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1. Introduction

The notion of a pseudo symmetric manifold was introduced by the
author in an earlier paper [1]. A non-flat Riemannian manifold (Mn, g)
(n ≥ 2) was called pseudo symmetric if its curvature tensor R satisfies the
condition

(1)

(∇XR)(Y,Z, W ) = 2A(X)R(Y,Z, W ) + A(Y )R(X, Z,W )

+ A(Z)R(Y,X, W ) + A(W )R(Y, Z,X) + g(R(Y, Z, W ), X)P ;

X,Y, Z, P ∈ χ(Mn)

where A is a non-zero 1-form, ∇ denotes the operator of covariant differ-
entiation with respect to the metric tensor g and P is a vector field given
by

(2) g(X, P ) = A(X) ∀X.

The 1-form A was called the associated 1-form of the manifold and such an
n-dimensional manifold was denoted by (PS)n. The vector field P defined
by (2) is called the basic vector field corresponding to the associated 1-form
A.

The object of this paper is to study a type of non-flat Riemannian
manifold (Mn, g)(n > 2) whose curvature tensor R satisfies the condition

(3)
(∇XR)(Y, Z,W ) = 2A(X)R(Y, Z, W ) + B(Y )R(X, Z,W )

+ C(Z)R(Y,X, W ) + D(W )R(Y, Z, X) + g(R(Y, Z, W ), X)P

where A,B, C,D are non-zero 1-forms and ∇ and P have the meaning
already mentioned.
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Such a manifold shall be called a generalised pseudo symmetric mani-
fold, A,B, C,D shall be called its associated 1-forms and an n-dimensional
manifold of this kind shall be denoted by G(PS)n. Let

(4)
g(X, λ) = B(X), g(X, µ) = C(X) and

g(X, ν) = D(X) ∀X ∈ χ(M)

Then P, λ, µ, ν ∈ χ(M) shall be called the basic vector fields of G(PS)n

corresponding to the associated 1-forms A,B, C, D, respectively. If, in
particular, B = C = D = A, then the manifold defined by (3) reduces to a
pseudo symmetric manifold defined by (1). This justifies the name “Gener-
alized pseudo symmetric manifold” and the use of the symbol G(PS)n. It
may be mentioned in this connection that following my paper [1], Tamássy
and Binh [2] studied a type of Riemannian manifold (M, g) whose curva-
ture tensor R satisfies the condition

(5)
(∇XR)(Y,Z, W ) = α(X)R(Y,Z, W ) + β(Y )R(X,Z, W )

+ γ(Z)R(Y, X,W ) + δ(W )R(Y,Z, X) + g(R(Y,Z, W ), X)F

where α, β, γ, δ are 1-forms and F any vector field. They called such a
manifold weakly symmetric. (5) is a little weaker assumption than (3).
(5) gives (3) if α and F are related by g(X, F ) = α ∀X. Though the
definition of a G(PS)n is similar to that of a weakly symmetric manifold
mentioned above, our study of a G(PS)n is different from that of Tamássy
and Binh.

In this paper the question whether a G(PS)n can be of constant cur-
vature has been answered. Considering an Einstein G(PS)n it is shown
that such a manifold is necessarily of zero scalar curvature under a certain
condition. Further, an interesting result of paper [1] for a conformally flat
(PS)n has been generalised for a conformally flat G(PS)n. Finally, it is
shown that if a G(PS)n admits a parallel vector field which is not orthog-
onal to the basic vector field P , then the manifold cannot be conformally
flat.

1. Preliminaries

Let L be the symmetric endomorphism of the tangent space at each
point of a G(PS)n corresponding to the Ricci tensor S of type (0, 2). Then

(1.1) g(LX, Y ) = S(X, Y ) ∀X, Y ∈ χ(M).

Further, let

(1.2)
Ā(X) = A(LX), B̄(X) = B(LX),

C̄(X) = C(LX), D̄(X) = D(LX).
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Then the 1-forms Ā, B̄, C̄, D̄ shall be called the auxiliary associated 1-
forms of a G(PS)n corresponding to the forms A, B, C, D, respectively.
Establishing the inner product of both sides of (3) with a vector U ∈
χ(Mn) and then contracting over Z and W , we get

(1.3)
(∇XS)(Y,U) = 2A(X)S(Y, U) + B(Y )S(X, U)

+ C(R(X,Y, U)) + D(R(X, U, Y )) + A(U)S(X,Y ).

Next, contracting (1.3) over Y and U , we obtain

(1.4) dr(X) = 2A(X)r + S(X, P ) + S(X, λ) + S(X, µ) + S(X, ν),

where r is the scalar curvature. Using the notations P + λ + µ + ν = ρ
and A + B + C + D = E, we obtain Ē(X) = E(LX) = S(X, ρ) and then
(1.4) takes the form

(1.4′) dr(X) = 2A(X)r + S(X, ρ) = 2A(X)r + Ē(X).

From (1.4′) we get

ddr(X, Y ) = 2rdA(X, Y ) + 2Ē(X)A(Y )− 2Ē(Y )A(X) + dĒ(X,Y ).

Since ddr(X) = 0, we obtain

(1.5) rdA(X, Y ) + [Ē(X)A(Y )− Ē(Y )A(X)] +
1
2
dĒ(X, Y ) = 0.

These formulas will be used in the sequel.

2. G(PS)n of non-zero constant scalar curvature

We suppose that in a G(PS)n the scalar curvature r is a constant
different from zero. Then from (1.4′) we get

2A(X)r + Ē(X) = 0 or Ē(X) = −2A(X)r.

From this it follows that

(2.1) S(X, ρ) = −2rA(X).

If, in particular, B = C = D = A, then S(X, ρ) = 4Ā(X) and (2.1) takes
the form 4Ā(X) = −2rA(X), from which we get

Theorem 1. In a G(PS)n of non-zero constant scalar curvature, in
which B = C = D = A we obtain.

Ā(X) = −
(r

2

)
A(X).

This result has already been obtained in paper [1] of the author.
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3. Einstein G(PS)n (n > 2)

In this section we suppose that a G(PS)n is an Einstein manifold.
Then

(3.1) S(X, Y ) =
r

n
g(X,Y ).

It is known [3] that in an Einstein manifold (Mn, g) (n > 2)r is constant.
Hence in this case dr(X) = 0. Therefore from (1.4) it follows that

2A(X)r + S(X,P ) + S(X, λ) + S(X,µ) + S(X, ν) = 0.

Or, in virtue of (3.1) we have

2A(X)r +
r

n
[A(X) + B(X) + C(X) + D(X)] = 0,

or

(3.2) [(2n + 1)A(X) + B(X) + C(X) + D(X)]r = 0.

From (3.2) it follows that if

(3.3) (2n + 1)A(X) + B(X) + C(X) + D(X) 6= 0, then r = 0.

This leads to the following theorem:

Theorem 2. An Einstein G(PS)n satisfying the condition (3.3) is of
zero scalar curvature.

If, in particular, B = C = D = A, then the G(PS)n reduces to a
(PS)n and the expression (2n+1)A(X)+B(X)+C(X)+D(X) takes the
form 2(n + 2)A(X) which is not zero, because A(X) 6= 0. Thus it follows
that an Einstein (PS)n with n > 2 is of zero scalar curvature — a result
already proved by the author in his paper [1]. It is known that a manifold
of constant curvature is an Einstein manifold, but the converse is not, in
general, true. The question therefore arises whether a G(PS)n can be of
constant curvature.

Suppose that a G(PS)n is of constant curvature. Then we can write

(3.4) R(X, Y, Z) = κ[g(Y,Z)X − g(X, Z)Y ]

where κ is constant. Being of constant curvature, the G(PS)n under con-
sideration is an Einstein manifold. Hence if (3.3) holds, then according to
Theorem 2, r = 0. Therefore κ = 0, because from (3.4) we easily get
r = κn(n− 1) by contraction.

Consequently, from (3.4) it follows that R(X,Y, Z) = 0, that is, the
manifold is flat. But this is not admissible by the definition of a G(PS)n.
Therefore in answer to the question raised above we can state the following
theorem:
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Theorem 3. A G(PS)n satisfying the condition (3.3) cannot be of
constant curvature.

Since a 3-dimensional Einstein manifold is of constant curvature ([3]
p. 293), we can state the following corollary of Theorem 3.

Corollary. An Einstein G(PS)n satisfying the condition 7A(X) +
B(X) + C(X) + D(X) 6= 0 does not exist.

4. Conformally flat G(PS)n (n ≥ 3)

It has been proved by the author elsewhere [1] that in a conformally
flat (PS)n, the associated 1-form A is proportional to the auxiliary as-
sociated 1-form Ā. It is therefore narural to enquire about the nature of
generalisation of this result for a conformally flat G(PS)n. An answer to
this enquiry is given in this section.

It is known ([4] p. 91) that in a conformally flat (Mn, g)(n ≥ 3)

(4.1) (∇XS)(Y,Z)− (∇ZS)(Y, X)

=
1

2(n− 1)
[dr(X)g(Y,Z)− dr(Z)g(X, Y )].

In virtue of (1.4) the equation (4.1) can be written as follows:

2(n− 1)[(∇XS)(Y, Z)− (∇ZS)(Y,X) = 2r[A(X)g(Y, Z)−A(Z)g(X, Y )]

+ [Ā(X)g(Y,Z)− Ā(Z)g(X, Y )] + [B̄(X)g(Y, Z)− B̄(Z)g(X, Y )](4.2)

+ [C̄(X)g(Y,Z)− C̄(Z)g(X, Y )] + [D̄(X)g(Y, Z)− D̄(Z)g(X,Y )]

Again in virtue of (1.3)

(∇XS)(Y, Z)− (∇ZS)(Y,X) = A(X)S(Y,Z)−A(Z)S(Y, X)

+ C(R(X, Z, Y )) + 2D(R(X,Z, Y )).

Therefore

2(n− 1)[(∇XS)(Y,Z)− (∇ZS)(Y, X)]

= 2(n− 1)A(X)S(Y, Z)− 2(n− 1)A(Z)S(Y, X)(4.3)

+ 2(n− 1)C(R(X, Z, Y ) + 4(n− 1)D(R(X, Z, Y )).



310 M. C. Chaki

From (4.2) and (4.3) we get

(4.4)

2(n− 1)A(X)S(Y, Z)− 2(n− 1)A(Z)S(Y, X)

+ 2(n− 1)C(R(X,Z, Y )) + 4(n− 1)D(R(X, Z, Y ))

= 2r[A(X)g(Y, Z)−A(Z)g(X,Y )]

+ [Ā(X)g(Y,Z)− Ā(Z)g(X, Y )]

+ [B̄(X)g(Y, Z)− B̄(Z)g(X, Y )]

+ [C̄(X)g(Y,Z)− C̄(Z)g(X, Y )]

+ [D̄(X)g(Y, Z)− D̄(Z)g(X,Y )]

Again in a conformally flat (Mn, g) (n > 2)

(4.5)

R(X,Z, Y, W ) =
1

n− 2
[S(Y, Z)g(X, W )− S(X, Y )g(Z,W )

+ S(X, W )g(Y,Z)− S(Z,W )g(X, Y )]

+
r

(n− 1)(n− 2)
[g(X, Y )g(Z,W )− g(Y, Z)g(X,W )]

where

(4.6) R(X, Z, Y, W ) = g[R(X, Z, Y ),W ]

In virtue of (4.5) we get

(4.7)

2(n− 1)[C(R(X, Z, Y )) + 2D(R(X,Z, Y ))]

=
2(n− 1)
n− 2

[S(Y,Z){C(X) + 2D(X)} − S(X, Y ){C(Z) + 2D(Z)}
+ g(Y, Z){C̄(X) + 2D̄(X)} − g(X, Y ){C̄(Z) + 2D̄(Z)}]
+

2r

n− 2
[g(X, Y ){C(Z) + 2D(Z)} − g(Y, Z){C(X) + 2D(X)}].
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In virtue of (4.7) we can express (4.4) as follows:

2(n− 1)S(Y, Z)[(n− 2)A(X) + C(X) + 2D(X)]

− 2(n− 1)S(X,Y )[(n− 2)A(Z) + C(Z) + 2D(Z)]

+ g(Y, Z)[2(n− 1)C̄(X) + 4(n− 1)D̄(X)

− (n− 2){Ā(X) + B̄(X) + C̄(X) + D̄(X)}](4.8)

− g(X, Y )[2(n− 1)C̄(Z) + 4(n− 1)D̄(Z)

− (n− 2){Ā(Z) + B̄(Z) + C̄(Z) + D̄(Z)}]
= 2r[g(Y, Z){(n− 2)A(X) + 2C(X) + 4D(X)}
− g(X, Y ){(n− 2)A(Z) + 2C(Z) + 4D(Z)}]

Putting Y = P in (4.8) we obtain

(n− 1)[2C(X)Ā(Z)− 2C(Z)Ā(X) + 4D(X)Ā(Z)− 4D(Z)Ā(X)]

+(n− 1)[2C̄(X)A(Z)− 2C̄(Z)A(X) + 4D̄(X)A(Z)− 4D̄(Z)A(X)]

−(n− 2)[A(Z){(−2n + 1)Ā(X) + B̄(X) + C̄(X) + D̄(X)}(4.9)

−A(X){(2n + 1)Ā(Z) + B̄(Z) + C̄(Z) + D̄(Z)}]
= 2r[2C(X)A(Z)− 2C(Z)A(X) + 4D(X)A(Z)− 4D(Z)A(X)].

This is the required generalization.
We can therefore state the following theorem:

Theorem 4. In a conformally flat G(PS)n the associated and the
auxiliary associated 1-forms satisfy the relation (4.9).

If, in particular, B = C = D = A, then the G(PS)n reduces to a
(PS)n and the relation (4.9) takes the form

Ā(X)A(Z)− Ā(Z)A(X) = 0,

a result already proved by the author elsewhere [1].

5. G(PS)n admitting a parallel vector field

In this section we suppose that a G(PS)n admits a parallel vector
field V ([3] p. 124, [5] p. 322]).

Then

(5.1) (∇XV ) = 0 ∀X ∈ χ(G(PS)n).



312 M. C. Chaki : On generalised pseudo symmetric manifolds

Applying Ricci identity to (5.1) we get

(5.2) R(X,Y, V ) = 0.

From (5.2) it follows that

(5.3) R(X,Y, Z, V ) = 0.

In virtue of (5.3) we get

(5.4) S(X, V ) = 0.

Now, by (5.1) and (5.4)

(5.5) (∇XS)(Y, V ) = ∇XS(Y, V )− S(∇XY, V )− S(Y,∇XV ) = 0

Again from (1.3) we get by (5.3) and (5.4)

(5.6)
(∇XS)(Y, V ) = 2A(X)S(Y, V ) + B(Y )S(X,V )

+ R(Y, X, µ, V ) + R(Y, ν,X, Y ) + A(V )S(Y, X) = A(V )S(Y, X).

From (5.5) and (5.6) we obtain

(5.7) A(V )S(Y, X) = 0,

If A(V ) 6= 0, i.e., if g(P, V ) 6= 0, then from (5.7) we get S(Y,X) = 0.
Hence

C̃(X,Y, Z) = R(X, Y, Z),

where C̃ is Weyl’s conformal curvature tensor. Therefore C̃(X, Y, Z) 6= 0,
for otherwise R(X,Y, Z) will be zero implying that the manifold is flat
which is inadmissible. Hence we can state the following theorem.

Theorem 5. If a G(PS)n admits a parallel vector field which is not
orthogonal to the basis vector field P , then the manifold cannot be con-
formally flat.
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