On generalised pseudo symmetric manifolds

By M. C. CHAKI (Calcutta)
Dedicated to the memory of Professor Béla Barna

1. Introduction

The notion of a pseudo symmetric manifold was introduced by the author in an earlier paper [1]. A non-flat Riemannian manifold (M^{n}, g) ($n \geq 2$) was called pseudo symmetric if its curvature tensor R satisfies the condition

$$
\begin{gather*}
\left(\nabla_{X} R\right)(Y, Z, W)=2 A(X) R(Y, Z, W)+A(Y) R(X, Z, W) \\
+A(Z) R(Y, X, W)+A(W) R(Y, Z, X)+g(R(Y, Z, W), X) P \tag{1}\\
X, Y, Z, P \in \chi\left(M^{n}\right)
\end{gather*}
$$

where A is a non-zero 1 -form, ∇ denotes the operator of covariant differentiation with respect to the metric tensor g and P is a vector field given by

$$
\begin{equation*}
g(X, P)=A(X) \quad \forall X \tag{2}
\end{equation*}
$$

The 1-form A was called the associated 1-form of the manifold and such an n-dimensional manifold was denoted by $(P S)_{n}$. The vector field P defined by (2) is called the basic vector field corresponding to the associated 1-form A.

The object of this paper is to study a type of non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ whose curvature tensor R satisfies the condition

$$
\begin{align*}
& \left(\nabla_{X} R\right)(Y, Z, W)=2 A(X) R(Y, Z, W)+B(Y) R(X, Z, W) \\
& \quad+C(Z) R(Y, X, W)+D(W) R(Y, Z, X)+g(R(Y, Z, W), X) P \tag{3}
\end{align*}
$$

where A, B, C, D are non-zero 1 -forms and ∇ and P have the meaning already mentioned.

Such a manifold shall be called a generalised pseudo symmetric manifold, A, B, C, D shall be called its associated 1 -forms and an n-dimensional manifold of this kind shall be denoted by $G(P S)_{n}$. Let

$$
\begin{align*}
& g(X, \lambda)=B(X), g(X, \mu)=C(X) \quad \text { and } \\
& g(X, \nu)=D(X) \quad \forall X \in \chi(M) \tag{4}
\end{align*}
$$

Then $P, \lambda, \mu, \nu \in \chi(M)$ shall be called the basic vector fields of $G(P S)_{n}$ corresponding to the associated 1-forms A, B, C, D, respectively. If, in particular, $B=C=D=A$, then the manifold defined by (3) reduces to a pseudo symmetric manifold defined by (1). This justifies the name "Generalized pseudo symmetric manifold" and the use of the symbol $G(P S)_{n}$. It may be mentioned in this connection that following my paper [1], TAMÁSSY and Binh [2] studied a type of Riemannian manifold (M, g) whose curvature tensor R satisfies the condition

$$
\begin{align*}
& \left(\nabla_{X} R\right)(Y, Z, W)=\alpha(X) R(Y, Z, W)+\beta(Y) R(X, Z, W) \\
& \quad+\gamma(Z) R(Y, X, W)+\delta(W) R(Y, Z, X)+g(R(Y, Z, W), X) F \tag{5}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ are 1 -forms and F any vector field. They called such a manifold weakly symmetric. (5) is a little weaker assumption than (3). (5) gives (3) if α and F are related by $g(X, F)=\alpha \forall X$. Though the definition of a $G(P S)_{n}$ is similar to that of a weakly symmetric manifold mentioned above, our study of a $G(P S)_{n}$ is different from that of Tamássy and Binh.

In this paper the question whether a $G(P S)_{n}$ can be of constant curvature has been answered. Considering an Einstein $G(P S)_{n}$ it is shown that such a manifold is necessarily of zero scalar curvature under a certain condition. Further, an interesting result of paper [1] for a conformally flat $(P S)_{n}$ has been generalised for a conformally flat $G(P S)_{n}$. Finally, it is shown that if a $G(P S)_{n}$ admits a parallel vector field which is not orthogonal to the basic vector field P, then the manifold cannot be conformally flat.

1. Preliminaries

Let L be the symmetric endomorphism of the tangent space at each point of a $G(P S)_{n}$ corresponding to the Ricci tensor S of type (0,2). Then

$$
\begin{equation*}
g(L X, Y)=S(X, Y) \quad \forall X, Y \in \chi(M) \tag{1.1}
\end{equation*}
$$

Further, let

$$
\begin{array}{ll}
\bar{A}(X)=A(L X), & \bar{B}(X)=B(L X) \\
\bar{C}(X)=C(L X), & \bar{D}(X)=D(L X) \tag{1.2}
\end{array}
$$

Then the 1-forms $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ shall be called the auxiliary associated 1forms of a $G(P S)_{n}$ corresponding to the forms A, B, C, D, respectively. Establishing the inner product of both sides of (3) with a vector $U \in$ $\chi\left(M^{n}\right)$ and then contracting over Z and W, we get

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, U)=2 A(X) S(Y, U)+B(Y) S(X, U) \\
& \quad+C(R(X, Y, U))+D(R(X, U, Y))+A(U) S(X, Y) \tag{1.3}
\end{align*}
$$

Next, contracting (1.3) over Y and U, we obtain

$$
\begin{equation*}
d r(X)=2 A(X) r+S(X, P)+S(X, \lambda)+S(X, \mu)+S(X, \nu) \tag{1.4}
\end{equation*}
$$

where r is the scalar curvature. Using the notations $P+\lambda+\mu+\nu=\rho$ and $A+B+C+D=E$, we obtain $E(X)=E(L X)=S(X, \rho)$ and then (1.4) takes the form

$$
d r(X)=2 A(X) r+S(X, \rho)=2 A(X) r+\bar{E}(X)
$$

From (1.4') we get

$$
d d r(X, Y)=2 r d A(X, Y)+2 \bar{E}(X) A(Y)-2 \bar{E}(Y) A(X)+d \bar{E}(X, Y)
$$

Since $d d r(X)=0$, we obtain

$$
\begin{equation*}
r d A(X, Y)+[\bar{E}(X) A(Y)-\bar{E}(Y) A(X)]+\frac{1}{2} d \bar{E}(X, Y)=0 \tag{1.5}
\end{equation*}
$$

These formulas will be used in the sequel.

2. $G(P S)_{n}$ of non-zero constant scalar curvature

We suppose that in a $G(P S)_{n}$ the scalar curvature r is a constant different from zero. Then from (1.4') we get

$$
2 A(X) r+\bar{E}(X)=0 \quad \text { or } \quad \bar{E}(X)=-2 A(X) r
$$

From this it follows that

$$
\begin{equation*}
S(X, \rho)=-2 r A(X) \tag{2.1}
\end{equation*}
$$

If, in particular, $B=C=D=A$, then $S(X, \rho)=4 \bar{A}(X)$ and (2.1) takes the form $4 \bar{A}(X)=-2 r A(X)$, from which we get

Theorem 1. In a $G(P S)_{n}$ of non-zero constant scalar curvature, in which $B=C=D=A$ we obtain.

$$
\bar{A}(X)=-\left(\frac{r}{2}\right) A(X)
$$

This result has already been obtained in paper [1] of the author.

3. Einstein $G(P S)_{n}(n>2)$

In this section we suppose that a $G(P S)_{n}$ is an Einstein manifold. Then

$$
\begin{equation*}
S(X, Y)=\frac{r}{n} g(X, Y) \tag{3.1}
\end{equation*}
$$

It is known [3] that in an Einstein manifold $\left(M^{n}, g\right)(n>2) r$ is constant. Hence in this case $d r(X)=0$. Therefore from (1.4) it follows that

$$
2 A(X) r+S(X, P)+S(X, \lambda)+S(X, \mu)+S(X, \nu)=0
$$

Or, in virtue of (3.1) we have

$$
2 A(X) r+\frac{r}{n}[A(X)+B(X)+C(X)+D(X)]=0
$$

or

$$
\begin{equation*}
[(2 n+1) A(X)+B(X)+C(X)+D(X)] r=0 \tag{3.2}
\end{equation*}
$$

From (3.2) it follows that if

$$
\begin{equation*}
(2 n+1) A(X)+B(X)+C(X)+D(X) \neq 0, \quad \text { then } r=0 \tag{3.3}
\end{equation*}
$$

This leads to the following theorem:
Theorem 2. An Einstein $G(P S)_{n}$ satisfying the condition (3.3) is of zero scalar curvature.

If, in particular, $B=C=D=A$, then the $G(P S)_{n}$ reduces to a $(P S)_{n}$ and the expression $(2 n+1) A(X)+B(X)+C(X)+D(X)$ takes the form $2(n+2) A(X)$ which is not zero, because $A(X) \neq 0$. Thus it follows that an Einstein $(P S)_{n}$ with $n>2$ is of zero scalar curvature - a result already proved by the author in his paper [1]. It is known that a manifold of constant curvature is an Einstein manifold, but the converse is not, in general, true. The question therefore arises whether a $G(P S)_{n}$ can be of constant curvature.

Suppose that a $G(P S)_{n}$ is of constant curvature. Then we can write

$$
\begin{equation*}
R(X, Y, Z)=\kappa[g(Y, Z) X-g(X, Z) Y] \tag{3.4}
\end{equation*}
$$

where κ is constant. Being of constant curvature, the $G(P S)_{n}$ under consideration is an Einstein manifold. Hence if (3.3) holds, then according to Theorem 2, $\quad r=0$. Therefore $\kappa=0$, because from (3.4) we easily get $r=\kappa n(n-1)$ by contraction.

Consequently, from (3.4) it follows that $R(X, Y, Z)=0$, that is, the manifold is flat. But this is not admissible by the definition of a $G(P S)_{n}$. Therefore in answer to the question raised above we can state the following theorem:

Theorem 3. $A G(P S)_{n}$ satisfying the condition (3.3) cannot be of constant curvature.

Since a 3-dimensional Einstein manifold is of constant curvature ([3] p. 293), we can state the following corollary of Theorem 3.

Corollary. An Einstein $G(P S)_{n}$ satisfying the condition $7 A(X)+$ $B(X)+C(X)+D(X) \neq 0$ does not exist.

4. Conformally flat $G(P S)_{n}(n \geq 3)$

It has been proved by the author elsewhere [1] that in a conformally flat $(P S)_{n}$, the associated 1-form A is proportional to the auxiliary associated 1-form \bar{A}. It is therefore narural to enquire about the nature of generalisation of this result for a conformally flat $G(P S)_{n}$. An answer to this enquiry is given in this section.

It is known ([4] p. 91) that in a conformally flat $\left(M^{n}, g\right)(n \geq 3)$

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X) \tag{4.1}\\
& \quad=\frac{1}{2(n-1)}[d r(X) g(Y, Z)-d r(Z) g(X, Y)]
\end{align*}
$$

In virtue of (1.4) the equation (4.1) can be written as follows:
$2(n-1)\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X)=2 r[A(X) g(Y, Z)-A(Z) g(X, Y)]\right.$

$$
\begin{align*}
& +[\bar{A}(X) g(Y, Z)-\bar{A}(Z) g(X, Y)]+[\bar{B}(X) g(Y, Z)-\bar{B}(Z) g(X, Y)] \tag{4.2}\\
& +[\bar{C}(X) g(Y, Z)-\bar{C}(Z) g(X, Y)]+[\bar{D}(X) g(Y, Z)-\bar{D}(Z) g(X, Y)]
\end{align*}
$$

Again in virtue of (1.3)

$$
\begin{aligned}
\left(\nabla_{X} S\right)(Y, Z) & -\left(\nabla_{Z} S\right)(Y, X)=A(X) S(Y, Z)-A(Z) S(Y, X) \\
& +C(R(X, Z, Y))+2 D(R(X, Z, Y))
\end{aligned}
$$

Therefore

$$
\begin{align*}
2(n-1) & {\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X)\right] } \\
& =2(n-1) A(X) S(Y, Z)-2(n-1) A(Z) S(Y, X) \tag{4.3}\\
& +2(n-1) C(R(X, Z, Y)+4(n-1) D(R(X, Z, Y))
\end{align*}
$$

From (4.2) and (4.3) we get

$$
\begin{aligned}
& 2(n-1) A(X) S(Y, Z)-2(n-1) A(Z) S(Y, X) \\
& +2(n-1) C(R(X, Z, Y))+4(n-1) D(R(X, Z, Y)) \\
& =2 r[A(X) g(Y, Z)-A(Z) g(X, Y)] \\
& +[\bar{A}(X) g(Y, Z)-\bar{A}(Z) g(X, Y)] \\
& +[\bar{B}(X) g(Y, Z)-\bar{B}(Z) g(X, Y)] \\
& +[\bar{C}(X) g(Y, Z)-\bar{C}(Z) g(X, Y)] \\
& +[\bar{D}(X) g(Y, Z)-\bar{D}(Z) g(X, Y)]
\end{aligned}
$$

Again in a conformally flat $\left(M^{n}, g\right)(n>2)$

$$
\begin{align*}
& R(X, Z, Y, W)=\frac{1}{n-2}[S(Y, Z) g(X, W)-S(X, Y) g(Z, W) \\
& \quad+S(X, W) g(Y, Z)-S(Z, W) g(X, Y)] \tag{4.5}\\
& \quad+\frac{r}{(n-1)(n-2)}[g(X, Y) g(Z, W)-g(Y, Z) g(X, W)]
\end{align*}
$$

where

$$
\begin{equation*}
R(X, Z, Y, W)=g[R(X, Z, Y), W] \tag{4.6}
\end{equation*}
$$

In virtue of (4.5) we get

$$
\begin{align*}
& 2(n-1)[C(R(X, Z, Y))+2 D(R(X, Z, Y))] \\
& =\frac{2(n-1)}{n-2}[S(Y, Z)\{C(X)+2 D(X)\}-S(X, Y)\{C(Z)+2 D(Z)\} \\
& +g(Y, Z)\{\bar{C}(X)+2 \bar{D}(X)\}-g(X, Y)\{\bar{C}(Z)+2 \bar{D}(Z)\}] \tag{4.7}\\
& +\frac{2 r}{n-2}[g(X, Y)\{C(Z)+2 D(Z)\}-g(Y, Z)\{C(X)+2 D(X)\}]
\end{align*}
$$

In virtue of (4.7) we can express (4.4) as follows:

$$
\begin{align*}
& 2(n-1) S(Y, Z)[(n-2) A(X)+C(X)+2 D(X)] \\
& -2(n-1) S(X, Y)[(n-2) A(Z)+C(Z)+2 D(Z)] \\
& +g(Y, Z)[2(n-1) \bar{C}(X)+4(n-1) \bar{D}(X) \\
& -(n-2)\{\bar{A}(X)+\bar{B}(X)+\bar{C}(X)+\bar{D}(X)\}] \tag{4.8}\\
& -g(X, Y)[2(n-1) \bar{C}(Z)+4(n-1) \bar{D}(Z) \\
& -(n-2)\{\bar{A}(Z)+\bar{B}(Z)+\bar{C}(Z)+\bar{D}(Z)\}] \\
& =2 r[g(Y, Z)\{(n-2) A(X)+2 C(X)+4 D(X)\} \\
& -g(X, Y)\{(n-2) A(Z)+2 C(Z)+4 D(Z)\}]
\end{align*}
$$

Putting $Y=P$ in (4.8) we obtain

$$
\begin{align*}
& (n-1)[2 C(X) \bar{A}(Z)-2 C(Z) \bar{A}(X)+4 D(X) \bar{A}(Z)-4 D(Z) \bar{A}(X)] \\
& +(n-1)[2 \bar{C}(X) A(Z)-2 \bar{C}(Z) A(X)+4 \bar{D}(X) A(Z)-4 \bar{D}(Z) A(X)] \\
& \quad-(n-2)[A(Z)\{(-2 n+1) \bar{A}(X)+\bar{B}(X)+\bar{C}(X)+\bar{D}(X)\} \tag{4.9}\\
& \quad-A(X)\{(2 n+1) \bar{A}(Z)+\bar{B}(Z)+\bar{C}(Z)+\bar{D}(Z)\}] \\
& =2 r[2 C(X) A(Z)-2 C(Z) A(X)+4 D(X) A(Z)-4 D(Z) A(X)] .
\end{align*}
$$

This is the required generalization.
We can therefore state the following theorem:
Theorem 4. In a conformally flat $G(P S)_{n}$ the associated and the auxiliary associated 1 -forms satisfy the relation (4.9).

If, in particular, $B=C=D=A$, then the $G(P S)_{n}$ reduces to a $(P S)_{n}$ and the relation (4.9) takes the form

$$
\bar{A}(X) A(Z)-\bar{A}(Z) A(X)=0
$$

a result already proved by the author elsewhere [1].

5. $G(P S)_{n}$ admitting a parallel vector field

In this section we suppose that a $G(P S)_{n}$ admits a parallel vector field V ([3] p. 124, [5] p. 322]).

Then

$$
\begin{equation*}
\left(\nabla_{X} V\right)=0 \quad \forall X \in \chi\left(G(P S)_{n}\right) \tag{5.1}
\end{equation*}
$$

Applying Ricci identity to (5.1) we get

$$
\begin{equation*}
R(X, Y, V)=0 \tag{5.2}
\end{equation*}
$$

From (5.2) it follows that

$$
\begin{equation*}
R(X, Y, Z, V)=0 \tag{5.3}
\end{equation*}
$$

In virtue of (5.3) we get

$$
\begin{equation*}
S(X, V)=0 \tag{5.4}
\end{equation*}
$$

Now, by (5.1) and (5.4)

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, V)=\nabla_{X} S(Y, V)-S\left(\nabla_{X} Y, V\right)-S\left(Y, \nabla_{X} V\right)=0 \tag{5.5}
\end{equation*}
$$

Again from (1.3) we get by (5.3) and (5.4)

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, V)=2 A(X) S(Y, V)+B(Y) S(X, V) \\
& +R(Y, X, \mu, V)+R(Y, \nu, X, Y)+A(V) S(Y, X)=A(V) S(Y, X) \tag{5.6}
\end{align*}
$$

From (5.5) and (5.6) we obtain

$$
\begin{equation*}
A(V) S(Y, X)=0 \tag{5.7}
\end{equation*}
$$

If $A(V) \neq 0$, i.e., if $g(P, V) \neq 0$, then from (5.7) we get $S(Y, X)=0$. Hence

$$
\tilde{C}(X, Y, Z)=R(X, Y, Z)
$$

where \tilde{C} is Weyl's conformal curvature tensor. Therefore $\tilde{C}(X, Y, Z) \neq 0$, for otherwise $R(X, Y, Z)$ will be zero implying that the manifold is flat which is inadmissible. Hence we can state the following theorem.

Theorem 5. If a $G(P S)_{n}$ admits a parallel vector field which is not orthogonal to the basis vector field P, then the manifold cannot be conformally flat.

References

[1] M. C. Chaki, On pseudo symmetric manifolds Analele Stiint, Univ. Al-I. Cuza 33 (1987), 53-58.
[2] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian Manifolds, Colloq. Math. János Bolyai 56 (1989), 663-670.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1., Interscience Publishers (1983).
[4] L. P. Eisenhart, Riemannian Geometry. (1926).
[5] J. A. Schouten, Ricci Calculus (2nd Ed.), Springer-Verlag (1954).

M. C. CHAKI

27, SASHI BHUSAN DE STREET
CALCUTTA-700 012
INDIA
(Received August 2, 1993; revised March 10, 1994)

