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Asymtotic behavior of solutions of forced
nonlinear delay differential equations

By JURANG YAN (Shanxi)

1. Introduction

This paper is concerned with the asymptotic behavior of solutions of
nonlinear forced delay differential equations of the form

(1) x′(t) +
n∑

i=1

pi(t)f(x(t− τi)) = r(t), t ≥ t0,

where pi, r ∈ C([t0,∞), R), τi ≥ 0, i = 1, 2, . . . , n, f ∈ C(R, R), xf(x) > 0
for x 6= 0. The nonoscillatory and oscillatory properties of (1) and the
related equations have been studied by many authors; we mention here
the work of Győri, Ladas and Pakula [3]. Kulenovic, Ladas and
Meimaridou [4], [5] and the references cited therein.

As is customary, a solution is called oscillatory if is has arbitrarily
large zeros; otherwise, it is called nonoscillatory.

Recently, Kulenovic, Ladas and Meimaridou [4] have obtained
interesting sufficient conditions for the asymptotic stability of the trivial
solution of the delay differential equation

(1′) x′(t) +
n∑

i=1

pi(t)x(t− τi) = 0, t ≥ t0.

Their approach is based on dividing the set of solutions of (1′) into os-
cillatory and nonoscillatory solutions and then examining the asymtotic
properties of each class. Our aim in this paper is to obtain sufficient con-
ditions for the asymtotic behavior of all solutions of (1). Here the approach
in [4] will be used. The results obtained extend and improve some of the
results of [4].
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In the sequel, for convenience, we will assume that inequalities con-
cerning values of functions are satisfied eventually, that is for all large t.

2. Main Results

Without loss of generality, we will assume throughout this paper that
0 ≤ τ1 < τ2 < · · · < τn.

We introduce the following conditions:

(2) |f(x)| ≤ M |x| for all x.

where M is a positive constant, and

(3) R(t) =
∫ ∞

t

r(s)ds exists on [t0,∞).

Theorem 1. Assume that (2) and (3) hold and that there exist pos-
itive constants C1 and C2 such that the following conditions are satisfied
for sufficiently large t

|pi(t)| ≤ C1 for i = 1, 2, . . . n,(4)
n∑

i=1

pi(t− τn + τi) ≥ C2,(5)

and

(6)
n−1∑

i=1

∫ t−τi

t−τn

pi(s + τi)ds ≤ 1
M

,

where pi(t)− = min{pi(t), 0}. Then every nonoscillatory solution of (1)
tends to zero as t →∞.

Theorem 2. Assume that (2) and (3) hold and that for sufficiently
large t

n∑

i=1

pi(t− τn + τi) 6= 0,(7)

2 lim sup
t→∞

Q1(t) + lim sup
t→∞

Q2(t) <
1
M

,(8)

where

Q1(t) =
n∑

i=1

∫ t−τi

t−τn

|pi(s + τi)|ds,
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and

Q2(t) =
n∑

i=1

∫ t

t−τn

|pi(s− τn + τi)|ds.

Then every oscillatory solution of (1) tends to zero as t →∞.

Combining Theorems 1 and Theorem 2, we obtain the following

Theorem 3. Assume that (2)–(5) and (8) are satisfied. Then all so-
lutions of (1) tend to zero as t →∞.

Remark 1. From (2) and (3) we see that our results hold for lin-
ear and for nonlinear equations, forced equations and associated unforced
equations.

Remark 2. Our results can be extended to more general equations of
the form

x′(t) +
n∑

i=1

pi(t)fi(x(t− τi)) = r(t),

which involve different functions fi each of which satisfies the correspond-
ing conditions. When r(t) ≡ 0 and pi(t) are constants, (1) reduces to

(9) x′(t) +
n∑

i=1

pif(x(t− τi)) = 0.

The following corollaries are immediate consequences of Theorems 1,2
and 3.

Corollary 1. Assume that (2) holds and that

(10)
n∑

i=1

pi > 0,

and

(11)
n−1∑

i=1

(τn − τi)pi− ≤ 1
M

.

where pi− = min{pi, 0}. Then every nonoscillatory solution of (9) tends
to zero as t →∞.
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Corollary 2. Assume that (2) holds and that

n∑

i=1

pi 6= 0,(12)

n∑

i=1

(3τn − 2τi)|pi| < 1
M

.(13)

Then every oscillatory solution of (9) tends to zero as t →∞.

Corollary 3. Assume that (2), (10) and (13) hold. Then all solutions
of (9) tend to zero as t →∞.

For illustration we consider the following

Example. Consider the nonlinear delay differential equation

(14) x′(t) +
n∑

i=1

pi
x(t− τi)

1 + |x(t− τi)|β = 0.

where pi, τi, i = 1, 2, . . . , n, are constants and β is a positive constant. The
delay equation (14) with n = 1 has appeared in connection with physio-
logical control theory; see Chapin and Nussbaum [1] and Kulenovic,
Ladas and Meimaridou [4].

By Corollaries 1,2 and 3, we have the following conclusions:
(i) Assume that

∑n
i=1 pi > 0 and

∑n−1
i=1 (τn − τi)pi− ≤ 1, then every

nonoscillatory solution of (14) tends to zero as t →∞;

(ii) Assume that
∑n

i=1 pi 6= 0 and
∑n

i=1(3τn − 2τi)|pi| < 1, then every
oscillatory solution of (14) tends to zero as t →∞;

(iii) Assume that
∑n

i=1 pi > 0 and
∑n

i=1(3τn − 2τi)|pi| < 1, then all solu-
tions of (14) tend to zero t →∞.

Remark 3. By Lemma 1 in [1] and Theorem 6 in [5] all solutions of
(14) are oscillatory if and only if the equation

λ +
n∑

i=1

pie
λτi = 0,

has no real roots.
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3. Proofs of the Theorems

Proof of Theorem 1. Let x(t) be a solution of (1). Set

(15) z(t) = x(t) +
n−1∑

i=1

∫ t−τi

t−τn

pi(s + τi)f(x(s))ds + R(t),

with the convention that when n = 1 the above sum is zero. Since the
negative of a solution of (1) is also a solution, we will suppose that x(t) > 0.
From (1) and (15), we have

(16) z′(t) = −
n−1∑

i=1

pi(t− τn + τi)f(x(t− τn)).

From (16) and (5) it follows that

(17) z′(t) ≤ −C2f(x(t− τn)).

which implies that z(t) is a strictly decreasing function. Set L=limt→∞ z(t).
We claim that L ∈ R. Otherwise L = −∞ and because of (6), x(t) must
be unbounded. In fact, suppose that there exists a constant C such that
x(t) ≤ C. Then, from (15), (6) and (2), we have

z(t) ≥ x(t)−
n−1∑

i=1

∫ t−τi

t−τn

pi(s + τi)−f(x(s))ds + R(t)

≥ x(t)− CM

n−1∑

i=1

∫ t−τi

t−τn

pi(s + τi)−ds + R(t)

≥ x(t)− CM

n−1∑

i=1

∫ t−τi

t−τn

pi(s + τi)−ds + R(t) ≥ −C∗,

where C∗ is a constant, which contradicts that L = −∞. Thus x(t) is
unbounded. Choose a t1 ≥ t0 + τn in such a way that (6) is satisfied for
t ≥ t1, z(t1)−R(t1) < 0 and x(t1) = maxt0≤s≤t1 x(s). Clearly, this choice
of t1, is possible because x(t) is unbounded and limt→∞〈z(t)−R(t)〉 = −∞.



288 Jurang Yan

Then, from (15), (6) and (2), we have

0 > z(t1)−R(t1) = x(t1) +
n−1∑

i=1

∫ t1−τi

t1−τn

pi(s + τi)f(x(s))ds

≥ x(t1)−
n−1∑

i=1

∫ t1−τi

t1−τn

pi(s + τi)−Mx(s)ds

≥ x(t1)〈1−M

n−1∑

i=1

∫ t1−τi

t1−τn

pi(s + τi)−ds〉 ≥ 0,

which is a contradiction. Thus L ∈ R.
We are now in a position to prove that

(18) lim
t→∞

x(t) = 0.

In fact, integrating (17) from t1 to t for t1 sufficiently large and letting
t →∞, we find

L− z(t1) ≤ −C2

∫ ∞

t1

f(x(s− τn))ds.

Hence f(x(t)) ∈ L1[t1,∞) and lim inft→∞ f(x(t)) = 0. Since x(t) is
bounded, it follows that

(19) lim inf
t→∞

x(t) = 0.

Integrating (1) from t1 to t and letting t →∞, we obtain

(20) lim
t→∞

(x(t)− x(t1)) = −
n∑

i=1

∫ ∞

t1

pi(s)f(x(s− τi))ds + R(t1) < ∞,

where we have used (3) and (4). Combining (20) with (19) we obtain (18)
as claimed. The proof is complete.

Proof of Theorem 2. Let x(t) be an oscillatory solution of (1). Firts
we will prove that x(t) is bounded. Suppose that x(t) is unbounded.
Choose a t1 ≥ t0 + τn such that (7) holds for t ≥ t1 and also

max
t1≤s≤t

|x(s)| ≥ max
t−τn≤s≤t−τ1

|x(s)|, for t ≥ t1.
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Clearly, this choice of t1 is possible because x(t) is unbounded. Then, from
(15), we have

|z(t)| ≥ |x(t)| −
n−1∑

i=1

∫ t−τi

t−τn

|pi(s + τi)| |f(x(s))|ds− |R(t)|

≥ |x(t)| −M( max
t1≤s≤t

|x(s)|)Q1(t)− |R(t)|,

which implies that

max
t1≤s≤t

|z(s)| ≥ max
t1≤s≤t

|x(s)| −M( max
t1≤s≤t

|x(s)|) max
t1≤s≤t

Q1(s)

− max
t1≤s≤t

|R(s)|

≥ max
t1≤s≤t

|x(s)|〈1−M max
t1≤s≤t

Q1(s)〉 − max
t1≤s≤t

|R(t)|.(21)

By (21), (8) and the fact that limt→∞R(t)=0, we find that z(t) is un-
bounded. Also, from (16), we see that z′(t) oscillates. Thus, there exists a
sequence of points {ξk} such that ξk ≥ t1 for k = 1, 2, . . . , limk→∞ ξk = ∞,
limk→∞ |z(ξk)| = ∞, z′(ξk) = 0 for k = 1, 2, . . . , and

|z(ξk)| = max
t1≤s≤ξk

|z(s)|.

Form (16), using (7) and the fact that z′(ξk) = 0, we see that x(ξk−τn) = 0
for k = 1, 2, . . . , and so (15) yields

(22) z(ξk − τn) =
n−1∑

i=1

∫ ξk−τn−τi

ξk−2τn

pi(s + τi)f(x(s))ds + R(ξk − τn).

Integrating (16) from ξk − τn to ξk and using (22) we obtain

z(ξk) =
n−1∑

i=1

∫ ξk−τn−τi

ξk−2τn

pi(s + τi)f(x(s))ds

−
∫ ξk

ξk−τn

〈
n∑

n=1

pi(s− τn + τi)〉f(x(s− τn))ds + R(ξk − τn).

(23)

Thus we get

|x(ξk)| ≤ max
t1≤s≤ξk

|x(s)|MQ1(ξk − τn) + max
t1≤s≤ξk

|x(s)|MQ2(ξk)

+ |R(ξk − τn)|,(24)
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and, in view of (21)

〈1−M max
t1≤s≤ξk

Q1(s)〉 max
t1≤s≤ξk

|x(s)|

≤ M〈Q1(ξk−τn)+Q2(ξk)〉 max
t1≤s≤ξk

|x(s)|+ |R(ξk−τn)|+ max
t1≤s≤ξk

|R(s)|,

that is,

0 ≤ −1 + M〈 max
t1≤s≤ξk

Q1(s) + Q1(ξk − τn) + Q2(ξk)〉

+ ( max
t1≤s≤ξk

|x(s)|)−1(|R(ξk − τn)|+ max
t1≤s≤ξk

|R(s)|).

Let k →∞, then we find

0 ≤ −1 + M(2Q̄1 + Q̄2),

where Q̄1 = lim supt→∞Q1(t) and Q̄2 = lim supt→∞Q2(t), which contra-
dicts (8) and proves our claim.

Next, we prove that every bounded oscillatory solution x(t) of (1)
tends to zero as t →∞. Indeed, assume that

µ = lim sup
t→∞

|x(t)| > 0.

Then for any ε > 0 there exists a t2 ≥ t1 such that

|x(t)| < µ + ε for t ≥ t2.

Form (15) we have

|z(t) > |x(t)| −
n−1∑

i=1

∫ t−τi

t−τn

|pi(s + τi)| |f(x(s))|ds− |R(t)|

≥ |x(t)| − (µ + ε)MQ1(t)−R(t), t ≥ t2.

Thus
α = lim sup

t→∞
|z(t)| ≥ µ− (µ + ε)MQ̄1.

As ε is arbitrary, it follows that

(25) α ≥ µ(1−MQ̄1).

Since z′(t) oscillates, there exists a sequence of points {ζk} such that ζk ≥
t2 for k = 1, 2, . . . , limk→∞ ζk = ∞, z′(ζk) = 0 for k = 1, 2, . . . , and

lim
t→∞

|z(ζk)| = α.
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Also, (22) and so (23) is true with ξk repalced by ζk. Hence, from (24),

|z(ζk)| ≤ M(µ + ε)〈Q1(ζk − τn) + Q2(ζk)〉+ |R(ζk − τn)|.
Letting k →∞, we obtain

α ≤ M(µ + ε)(Q̄1 + Q̄2).

As ε is arbitrary, it follows that

α ≤ Mµ(Q̄1 + Q̄2).

By (25), we have
µ(1−MQ̄1) ≤ Mµ(Q̄1 + Q̄2),

or
1 ≤ 2(Q̄1 + Q̄2)M,

which contradicts the hypothesis (8) and the proof is complete.
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