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A note on the corank of abelian groups

By MARCO PERONE (Treviso) and EDMUND R. PUCZY LOWSKI (Warsaw)

Abstract. The corank of abelian groups is a concept dual to the well established

notion of the rank of such groups. Both of them can be considered as group analogs

of the linear dimension. In [7] abelian groups whose rank satisfies counterparts of some

fundamental properties of the linear dimension were described. In this paper we study

similar questions related to the corank of abelian groups.

1. Introduction and preliminaries

The rank r(G) of an abelian group G is defined as the supremum of the

cardinalities α such that G contains a direct sum of α non-zero subgroups. It

can be considered in a more general setting of lattices with 0. Namely r(G) is

the Goldie dimension of the lattice L(G) of subgroups of G (cf. [4], [5]). One can

define the corank c(G) of G as the Goldie dimension of the lattice L0(G) dual to

L(G). It coincides with the corank of G (regarded as a Z-module, where Z is the

ring of integers) introduced for modules in another way in [9]. One can extend to

lattices the concept of a basis of a linear space, understood as a maximal linearly

independent set, and show that the cardinality of every basis of a modular lattice

is equal to its Goldie dimension [4], [5]. Thus the Goldie dimension of modular

lattices (possessing bases) satisfies a counterpart of an important property of

the linear dimension. Many papers (cf. [1], [2], [6], [7]) studied other similarities

among the linear and Goldie dimensions. In [7] a lattice counterpart of the concept
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of a generating set of a linear space was introduced and there were characterized

modular lattices L satisfying properties

P1 : minimal generating sets of L are bases of L;

P2 : the cardinality of every minimal generating set of L is equal to the

Goldie dimension of L.

For every abelian groupG both L(G) and L0(G) have bases, so such questions

are of particular interest in this case. In [7] abelian groups G such that L(G)

satisfies P1 or P2 were described (none of them is satisfied for all abelian groups).

In this note we study these questions for L0(G). We will show that L0(G) satisfies

P2 for every abelian group G. This is an elementary but to some extend surprising

fact as it shows that the corank is an invariant of abelian groups more close to the

linear dimension than the rank, which might be useful in some studies. In that

context it is interesting to examine also P1 for L0(G). Unfortunately it does not

hold for all abelian groups. We classify abelian groups for which it is satisfied.

We begin with establishing the notation and recalling some concepts and

results. This is quite important as the standard terminologies for modules and

abelian groups are not always compatible.

Throughout the paper the term “group” means abelian group written addi-

tively. For undefined terms and facts on abelian groups we refer to [3].

To denote that N is a subgroup of a group G we write N ≤ G. A subgroup

N of a group G is said to be essential in G, which we denote N ≤e G, if for every

non-zero K ≤ M , K ∩N ̸= 0.

Applying Zorn’s lemma one gets that for a given subgroup H of a group

G there exists a subgroup N of G maximal with respect to H ∩ N = 0. Then

H ≃ (H+N)/N ≤e G/N . Every such subgroup N will be called an e-complement

of H.

In the following lemma we collect some well-known properties of essential

subgroups for later use.

Lemma 1.1. (i) If A ≤e B and B ≤e C, then A ≤e C;

(ii) If f : A → B is a homomorphism of groups and C ≤e B, then f−1(C) ≤e A;

(iii) For arbitrary groups A ≤e B and C, A⊕ C ≤e B ⊕ C.

For a given group G and a prime p, we denote by Gp the p-component of G,

i.e., the subgroup of G consisting of all elements of G whose orders are non-

negative powers of p.

In what follows Z denotes the additive group of integers, Q - the additive

group of rational numbers, Zn - the cyclic group of order n for an integer n ≥ 2

and Zp∞ - the Prüfer p-group for a prime p.
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A fundamental role in studies of the dual Goldie dimension (corank) of mod-

ules is played by hollow modules. A module is called hollow if it cannot be

presented as a sum of two proper submodules. From [8], Corollary 2.4, it fol-

lows that an abelian group, treated as a Z-module, is hollow if and only if it is

isomorphic to Zpn or Zp∞ for a prime p and a positive integer n.

The term “hollow” is not much used in the theory of abelian groups. However,

[3], Theorem 3.1, gives that an abelian group is hollow if and only if it is cocycilc

or, equivalently, subdirectly irreducible, i.e., the intersection of all its non-zero

subgropus is non-zero. In the sequel we will use the common in the theory of

abelian groups term “cocyclic group”.

Let us add in passing that it is not true that for all rings R the classes of

hollow and subdirectly irreducible R-modules (called also cocyclic modules [10])

coincide.

We need the following result, which is an exercise in [3]. We include its proof

for completeness.

Proposition 1.2 (cf. [3], Exercise 8.10). Every subgroup S of the group

G = Zp∞ ⊕ Zp∞ is isomorphic to A⊕B, where A,B are subgroups of Zp∞ .

Proof. If S is finite, then it is a direct sum of cyclic p-groups and, since

r(S) ≤ 2, the number of summands is ≤ 2 and we are done. Thus suppose that

S is infinite. Let π be the canonical projection of G onto the second component

of Zp∞ ⊕ Zp∞ and φ be its restriction to S. The kernel K of φ is equal to the

intersection of S with the first component of G = Zp∞ ⊕ Zp∞ . Hence, if K is

infinite it is equal to Zp∞ . Consequently S = K ⊕ B, where B ≃ Imφ ≤ Zp∞ .

Thus in this case the result holds. If K is finite, then the image of φ is infinite,

which implies that it is equal to Zp∞ . Consequently p(S/K) = S/K, and hence

S = pS+K. Since K is finite, there exists a positive integer n such that pnK = 0.

Now pnS = pn+1S + pnK = pn+1S, so pnS is a divisible subgroup of S. Since

S/K ≃ Zp∞ , we have pnS ̸= 0. Thus S contains a subgroup isomorphic to Zp∞

and hence S ≃ Zp∞ ⊕ B for a subgroup B of S. Obviously r(B) ≤ 1, so B is

isomorphic to a subgroup of Zp∞ and we are done. �

A set X of proper subgroups of a group G is called coindependent if for

arbitrary distinct subgroups N1, . . . , Nk ∈ X, N1 +
∩

2≤i≤k Ni = G. The corank

or the dual Goldie dimension of G, denoted c(G), is defined as the supremum of

cardinalities of coindependent sets of G.

A maximal coindependent set X of subgroups of a group G such that for

every H ∈ X, G/H is a cocyclic group, is called a cobasis of G.



390 Marco Perone and Edmund R. Puczy lowski

From Zorn’s lemma it follows that every coindependent set X of subgroups

of G such that for every H ∈ X, the group G/H is cocyclic can be extended to a

cobasis of G.

If G is a non-zero group, then either G is divisible and then G can be ho-

momorphically mapped onto Zp∞ for a prime p, or there is a prime q such that

G ̸= qG, so G can be homomorphically mapped onto Zq. Thus G contains a

subgroup H such that G/H is a cocyclic group. Hence there is a cobasis of G

containing H. From [5], Theorem 1, it follows that the cardinality of an arbitrary

cobasis of G is equal to c(G).

A set X of subgroups of a group G is called a cogenerating set of G if for all

H ∈ X, G/H are cocyclic groups and for every proper subgroup S of G there are

H1,H2, . . . ,Hn ∈ X such that S +
∩

i Hi ̸= G.

It is clear that every cobasis of G is a minimal cogenerating set of G. The

converse does not hold in general. In Theorem 2.5 we describe all groups with

that property.

2. Results

We start with showing that for every group G the lattice L0(G) satisfies P2.

Theorem 2.1. For every abelian group G the cardinality of an arbitrary

minimal cogenerating set of G is a equal to c(G).

Proof. Theorem 5.6 in [7] applied to abelian groups gives that to get the

result it suffices to show that if A and B are subgroups of G such that G/A and

G/B are cocyclic groups, then c(G/A∩B) ≤ 2. The group G/A∩B is isomorphic

to a subgroup of G/A⊕G/B. Since both G/A and G/B are cocyclic groups, there

are primes p, q such that G/A and G/B are isomorphic to subgroups of Zp∞ and

Zq∞ , respectively. Hence the group G/A ∩ B is isomorphic to a subgroup S of

Zp∞ ⊕ Zq∞ . If p ̸= q, then S = Sp ⊕ Sq and Sp, Sq are isomorphic to subgroups

of Zp∞ and Zq∞ , respectively. Consequently c(S) ≤ 2. If p = q, then from

Proposition 1.2 it follows that G is isomorphic to a group A⊕B, where both A,B

are subgroups of Zp∞ . Hence each of A and B is a cocyclic group or equal to 0

and we get that c(G) ≤ 2. �

Now we pass to study abelian groups in which minimal cogenerating sets

are cobases. Denote this class of groups by C. Our studies will be based on the

following result, which is Theorem 5.5 in [7] applied to abelian groups.
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Theorem 2.2. Every minimal cogenerating set of a group G is a cobasis

of G if and only if G cannot be homomorphically mapped onto a group A ⊕ B,

where A is a cocyclic group and B a non-trivial subgroup of A.

The following corollary follows directly from Theorem 2.2 and Proposition 1.2.

Corollary 2.3. (i) A group G belongs to C if and only if for every prime p

neither Zp∞ ⊕ Zp nor Zp2 ⊕ Zp is a homomorphic image of G. In particular,

the class C is homomorphically closed.

(ii) A subgroup of Zp∞ ⊕ Zp∞ is in C if and only if it is either a divisible or an

elementary p-group.

We will also need the following properties of groups in the class C.

Proposition 2.4. Suppose that G ∈ C and pG ̸= G for a prime p.

(i) If pG contains a subgroup H ≃ Zp2 , then pG ≤e G;

(ii) pG cannot contain a subgroup isomorphic to Zp2 ⊕ Zp.

Proof. (i) Let N be an e-complement of H in pG. It is clear that p(G/N) =

pG/N ̸= G/N . Applying Lemma 1.1 it suffices to show that p(G/N) ≤e G/N .

Hence, since C is homomorphically closed, we can factor out N and assume with-

out loss of generality that N = 0 and H ≤e pG. If pG is not essential in G,

then G contains a subgroup S of order p such that S ∩ pG = 0. Let D be a

divisible closure of G and D1 the divisible closure of pG + S = pG ⊕ S in D.

Then D = D1 ⊕ D2 for a subgroup D2 of D. If π is the projection of D onto

D1, then pG = π(pG) = p(π(G)) and S = π(S). Hence 0 ̸= pπ(G) ̸= π(G)

and the group π(G) is neither divisible nor elementary. Since H ≤e pG, we have

Zp2 ⊕Zp ≃ H⊕S ≤e pG⊕S by Lemma 1.1 (iii). Hence D1 ≃ Zp∞ ⊕Zp∞ . Conse-

quently π(G) is isomorphic to a subgroup of Zp∞ ⊕Zp∞ . Applying Corollary 2.3

(ii) we get that π(G) ̸∈ C, a contradiction.

(ii) Suppose on the contrary that pG contains a subgroup H ≃ Zp2 ⊕ Zp.

Let N be an e-complement of H in pG. Clearly p(G/N) = pG/N ̸= G/N and

p(G/N) contains a subgroup H ′ ≃ H such that H ′ ≤e p(G/N). From (i) it

follows that p(G/N) ≤e G/N . Consequently G/N is isomorphic to a subgroup of

Zp∞ ⊕Zp∞ , which is neither divisible nor elementary. Applying Corollary 2.3 we

get that G ̸∈ C, a contradiction. �

Now we are ready to describe the groups in C.

Theorem 2.5. 1. A torsion group G belongs to C if and only if for every

prime p, the group Gp is divisible or elementary or cyclic;
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2. A torsion free groupG belongs to C if and only ifG is divisible or is isomorphic

to a subgroup of Q;

3. A group G which is neither torsion-free nor torsion, belongs to C if and only

if G is isomorphic to a group A ⊕D, where D is a non-zero divisible group

and A is a subgroup of Q such that Z ≤ A and if Dp ̸= 0 for a prime p, then

(A/Z)p ≃ Zp∞ or, equivalently, p−k ∈ A for every positive integer k.

Proof. 1. The “if” part is clear. It is also clear that to get the “only if” part

it suffices to show it for p-groups, where p is a prime. Thus let G be a p-group and

suppose that G is neither divisible nor elementary. Then 0 ̸= pG ̸= G. If p2G = 0,

then G is a direct sum of cyclic groups by [3], Theorem 17.2. If r(G) = 1, then

G is a cyclic group. Otherwise G is a direct sum of at least two non-zero cyclic

groups of order ≤ p2 and since pG ̸= 0 at least one of them is of order p2. Thus

G contains a subgroup isomorphic to Zp2 ⊕Zp, which contradicts Proposition 2.4

(ii). Consequently G is a cyclic group. If p2G ̸= 0, then pG contains a subgroup

H ≃ Zp2 and by Proposition 2.4 (i), pG ≤e G. Note that H ≤e pG as otherwise

pG would contain a subgroup isomorphic to Zp2 ⊕ Zp, which is impossible by

Proposition 2.4 (ii). Hence Zp2 ≃ H ≤e G, so G is isomorphic to a subgroup of

Zp∞ and since G is not divisible, G is cyclic.

2. If G is divisible, then clearly G ∈ C. It is well known that for every non-

zero subgroup H of Q, Q/H is a direct sum of p-groups Sp, where p runs over

the set of primes and for each p, Sp is a cyclic group or a group isomorphic to

Zp∞ . This implies that no subgroup of Q can be homomorphically mapped onto

Zp2 ⊕ Zp, where p is a prime. Hence all subgroups of Q are in C. This proves

the “if” part. Suppose now that G ∈ C and G is not divisible. Then there is a

prime p such that pG ̸= G. Since G is torsion-free, pG ≤e G. If r(pG) ≥ 2, then

pG contains a subgroup S ≃ Z ⊕ Z. Obviously S contains a subgroup H such

that S/H ≃ Zp2 ⊕ Zp. Now p(G/H) ̸= G/H and p(G/H) contains a subgroup

isomorphic to Zp2 ⊕ Zp, which contradicts Proposition 2.4 (ii). Consequently

r(pG) = 1. Since pG ≤e G, we get that r(G) = 1, so G is isomorphic to a

subgroup of Q.

3. Suppose that G ∈ C and the torsion part of G is D. We claim that D

is divisible. If not, then for a prime p, D ̸= pD. Since D/pD is an elementary

p-group, D contains a subgroup H such that pD ⊆ H and D′ = D/H is a group

of order p. Since G′/D′ ≃ G/D is a torsion-free group, the torsion part of the

group G′ = G/H is D′. The map x → px is an epimorphism of G′ onto pG′

with the kernel D′. Consequently pG′ ≃ G′/D′ is a torsion-free subgroup of G′

and pG′ ⊕ D′ ≤ G′. Since pG′ is a torsion-free group it contains a subgroup
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S isomorphic to Z. Now for G′′ = G′/p2S we have that pG′′ ̸= G′′ and pG′′

contains a subgroup isomorphic to Zp2 . However pG′′ is not essential in G′′, which

contradicts Proposition 2.4 (i). Thus D is a divisible group and consequently

G ≃ A ⊕ D for a torsion-free group A. Now r(A) = 1 as otherwise A would

contain a subgroup isomorphic to Z⊕Z and A could be homomorphically mapped

onto a group T containing a subgroup isomorphic to Zp2 ⊕ Zp. Hence G could

be homomorphically mapped onto T ⊕D, which contradicts Proposition 2.4 (ii).

Thus we can assume that Z ≤ A ≤ Q. If Dp ̸= 0, then pA = A as otherwise

A could be homomorphically mapped onto Zp and G could be homomorphically

mapped onto Zp ⊕ Zp∞ . This obviously implies that p−k ∈ A for every positive

integer k and concludes the proof of the “only if” part.

To prove the other implication, suppose that f : A ⊕ D → C is a group

homomorphism, where C is a p-group for a prime p. Clearly f(D) = f(Dp) and

f(A) ≃ A/Kerf is a p-group. Since Z ≤ A, Z ∩ Kerf = pkZ for an integer

k ≥ 0. Now (Q/pkZ)p ≃ Zp∞ , so A/Kerf is isomorphic to a subgroup of Zp∞ .

Consequently f(A) is a cyclic p-group or is isomorphic to Zp∞ . By the assumption

the latter holds if Dp ̸= 0. Thus in this case f(A ⊕ D) is a divisible group. If

Dp = 0, then f(A⊕D) is a cyclic p-group or is a group isomorphic to Zp∞ . Thus

C is neither Zp2 ⊕ Zp nor Zp∞ ⊕ Zp. Consequently G ∈ C, which proves the “if”

part. �
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