ω(K)
n+1
n Ω(L)−

1
n ,

i.e.,

Ω(K) ≤ Ω(L). (3.3)

By the equality conditions of (2.8) and (3.2), we see that equality holds in

(3.3) if and only if K is a translate of L. �

Lemma 3.2. If Φ : Kn → Kn is an even Blaschke–Minkowski homomor-

phism and K ∈ Kn, then

Φ(∇K) = ΦK.
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Proof. From (2.15), (2.9) and (2.10), it follows that

h(Φ(∇K), u) = S(∇K,u) ∗ g = S

(
1

2
⊙K#

1

2
⊙ (−K), u

)
∗ g

=

(
1

2
S(K,u) +

1

2
S(−K,u)

)
∗ g

=
1

2
S(K,u) ∗ g + 1

2
S(−K,u) ∗ g

=
1

2
h(ΦK,u) +

1

2
h(Φ(−K), u).

Since Φ : Kn → Kn is even, i.e., Φ(−K) = ΦK, it follows that

Φ(∇K) = ΦK. �

Proof of Theorem 1.2. Since L is not origin-symmetric, by Theorem 2.B,

we know that

Ω(∇L) > Ω(L).

Choose ε > 0, such that Ω((1− ε)∇L) > Ω(L), and let K = (1− ε)∇L. Then

Ω(K) > Ω(L),

but from Lemma 3.2, and the fact that Φ((1− ε)K) = (1− ε)n−1ΦK, we obtain

ΦK = Φ((1− ε)∇L) = (1− ε)n−1Φ(∇L) = (1− ε)n−1ΦL ⊆ ΦL. �
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