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A note on lattices of idempotents in algebras

By JUNCHEOL HAN (Pusan), TSIU-KWEN LEE (Taipei), SANGWON PARK (Pusan)
and TSAI-LIEN WONG (Kaohsiung)

Abstract. Let R be a unital algebra over a field K. For idempotents e, f ∈ R, we

define e ≤ f if and only if ef = e = fe. Let e ∧ f and e ∨ f denote the infimum and

supremum of e and f , respectively, if they exist. Let e′ := 1−e for an idempotent e ∈ R.

We prove the following theorem: Let e, f ∈ R be nontrivial idempotents. Suppose that

there exists p(λ) ∈ K[λ] with zero constant term such that p(ef) = p(fe) and p(1) = 1.

Then e ∧ f = p(ef) and e ∨ f = 1− p(e′f ′).

1. Results

Throughout, R is an associative unital algebra over a field K. Let Id(R)

denote the set of all idempotents in R. For e, f ∈ Id(R), we define e ≤ f if and

only if ef = e = fe. Clearly, e ≤ f if and only if e ∈ fRf . Define e < f if e ≤ f

and e ̸= f . Let e ∧ f and e ∨ f denote the infimum and supremum of e and f ,

respectively, if they exist. Then (Id(R),≤) forms a partially ordered set.

Following [1], two idempotents e, f ∈ R are called generalized commuting if

there exists a positive integer n such that (ef)n = (fe)n or (ef)ne = (fe)nf . We

denote by ⟨e, f⟩s the subsemigroup of the multiplicative monoid of R generated

by e and f . For an idempotent e ∈ R, we set e′ := 1 − e, the complementary

idempotent of e. In [1], Cǎlugǎreanu proved the following (see [1, Theorem 7,

Proposition 4 and Lemma 2]).
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Theorem 1. Let e, f ∈ Id(R). Then both e∧ f and e∨ f exist, and e∧ f ∈
⟨e, f⟩s if and only if e and f are generalized commuting idempotents. In this case,

there exists a positive integer n such that e ∧ f = (ef)n and e ∨ f = 1− (e′f ′)n.

In a recent paper [2], Han and Park proved that for idempotents e, f ∈ R

and a positive integer n, (ef)n = (fe)n if and only if (e′f ′)n = (f ′e′)n. Thus,

Theorem 1 is easily proved by the result (see [2, Theorem 2.5]). However, there

exist idempotents e, f ∈ R such that e ∧ f and e ∨ f exist but e, f are not

generalized commuting idempotents (see the example below). In this situation,

of course, e ∧ f /∈ ⟨e, f⟩s.
We let Mn(K) stand for the n× n matrix algebra over the field K and let R

denote the field of real numbers.

Example 2. In R := M2(R), let e = ( 1 2
0 0 ) and f = ( 1 0

1 0 ). Then e∧ f = 0 and

e ∨ f = 1.

Indeed, let g ∈ R be an idempotent such that g ≤ e and g ≤ f . Then

g(e− f) = 0. But e− f =
(

0 2
−1 0

)
. Then g = 0 follows since e− f is a unit in R.

This proves that e ∧ f = 0. On the other hand, let h ∈ R be an idempotent such

that e ≤ h and f ≤ h. Then (1−h)e = 0 = (1−h)f , implying (1−h)(e− f) = 0.

Thus, h = 1. This proves that e ∨ f = 1. However,

(ef)n = 3n

(
1 0

0 0

)
, (fe)n = 3n−1

(
1 2

1 2

)

(ef)ne = 3n

(
1 2

0 0

)
and (fe)nf = 3n

(
1 0

1 0

)

for all n ≥ 1. Thus, e and f are not generalized commuting idempotents.

In this note, we will prove some theorems to compute e ∧ f and e ∨ f for

idempotents e, f ∈ R even when e and f are not generalized commuting idempo-

tents. Let K[λ] be the polynomial ring over K in the indeterminate λ. The main

goal of this note is to prove the following theorem (see Section 2 for its proof).

Theorem 3. Let e, f ∈ Id(R). Suppose that there exists p(λ) ∈ K[λ] with

zero constant term such that p(ef) = p(fe) and p(1) = 1. Then the following

hold:

(i) p(ef) and p(e′f ′) are idempotents.

(ii) e ∧ f = p(ef) and e ∨ f = 1− p(e′f ′).
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Theorem 4. Let e, f ∈ Id(R). Suppose that there exists q(λ) ∈ K[λ] with

zero constant term such that q(ef) = 0 and q(1) ̸= 0. Then e ∧ f = 0 and

e ∨ f = 1− q(1)−1e′f ′q(e′f ′).

Proof. Let p(λ) := q(1)−1λq(λ) ∈ K[λ]. Then p(ef) = 0 and

p(fe) = q(1)−1feq(fe) = q(1)−1fq(ef)e = 0.

Also, p(1) = 1. In view of Theorem 3, e∧f = p(ef) = 0 and e∨f = 1−p(e′f ′). �

Corollary 5. Let e, f ∈ Id(R) be such that (ef)n = 0 for some positive

integer n. Then e ∧ f = 0 and e ∨ f = 1− (e′f ′)n+1.

Proof. Let q(λ) := λn. Thus, q(ef) = 0. In view of Theorem 4, e ∧ f = 0

and e ∨ f = 1− e′f ′q(e′f ′) = 1− (e′f ′)n+1. �

2. Proof of Theorem 3

Recall that R is always a unital algebra over a field K. For an idempotent

e ∈ R, we let e′ := 1− e. We begin with the following key observation.

Lemma 6. Let e, f ∈ R be idempotents and p(λ) ∈ K[λ] with p(0) = 0.

Then p(ef) = p(fe) if and only if p(e′f ′) = p(f ′e′).

Proof. Clearly, it suffices to prove the “only if” part. Suppose that p(ef) =

p(fe). Write

p(λ) = βmλm + βm−1λ
m−1 + · · ·+ β1λ,

where β1, . . . , βm ∈ K. Note that

(1− e′)(1− f ′)e′ = (1− e′)(−f ′)e′ and (1− f ′)(1− e′)f ′ = (1− f ′)(−e′)f ′.

Thus, for a positive integer k ≥ 1,

[1− e, (ef)k] = [e′, ((1− e′)(1− f ′))k] = −((1− e′)(1− f ′))ke′ = (1− e′)(f ′e′)k

and so

[1− e, p(ef)] =

[
1− e,

m∑
k=1

βk(ef)
k

]
=

m∑
k=1

βk[1− e, (ef)k]

= (1− e′)
m∑

k=1

βk(f
′e′)k = (1− e′)p(f ′e′). (1)
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On the other hand,

[1− e, p(fe)] = e′p(fe) = e′p((1− f ′)(1− e′)) = −p(e′f ′)(1− e′). (2)

Since p(ef) = p(fe), it follows from equations (1) and (2) that

(1− e′)p(f ′e′) = −p(e′f ′)(1− e′).

Thus, (1− e′)p(f ′e′) = 0 = −p(e′f ′)(1− e′) and hence

p(f ′e′) = e′p(f ′e′) = p(e′f ′)e′ = p(e′f ′),

as asserted. �

Proof of Theorem 3. Set h := p(ef). Since p(ef) = p(fe), we see that

he = h = eh and hf = h = fh. Thus, (ef)kh = h = (fe)kh for any positive

integer k. Write

p(λ) = βmλm + βm−1λ
m−1 + · · ·+ β1λ,

where β1, . . . , βm ∈ K. Then, by p(1) = 1,

h2 = hp(ef) = hp(1) = h.

This proves that h is an idempotent. In particular, h ≤ e and h ≤ f . We claim

that h = e ∧ f . Suppose that g ≤ e and g ≤ f . Then

gh = gp(ef) = p(gef) = p(g) = gp(1) = g.

Similarly, g = hg. This implies that g ≤ h. This proves that h = e ∧ f .

By Lemma 6, we see that p(e′f ′) = p(f ′e′). Since p(1) = 1, it follows from

(i) that e′ ∧ f ′ = p(e′f ′). This implies that e ∨ f = 1− e′ ∧ f ′ = 1− p(e′f ′). �
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