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Generalized derivations which extend the concept
of Jordan homomorphism

By VINCENZO DE FILIPPIS (Messina) and GIOVANNI SCUDO (Messina)

Abstract. Let R be a prime ring, U the right Utumi quotient ring of R, C its

extended centroid, I a non-zero right ideal of R, f(x1, . . . , xn) a non-central multilinear

polynomial over C, F , G two generalized derivations of R, m ≥ 1 a fixed integer. Denote

f(I) the set of all evaluations of the polynomial f(x1, . . . , xn) in I. If F (um) = G(u)m,

for any u ∈ f(I), then we describe all possible forms of F and G.

1. Introduction

In all that follows let R be a prime ring, Z(R) the center of R, R be the right

Utumi quotient ring of R and C = Z(U) be the center of U . C is usually called

the extended centroid of R and is a field when R is a prime ring. It should be

remarked that U is a centrally closed prime C-algebra.

We recall that an additive map d on R is called a derivation if d(xy) =

d(x)y + xd(y), for all x, y ∈ R. We now also recall the definition of a generalized

derivation of R. Let R be an associative ring and d be a derivation of R. An

additive map G : R −→ R is called a generalized derivation of R if

G(xy) = G(x)y + xd(y)

for all x, y ∈ R. For fixed elements a and b of R, the map G : R → R defined

as G(x) = ax + xb for all x ∈ R is a generalized derivation of R. A generalized

derivation of this form is called an inner generalized derivation. The definition of

generalized derivations is a unified notion of derivations and centralizers, which
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have been investigated by many researchers from various view points (see [14],

[20]). We would like to point out that one of the leading roles in the development of

the theory of generalized derivations is played by the inner generalized derivations.

We say that an additive map F acts as a homomorphism on a subset T ⊆ R,

if F (xy) = F (x)F (y), for all x, y ∈ T ; F acts as an anti-homomorphism on T , if

F (xy) = F (y)F (x), for all x, y ∈ T ; finally F acts as a Jordan homomorphism

on T if F (x2) = F (x)2, for all x ∈ T . Obviously any additive map, which is

a homomorphism or an anti-homomorphism, is a Jordan homomorphism. On

the other hand, in [15] (p. 50) Herstein proves that in case R is a prime ring

of characteristic different from 2, any Jordan homomorphism on R is either a

homomorphism or an anti-homomorphism of R.

In [5, Theorem 3] Bell and Kappe prove that if d is a derivation of a prime

ring R which acts as a homomorphism or anti-homomorphism on a non-zero right

ideal of R, then d = 0 on R.

In [28] Wang and You extend this result to a Lie ideal L of a prime

ring R with characteristic different from 2. They prove that there is no non-

zero derivation acting as a homomorphism or anti-homomorphism on L, unless

when L ⊆ Z(R).

Later, Rehman (in [27]) and Albaş and Argaç (in [1]) study the case

when the derivation d is replaced by a generalized derivation G associated to a

derivation d. In both papers it is proved that if 0 ̸= G acts as a homomorphism or

anti-homomorphism on I, a non-zero ideal of the prime ring R, then either d = 0

or R is commutative. In particular, if assume that G acts as a homomorphism

on I, then either R is commutative or G is the identity map on R. On the

other hand, if assume that G acts as an anti-homomorphism on I, then R is

commutative.

Many researchers develop the previous mentioned results, by studying deriva-

tions and other kinds of additive mappings acting on Lie ideals, two-sided ideals

and one-sided ideals of prime and semiprime rings. Most of the obtained results

are concerned with homomorphisms, anti-homomorphisms and derivations, see

for instance [8], [30].

More recently, in [9] Dhara et al. prove the following result

Theorem. Let R be a prime ring, U the right Utumi quotient ring of R, C its

extended centroid, f(x1, . . . , xn) a non-central multilinear polynomial over C, F a

non-zero generalized derivation of R, I a non-zero right ideal of R, m ≥ 2 a fixed

integer. Denote f(I) the set of all evaluations of the polynomial f(x1, . . . , xn)

in I. If F (um) = F (u)m, for any u ∈ f(I), then one of the following holds:
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(1) IC = eRC for some idempotent element e ∈ soc(RC) and f(x1, . . . , xn) is

central valued on eRCe;

(2) there exist a, b ∈ U and α, β ∈ C such that F (x) = ax + xb, (a − α)I =

(b− β)I = (0), with (α+ β)m−1 = 1;

(3) there exists a ∈ U such that F (x) = ax and aI = (0).

Following this line of investigation, in this paper we will continue the study

of generalized derivations of R acting on the elements of a suitable subset S of R.

The main results of this paper are the following:

Theorem 1. Let R be a prime ring, U the right Utumi quotient ring of R,

C its extended centroid, f(x1, . . . , xn) a non-central multilinear polynomial over

C, F,G two generalized derivations of R, m ≥ 1 a fixed integer. Denote f(R) the

set of all evaluations of the polynomial f(x1, . . . , xn) in R. If F (um) = G(u)m,

for any u ∈ f(R), then one of the following holds:

1. char(R) = 2 and R ⊆ M2(C), the ring of 2× 2 matrices over C;

2. there exists λ ∈ C such that F (x) = λmx, G(x) = λx, for all x ∈ R;

3. f(x1, . . . , xn)
m is central valued on R and there exist λ ∈ C and q ∈ U , such

that F (x) = λmx+ [q, x], G(x) = λx, for all x ∈ R.

Theorem 2. Let R be a prime ring, U the right Utumi quotient ring of R,

C its extended centroid, I a non-zero right ideal of R, f(x1, . . . , xn) a multilinear

polynomial over C, F,G two generalized derivations of R, m ≥ 1 a fixed integer.

Denote f(I) the set of all evaluations of the polynomial f(x1, . . . , xn) in I. If

F (um) = G(u)m, for any u ∈ f(I), then one of the following holds:

1. There exist a′, c′, q′ ∈ U and β, λ ∈ C such that F (x) = a′x + λm−1[q′, x],

G(x) = c′x + [q′, x], for all x ∈ R, with (c′ − λ)I = 0, (a′ − λm)I = 0 and

(q − β)I = 0;

2. IC = eRC for some idempotent element e ∈ soc(RC) and f(x1, . . . , xn) is

central valued on eRCe;

3. IC = eRC for some idempotent element e ∈ soc(RC), char(R) = 2 and

eRCe satisfies s4(x1, . . . , x4), the standard identity of degree 4;

4. IC = eRC for some idempotent element e ∈ soc(RC), f(x1, . . . , xn)
m is

central valued on eRCe and there exist a′, b′, c′ ∈ U and λ ∈ C, such that

F (x) = a′x+ [b′, x], G(x) = c′x, for all x ∈ R, with b′e = eb′e, (c′ − λ)e = 0

and (a′ − λm)e = 0;

5. IC = eRC for some idempotent element e ∈ soc(RC), f(x1, . . . , xn)
m is

central valued on eRCe and there exist a′, b′, c′, q′ ∈ U and β ∈ C, such that
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F (x) = a′x + [b′, x], G(x) = c′x + [q′, x], for all x ∈ R, with b′e = eb′e,

c′e = 0, a′e = 0 and (q′ − β)e = 0.

We also remark that:

Fact 1. Every generalized derivation ∆ on a dense right ideal of a semiprime

ring R can be extended to U and assumes the form ∆(x) = px + h(x), for some

p ∈ U and h derivation on U (Theorem 3 in [20]).

Throughout this paper, unless specially stated, R is always a prime ring with

center Z(R), right Utumi quotient ring U and extended centroid C, I a non-zero

right ideal of R. The definition, axiomatic formulations and properties of this

quotient ring can be found in [4] (Chapter 2). Moreover let f(x1, . . . , xn) be a

non-central polynomial over C. We will use the following notation:

f(x1, . . . , xn) =
∑
σ∈Sn

ασxσ(1)xσ(2) . . . xσ(n)

for some ασ ∈ K and Sn the symmetric group of degree n. Moreover we denote

by fd(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replacing each

coefficient ασ with d(ασ). Thus

d(f(r1, . . . , rn))= fd(r1, . . . , rn)+
∑
i

f(r1, . . . , d(ri), . . . , rn), ∀r1, r2, . . . , rn ∈R.

We remark that, by Fact 1, we assume that F (x) = ax+d(x) andG(x) = cx+g(x),

for some a, c ∈ U and d, g derivations on U .

Hence we have that R satisfies the generalized differential identity

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
jd(f(x1, . . . , xn))f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + g(f(x1, . . . , xn))

)m
(1)

that is

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , d(xi), . . . , xn)

)
f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + fg(x1, . . . , xn) +

∑
i

f(x1, . . . , g(xi), . . . , xn)

)m

. (2)

We introduce some preliminary results which will be useful in the sequel.
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Proposition 1. Let a, c ∈ U and d, g : R → R derivations ofR, f(x1, . . . , xn)

a multilinear polynomial over C and denote

Φ(x1, . . . , xn) =
(
af(x1, . . . , xn)

m + d(f(x1, . . . , xn)
m)

)
−
(
cf(x1, . . . , xn) + g(f(x1, . . . , xn))

)m
. (3)

If Φ(x1, . . . , xn) is a generalized polynomial identity for I, then either R is a GPI-

ring or d(I)I = (0), g(I)I = (0) and there exists λ ∈ C such that (c− λ)I = (0)

and (a− λm)I = (0).

Proof. Assume that R does not satisfy any non-trivial generalized polyno-

mial identity.

Let u ∈ I, then R satisfies

Φ(ux1, . . . , uxn) =
(
af(ux1, . . . , uxn)

m + d(f(ux1, . . . , uxn)
m)

)
−
(
cf(ux1, . . . , uxn) + g(f(ux1, . . . , uxn))

)m
. (4)

In case both d and g are inner derivations, induced respectively by two ele-

ments b, q ∈ U , then F (x) = ax+[b, x] = a′x−xb and G(x) = cx+[q, x] = c′x−xq,

with a′ = a+ b and c′ = c+ q. Therefore, by (4), R satisfies(
a′f(ux1, . . . , uxn)

m − f(ux1, . . . , uxn)
mb)

)
−
(
c′f(ux1, . . . , uxn)− f(ux1, . . . , uxn)q

)m
. (5)

If {1, b, q} are linearly C-independent, by [7], since R does not satisfy any

non-trivial generalized polynomial identity and by (5), it follows that R satisfies

f(ux1, . . . , uxn)
mb, that is b = 0, a contradiction. Analogously, if {u, a′u, c′u} are

linearly C-independent, we get a′u = 0, a contradiction.

Hence, we assume that there exist α, β, γ, λ ∈ C, such that

q = α+ βb, c′u = γu+ λa′u. (6)

Now R satisfies

a′f(ux1, . . . , uxn)
m − f(ux1, . . . , uxn)

mb

−
(
(γ + λa′)f(ux1, . . . , uxn)− f(ux1, . . . , uxn)(α+ βb)

)m
. (7)

Assume {a′u, u} C-linearly independent. Thus, by (7) R satisfies

a′f(ux1, . . . , uxn)
(
f(ux1, . . . , uxn)

m−1

− λ(λa′f(ux1, . . . , uxn)− f(ux1, . . . , uxn)(α+ βb− γ))m−1
)
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in particular R satisfies

f(ux1, . . . , uxn)
m−1

− λ
(
λa′f(ux1, . . . , uxn)− f(ux1, . . . , uxn)(α+ βb− γ)

)m−1
. (8)

Again since R is not a GPI-ring, then (8) is a trivial generalized polynomial

identity for R, thus

λ2a′f(ux1, . . . , uxn)
(
λa′f(ux1, . . . , uxn)− f(ux1, . . . , uxn)(α+ βb− γ)

)m−2

is also a trivial generalized polynomial identity for R. Continuing this process

we obtain that λma′f(ux1, . . . , uxn) is satisfied by R, which is a contradiction,

unless when λ = 0. In this last case, by (8) we also have the contradiction

f(ux1, . . . , uxn)
m−1 = 0.

Hence, there exists λ′ ∈ C such that a′u = λ′u and (7) reduces to

f(ux1, . . . , uxn)
(
f(ux1, . . . , uxn)

m−1(λ′ − b)

−
(
(γ + λλ′ − α− βb)f(ux1, . . . , uxn)

)m−1
(γ + λλ′ − α− βb)

)
.

Since R does not satisfy any non-trivial generalized polynomial identity, then R

satisfies

f(ux1, . . . , uxn)
m−1(λ′ − b)

−
(
(γ + λλ′ − α− βb)f(ux1, . . . , uxn)

)m−1
(γ + λλ′ − α− βb). (9)

Since R is not a GPI-ring, then by (9), {(γ + λλ′ − α− βb)u, u} are not linearly

C-independent, that is there exists λ′′ ∈ C such that (γ + λλ′ − α− βb)u = λ′′u.

If β ̸= 0, then {bu, u} are C linearly dependent as well as {qu, u}. In this case,

the previous argument shows that for any u ∈ I any of {a′u, u}, {bu, u}, {c′u, u},
{qu, u} are linearly C-dependent, and in this case it is well known that there exist

µ′, µ′′, ν′, ν′′ ∈ C such that (a′ − µ′)I = (0), (b− µ′′)I = (0), (c′ − ν′)I = (0) and

(q − ν′′)I = (0). In particular this means that d(I)I = (0) and g(I)I = 0, and

also both d(f(x1, . . . , xn)) and g(f(x1, . . . , xn)) are differential identities for I.

On the other hand, if β = 0, then q = α ∈ C and (9) reduces to

f(ux1, . . . , uxn)
m−1(λ′ − b)− f(ux1, . . . , uxn)

m−1λ′′(γ + λλ′ − α) (10)

which implies b ∈ C. Thus, d = g = 0, and as above (a′ − µ′)I = (0) and

(c′ − ν′)I = (0).
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In any case, I satisfies(
µ′f(x1, . . . , xn)

m − ν′mf(x1, . . . , xn))
m
)

that is µ′ − ν′m = 0, as required.

Thus we suppose in all that follows that at least one of d and g must be not

U -inner. In this situation we prove that a number of contradictions occurs.

If g = 0, we may assume that d is not U -inner; then, for any u ∈ I, by (4)

and by Kharchenko’s theorem (see [13]) R satisfies

af(ux1, . . . , uxn)
m +

m−1∑
j=0

f(ux1, . . . , uxn)
j

(
fd(ux1, . . . , uxn)

+
∑
i

f(ux1, . . . , uti + d(u)xi, . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1

−
(
cf(ux1, . . . , uxn)

)m
. (11)

In particular,

m−1∑
j=0

f(ux1, . . . , uxn)
j
∑
i

f(ux1, . . . , uti, . . . , uxn)f(ux1, . . . , uxn)
m−j−1

is a non-trivial generalized polynomial identity for R, a contradiction.

Consider now the case d = 0. Thus we may assume that g is not U -inner;

then, by (4) and Kharchenko’s theorem (see [13]), for any u ∈ I, R satisfies

af(ux1, . . . , uxn)
m

−
(
cf(ux1, . . . , uxn)+ fg(ux1, . . . , uxn)+

∑
i

f(ux1, . . . , uzi+g(u)xi, . . . , uxn)

)m

and in particular f(uz1, ux2, . . . , uxn)
m is a non trivial generalized polynomial

identity for R, which is again a contradiction.

In all that follows we assume both d ̸= 0 and g ̸= 0. Now we have the

following cases:

Case 1: d and g are C-linear independent modulo X-inner derivations.

In this case, by (4) and for any u ∈ I, applying again Kharchenko’s theorem, it

follows that R satisfies:

af(ux1, . . . , uxn)
m +

m−1∑
j=0

f(ux1, . . . , uxn)
j

(
fd(ux1, . . . , uxn)+

∑
i

f(ux1, . . . , uti

+ d(u)xi, . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1 −
(
cf(ux1, . . . , uxn)
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+ fg(ux1, . . . , uxn) +
∑
i

f(ux1, . . . , uzi + g(u)xi, . . . , uxn)

)m

. (12)

As above, R satisfies the blended component f(uz1, ux2, . . . , uxn)
m, and this is a

contradiction.

Case 2: d and g are C-linear dependent modulo X-inner derivations.

In this case there exist a non-central element q ∈ U and α, β ∈ C such that

αd+ βg = ad(q), the inner derivation induced by q.

• If α = 0, then g(x) = [x, β−1q], for all x ∈ R and d is not an inner derivation.

For any u ∈ I, by Kharchenko’s theorem (4) reduces to

af(ux1, . . . , uxn)
m +

m−1∑
j=0

f(ux1, . . . , uxn)
j

(
fd(ux1, . . . , uxn)

+
∑
i

f(ux1, . . . , uti + d(u)xi, . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1

−
(
cf(ux1, . . . , uxn) + [f(ux1, . . . , uxn), β

−1q]

)m

. (13)

In particular R satisfies

m−1∑
j=0

f(ux1, . . . , uxn)
j

(∑
i

f(ux1, . . . , uti, . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1 (14)

which is again a non-trivial generalized polynomial identity, a contradiction.

• If β = 0, then d(x) = [x, α−1q], for all x ∈ R and g is not an inner derivation.

For u ∈ I, by Kharchenko’s theorem (4) reduces to

af(ux1, . . . , uxn)
m +

[
f(ux1, . . . , uxn)

m, α−1q
]
−

(
cf(ux1, . . . , uxn)

+fg(ux1, . . . , uxn) +
∑
i

f(ux1, . . . , uzi + g(u)xi, . . . , uxn)
)m

(15)

and in particular R satisfies f(uz1, ux2, . . . , uxn)
m. As above, this leads to

a contradiction.

• Finally, we analyze the case both α ̸= 0 and β ̸= 0, hence g(x) = γd(x) +

[x, q′], for all x ∈ U , where γ = −αβ−1 and q′ = β−1q.

In this case we may assume that d is not an inner derivation. Therefore,

by (4) and u ∈ I, R satisfies

af(ux1, . . . , uxn)
m +

m−1∑
j=0

f(ux1, . . . , uxn)
j

(
fd(ux1, . . . , uxn)
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+
∑
i

f(ux1, . . . , d(u)xi + ud(xi), . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1

−
(
cf(ux1, . . . , uxn) + γfd(ux1, . . . , uxn) +

∑
i

γf(ux1, . . . , d(u)xi

+ ud(xi), . . . , uxn) + [f(ux1, . . . , uxn), q
′]

)m

. (16)

Since d is not inner, by Kharchenko’s result and (16), it follows thatR satisfies

af(ux1, . . . , uxn)
m +

m−1∑
j=0

f(ux1, . . . , uxn)
j

(
fd(ux1, . . . , uxn)+

+
∑
i

f(ux1, . . . , uti, . . . , uxn)

)
f(ux1, . . . , uxn)

m−j−1

−
(
cf(ux1, . . . , uxn) + γfd(ux1, . . . , uxn) +

∑
i

γf(ux1, . . . , uti, . . . , uxn)

+ [f(x1, . . . , xn), q
′]

)m

and, in particular, for x1 = 0, γmf(ut1, ux2 . . . , uxn)
m is a generalized poly-

nomial identity for R, a contradiction again. �

Proposition 2. Let R be a prime ring, I a non-zero two-sided ideal of R and

f(x1, . . . , xn) a non-central valued polynomial over C, the extended centroid of R.

If F : R → R is a generalized derivation associated with a derivation d : R → R

such that F (f(r1, . . . , rn)) ∈ C for all r1, . . . , rn ∈ I, then either char(R) = 2 and

R ⊆ M2(C), the ring of 2× 2 matrices over C, or F (x) = 0, for all x ∈ R.

Proof. In light of Fact 1, we have that there exists a ∈ U , the Utumi

quotient ring of R, such that F (x) = ax + d(x), for all x ∈ R. Thus I satisfies

the generalized differential identity[
af(x1, . . . , xn) + d(f(x1, . . . , xn)), xn+1

]
.

Since by [21], I and R satisfy the same differential identities, then we have that

R satisfies F (f(x1, . . . , xn)) ∈ C. Let S the additive subgroup generated by the

subset

{f(r1, . . . , rn) | r1, . . . , rn ∈ R}.

S is a Lie ideal of R, indeed for any r ∈ R, y1, . . . , yn ∈ R one has

[r, f(y1, . . . , yn)] =
∑
i

f(y1, . . . , [r, yi], . . . , yn) ∈ S.
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If S is non-commutative then, by [15] (page 4-5), either char(R) = 2 and R

satisfies the standard identity s4(x1, . . . , x4) or there exists a non-zero two-sided

ideal J of R such that 0 ̸= [J,R] ⊆ S. In the first case, it is well known that

R ⊆ U = M2(C), the 2× 2 ring of matrices over C.

In the latter case it is easy to see that F ([r1, r2]) ∈ C, for all r1, r2 ∈ J . In

particular [F (u), u] = 0 for all u ∈ [J, J ]. Since [J, J ] is a non-central Lie ideal

of R, it follows easily that F must be zero (see for example Theorem 3.3 in [12]).

Hence we may consider the only case when S is commutative.

Thus [f(x1, . . . , xn), f(y1, . . . , yn)] is an identity in R. This means that there

exist a field K and a positive integer m such that [f(x1, . . . , xn), f(y1, . . . , yn)] is

also an identity in Mm(K). If m = 1, R is commutative, thus we suppose m ≥ 2.

Since f(x1, . . . , xn) is not central valued on R, there exist r1, . . . , rn ∈ Mm(K)

such that f(r1, . . . , rn) = a /∈ Z(R), so that [a, f(y1, . . . , yn)] is also a generalized

identity in Mm(K). By a result of Lee (see [22, Lemma 5 and Theorem 6]), we

have the contradiction that f(x1, . . . , xn) is central valued on R. �

As easy consequences we get the following:

Fact 2. Let R be a prime ring, I a non-zero two-sided ideal of R and

f(x1, . . . , xn) a non-central polynomial over C, the extended centroid of R. Let

a, b ∈ U be such that af(r1, . . . , rn) + f(r1, . . . , rn)b ∈ C for all r1, . . . , rn ∈ I,

then either char(R) = 2 and R ⊆ M2(C) or a = −b ∈ C.

Fact 3. Let R be a prime ring, I a non-zero two-sided ideal of R and

f(x1, . . . , xn) a non-central polynomial over C, the extended centroid of R. Let

a ∈ U be such that [a, f(r1, . . . , rn)] ∈ C for all r1, . . . , rn ∈ I, then either

char(R) = 2 and R ⊆ M2(C) or a ∈ C.

Fact 4. Let R be a prime ring, I a non-zero two-sided ideal of R and

f(x1, . . . , xn) a polynomial over C, the extended centroid of R. Assume that

f(x1, . . . , xn) is not a polynomial identity for R and let 0 ̸= a ∈ U be such that

af(r1, . . . , rn) ∈ C for all r1, . . . , rn ∈ I. Then either char(R) = 2 and R ⊆ M2(C)

or a ∈ C and f(x1, . . . , xn) is central valued on R.

Proof. If f(x1, . . . , xn) is not central valued on R and since a ̸= 0, then,

by Proposition 2, it follows char(R) = 2 and R ⊆ M2(C). On the other hand, if

f(x1, . . . , xn) is central valued on R, then, for any x, r1, . . . , rn ∈ R, we get

0 = [af(r1, . . . , rn), x] = [a, x]f(r1, . . . , rn).

Hence, by [6] and since f(x1, . . . , xn) is not an identity for R, it follows [a, x] = 0,

for all x ∈ R, and we are done. �
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2. The case of inner generalized derivations

In this section we study the case when the generalized derivations F,G are

inner, induced by the elements a, b, c, q ∈ U , that is, for all x ∈ R, F (x) = ax+xb

and G(x) = cx+xq. Hence R satisfies the following generalized polynomial iden-

tity

P (x1, . . . , xn) = (af(x1, . . . , xn)
m + f(x1, . . . , xn)

mb)

−
(
cf(x1, . . . , xn) + f(x1, . . . , xn)q

)m
. (17)

As a reduction of Proposition 1, the following holds:

Proposition 3. Assume P (x1, . . . , xn) is generalized polynomial identity

for R. Then either R is a GPI-ring or a, b, c, q ∈ C and (c+ q)m = a+ b.

Lemma 1. Let R = Mt(C), the ring of t × t matrices over the field C,

with t > 1, a, b, c, q elements of R such that R satisfies the relation (17). Then

c, q ∈ Z(R) and one of the following holds:

(1) char(R) = 2 and R satisfies s4;

(2) f(x1, . . . , xn)
m is central valued on R and (c+ q)m − (a+ b) = 0;

(3) b = (c+ q)m − a ∈ Z(R).

Proof. Since f(x1, . . . , xn) is not central, by Lemma 5 in [19] and Lemma 2

in [24], there exist u1, . . . , un ∈ Mt(C) and γ ∈ C−{0}, such that f(u1, . . . , un) =

γekl, with k ̸= l. Here ekl denotes the usual matrix unit with 1 in (k, l)-entry and

zero elsewhere. Moreover, since the set {f(v1, . . . , vn) : v1, . . . , vn ∈ Mt(C)} is

invariant under the action of all C-automorphisms of Mt(C), for any i ̸= j there

exist r1, . . . , rn ∈ Mt(C) such that f(r1, . . . , rn) = eij .

Say c =
∑

rs crsers and q =
∑

rs qrsers, where crs, qrs ∈ C. In (17) assume

that f(x1, . . . , xn) = eij , then (
ceij + eijq

)m
= 0

which implies both c and q are diagonal matrices in R.

Let φ be the inner automorphism on Mt(C) defined as follows:

φ(x) = (1 + eij)x(1− eij) = x+ eijx− xeij − eijxeij , i ̸= j.

Since the set {f(r1, . . . , rn) | ri ∈ R} is invariant under the action of φ, the

elements φ(a), φ(b), φ(c) and φ(q) must satisfy the same conditions which are

satisfied by a, b, c and q. Thus, if denote φ(c) =
∑

c′rsers and φ(q) =
∑

q′rsers,



198 Vincenzo De Filippis and Giovanni Scudo

with c′rs, q
′
rs ∈ C, we have that both c′lm = 0 and q′lm = 0, for all l ̸= m. Easy

computations show that cll = cmm and qll = qmm, for all l ̸= m, that is both

c ∈ Z(R) and q ∈ Z(R). If denote λ = c+ q, then R satisfies

(a− λm)f(x1, . . . , xn)
m + f(x1, . . . , xn)

mb.

By Fact 2, it follows that one of the following holds:

(1) char(R) = 2 and R satisfies s4;

(2) f(x1, . . . , xn)
m is central valued on R and λm = a+ b;

(3) b = λm − a ∈ Z(R). �

Proposition 4. Let R be a prime ring, a, b, c, q elements of R such that R

satisfies the relation (17). Then c, q ∈ C and one of the following holds:

(1) char(R) = 2 and R satisfies s4;

(2) f(x1, . . . , xn)
m is central valued on R and (c+ q)m = a+ b;

(3) b = (c+ q)m − a ∈ C.

Proof. By Proposition 3, P (x1, . . . , xn) is a non-trivial generalized polyno-

mial identity for R. Moreover U and U ⊗C C are both centrally closed algebras

([10], Theorems 2.5 and 3.5) and, in case C is infinite, they satisfy the same

generalized polynomial identities.

Hence, replacing R by U or U ⊗C C, as well as C is finite or infinite, we

may assume, without loss of generality, C = Z(R) and R is a C-algebra cen-

trally closed. By Martindale’s theorem in [26], R is a primitive ring which is

isomorphic to a dense ring of linear transformations of a vector space V over C.

Consider the case dimC(V ) = t, with t finite positive integer ≥ 2. In this

condition R is a simple ring which satisfies a non-trivial generalized polynomial

identity, moreover Mt(C) satisfies the same generalized identity of R and we get

the conclusion by Lemma 1.

Let now dimC V = ∞. Since the set {f(r1, . . . , rn) | r1, . . . , rn ∈ R} is dense

in R, from (17) we have
(aXm +Xmb)− (cX +Xq)m (18)

for all X ∈ R (see Lemma 2 in [29]). Moreover, eHe is a simple central algebra

finite dimensional over C, for any minimal idempotent element e ∈ H = soc(R).

We may assume H non-commutative, otherwise also R must be commutative.

Notice that H satisfies relation (18) (see for example [17, proof of Theorem 1]).

Since H is a simple ring then one of the following holds: either H does not

contain any non-trivial idempotent element or H is generated by its idempotents.
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In this last case, let e2 = e ∈ H and replace in (18) X with ex(1− e). Thus

(cex(1− e)+ ex(1− e)q)m=0. Right multiplying by e, it follows (ex(1−e)q)me=0,

and a fortiori (x(1 − e)qe)m+1 = 0, for all x ∈ R. By [11], we get (1 − e)qe = 0,

for any idempotent e ∈ H.

This implies that, for any idempotent element of rank 1, qe= eqe. In a similar

way we may prove eq= eqe. Hence [q, e] = 0, for any idempotent element of rank 1,

and [q,H] = 0, sinceH is generated by these idempotent elements. This argument

gives that q ∈ C. Analogously, left multiplying (cex(1− e)+ ex(1− e)q)m = 0 by

(1− e), we have (1− e)(cex(1− e))m = 0 and so ((1− e)cex)m+1 = 0. As above

(1− e)ce = 0 for any idempotent e ∈ H, then c ∈ C.

Denote c+ q = λ ∈ C, then H satisfies (a− λm)Xm +Xmb. By Fact 2, and

since H does not satisfy any polynomial identity, it follows b = λm − a ∈ C.

Assume now H does not contain idempotent elements, then H is a finite

dimensional division algebra over C. If C is finite then H is a finite division ring,

that is H is a commutative field and so R is commutative too.

If C is infinite then H ⊗C K ∼= Mr(K), where K is a splitting field of H.

In this case, a Vandermonde determinant argument shows that (18) is still an

identiy for Mr(K). As above one can see that if r ≥ 2 then c, q ∈ C and b =

λm − a ∈ C. �

3. Generalized derivations in prime rings and semiprime rings

We recall that, by [21, Theorem 3], U satisfies the differential identity (2).

We first analyze the special cases when at least one of F and G is zero:

Fact 5. If G = 0 then one of the following holds:

(1) F = 0;

(2) char(R) = 2 and R ⊆ M2(C), the ring of 2× 2 matrices over C;

(3) f(x1, . . . , xn)
m is central valued on R and there exists q ∈ U , such that

F (x) = [q, x], for all x ∈ R.

Proof. By Proposition 2, either F = 0, or char(R) = 2 and R ⊆ M2(C), or

f(x1, . . . , xn)
m is central valued on R. In this last case, U is a central simple alge-

bra, finite dimensional over its center, and there exists t ≥ 1 such that U = Mt(C),

the ring of t× t matrices over C. Moreover, since U satisfies F (f(x1, . . . , xn)
m),

then af(x1, . . . , xn)
m + d(f(x1, . . . , xn)

m) is a differential identity for U . There-

fore, for all r1, . . . , rn ∈ U ,

af(r1, . . . , rn)
m = −d(f(r1, . . . , rn)

m) ∈ C (19)
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which implies a ∈ C, since f(x1, . . . , xn)
m is central valued on R.

In case d is an inner derivation of U , then there exists an element q ∈ U

such that d(x) = [q, x], for all x ∈ R. Therefore d(f(r1, . . . , rn)
m) = 0, for all

r1, . . . , rn ∈ U , since f(x1, . . . , xn)
m is central valued on U .

Thus af(r1, . . . , rn)
m = −d(f(r1, . . . , rn)

m) = 0, for all r1, . . . , rn ∈ U . Since

f(x1, . . . , xn)
m is central valued and f(x1, . . . , xn) is not an identity for U , it

follows that a = 0 and F (x) = d(x) = [q, x], for all x ∈ R.

We now assume that d is not inner. Since U satisfies

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j
(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , d(xi), . . . , xn)
)
f(x1, . . . , xn)

m−j−1 (20)

then, by Kharchenko’s theorem ([13]), it follows that U satisfies

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1. (21)

Therefore the blended component

m−1∑
j=0

f(x1, . . . , xn)
j

(∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1 (22)

is a polynomial identity for U . In particular, for t1 = x1 and any ti = 0 (for all i ̸=
1) in relation (22), we have that U satisfies m·f(x1, . . . , xn)

m. Since f(x1, . . . , xn)

is not an identity for U , it follows that char(U) = m. Hence, application of

Theorem 10 in [24] implies the contradiction that f(x1, . . . , xn) is central valued

on U , unless when char(U) = 2 and t = 2, that is char(R) = 2 and R ⊆ M2(C),

as required. �

Fact 6. If F = 0 then G = 0.

Proof. By our assumption, G(f(x1, . . . , xn))
m is a generalized differential

polynomial identity for R. In this case, by [25, Thoerem 3] and since f(x1, . . . , xn)

is not central valued on R, we get the required conclusion. �

Remark 1. We would like to point out that the results obtained in Facts 5

and 6 are implicitely contained in the conclusions of Theorem 1.
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3.1. The proof of Theorem 1. In case both d and g are inner derivations,

induced respectively by two elements b, q ∈ U , then we have F (x) = ax+ [b, x] =

(a + b)x − xb and G(x) = cx + [q, x] = (c + q)x − xq. Therefore the conclusion

follows by main theorem of previous section.

Thus we suppose in all that follows that at least one of d and g must be not

U -inner. In this situation we prove that a number of contradictions occurs.

If g = 0, we may assume that d is not U -inner; then, by (2) and Kharchen-

ko’s theorem ([13]) U satisfies

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1 −
(
cf(x1, . . . , xn)

)m
(23)

In particular, U satisfies the blended component

m−1∑
j=0

f(x1, . . . , xn)
j
∑
i

f(x1, . . . , ti, . . . , xn)f(x1, . . . , xn)
m−j−1

Consider a non-central element b ∈ U and replace ti by [b, xi] for any i = 1, . . . , n.

Then, for all x1, . . . , xn ∈ U

m−1∑
j=0

f(x1, . . . , xn)
j [b, f(x1, . . . , xn)]f(x1, . . . , xn)

m−j−1 = 0

that is [b, f(x1, . . . , xn)
m] = 0, for all x1, . . . , xn ∈ U . By Fact 3 and since b /∈ C,

we have that either char(U) = 2 and U = M2(C), or f(x1, . . . , xn)
m is central

valued on U . In this last case, U is a central simple algebra, finite dimensional

over its center, and there exists t ≥ 1 such that U = Mt(C), the ring of t × t

matrices over C.

Since f(x1, . . . , xn) is not central, by Lemma 5 in [19] and Lemma 2 in [24],

for any k ̸= l, there exist u1, . . . , un ∈ Mt(C) and γ ∈ C − {0}, such that

f(u1, . . . , un) = γekl. Thus, for g = 0 and f(u1, . . . , un) = γekl in relation (1),

we have (cekl)
m = 0, and a standard argument shows that c ∈ C. Hence, again

by (1), since both f(x1, . . . , xn)
m and d(f(x1, . . . , xn)

m) are central matrices, we

get (cm − a)f(x1, . . . , xn)
m ∈ C. By Fact 4 it follows cm − a = λ ∈ C. Thus

a ∈ C and Mt(C) satisfies

λf(x1, . . . , xn)
m = d

(
f(x1, . . . , xn)

m
)
. (24)
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By using the same argument in Fact 5 (see relation (19)), one may prove that

λ = 0 and d is an inner derivation of Mt(C). Hence a, c ∈ C and cm = a and

d(x) = [q, x], for all x ∈ R and suitable q ∈ U , as required.

Consider now the case d = 0. Thus we may assume that g is not U -inner;

then, by (2) and Kharchenko’s theorem (see [13]) U satisfies

af(x1, . . . , xn)
m−

(
cf(x1, . . . , xn)+ fg(x1, . . . , xn)+

∑
i

f(x1, . . . , zi, . . . , xn)

)m

and in particular f(z1, x2, . . . , xn)
m is a polynomial identity for U , which leads

to the contradiction that f(x1, . . . , xn) is a polynomial identity for U (see Main

Theorem in [6]).

In all that follows we assume both d ̸= 0 and g ̸= 0. Now we have the

following cases:

Case 1: d and g are C-linear independent modulo X-inner derivations.

In this case, by (2) and applying again Kharchenko’s theorem, it follows that U

satisfies:

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + fg(x1, . . . , xn) +

∑
i

f(x1, . . . , zi, . . . , xn)

)m

. (25)

As above, U satisfies the blended component f(z1, x2, . . . , xn)
m, which is a con-

tradiction again.

Case 2: d and g are C-linear dependent modulo X-inner derivations.

In this case there exist a non-central element q ∈ U and α, β ∈ C such that

αd+ βg = ad(q), the inner derivation induced by q.

• If α = 0, then g(x) = [x, β−1q], for all x ∈ U and d is not an inner derivation.

By Kharchenko’s theorem (2) reduces to

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + [f(x1, . . . , xn), β

−1q]
)m

. (26)



Generalized derivations which extend the concept of Jordan homomorphism 203

In particular U satisfies

m−1∑
j=0

f(x1, . . . , xn)
j

(∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1. (27)

Consider a non-central element b ∈ U , then in (27) replace any ti with [b, xi].

Hence U satisfies [b, f(x1, . . . , xn)
m]. Since b /∈ C, by Fact 3 it follows that

either char(U) = 2 and U = M2(C) or f(x1, . . . , xn)
m is central valued

on U . In this last case, U is a central simple algebra, finite dimensional over

its center, and there exists t ≥ 1 such that U = Mt(C), the ring of t × t

matrices over C.

Since f(x1, . . . , xn) is not central, by Lemma 5 in [19] and Lemma 2 in

[24], for any i ̸= j, there exist u1, . . . , un ∈ Mt(C), such that f(u1, . . . , un) =

eij . Hence by (26) we have(
ceij + [eij , β

−1q]
)m

= 0. (28)

In particular, right multiplying by eij , it follows (eij(β
−1q))meij = 0 for

all i ̸= j, which implies that q is a diagonal matrix. As above, a standard

argument shows that q ∈ C, that is g = 0, a contradiction.

• If β = 0, then d(x) = [x, α−1q], for all x ∈ U and g is not an inner derivation.

By Kharchenko’s theorem (2) reduces to

af(x1, . . . , xn)
m +

[
f(x1, . . . , xn)

m, α−1q
]

−
(
cf(x1, . . . , xn) + fg(x1, . . . , xn) +

∑
i

f(x1, . . . , zi, . . . , xn)

)m

(29)

and in particular U satisfies f(z1, x2, . . . , xn)
m. As above, this leads to the

contradiction that f(x1, . . . , xn) is a polynomial identity forU .

• Finally, we analyze the case both α ̸= 0 and β ̸= 0, hence g(x) = γd(x) +

[x, q′], for all x ∈ U , where γ = α−1β and q′ = α−1q.

In this case we may assume that d is not an inner derivation. Therefore,

by (2), U satisfies

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , d(xi), . . . , xn)

)
f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + γfd(x1, . . . , xn) +

∑
i

γf(x1, . . . , d(xi), . . . , xn)
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+ [f(x1, . . . , xn), q
′]

)m

. (30)

Since d is not inner, by Kharchenko’s result and (30), it follows that U

satisfies

af(x1, . . . , xn)
m +

m−1∑
j=0

f(x1, . . . , xn)
j

(
fd(x1, . . . , xn)

+
∑
i

f(x1, . . . , ti, . . . , xn)

)
f(x1, . . . , xn)

m−j−1

−
(
cf(x1, . . . , xn) + γfd(x1, . . . , xn) +

∑
i

γf(x1, . . . , ti, . . . , xn)

+ [f(x1, . . . , xn), q
′]

)m

and, in particular, for x1 = 0, γmf(t1, x2 . . . , xn)
m is a polynomial identity

for U . Since γ ̸= 0, as above we get a contradiction.

By using standard arguments, one may obtain the following results as easy

consequence of Theorem 1:

Theorem 3. Let R be a prime ring, U the right Utumi quotient ring of R,

C its extended centroid, L a non-central Lie ideal of R, F and G two generalized

derivations of R, m ≥ 1 a fixed integer. If F (um) = G(u)m, for any u ∈ L, then

one of the following holds:

(1) F = G = 0;

(2) char(R) = 2 and R ⊆ M2(C), the ring of 2× 2 matrices over C;

(3) there exists λ ∈ C such that F (x) = λmx, G(x) = λx, for all x ∈ R;

(4) R ⊆ M2(C) and there exist λ ∈ C and a suitable derivation d : R → R, such

that F (x) = λmx+ d(x), G(x) = λx, for all x ∈ R.

Theorem 4. Let R be a prime ring, U the right Utumi quotient ring of R,

C its extended centroid, I a non-central ideal of R, F and G two generalized

derivations of R, m ≥ 1 a fixed integer. If F (um) = G(u)m, for any u ∈ I, then

either F = G = 0 or there exists λ ∈ C such that F (x) = λmx, G(x) = λx, for

all x ∈ R.

Theorem 5. Let R be a prime ring, U the right Utumi quotient ring of R, C

its extended centroid, f(x1, . . . , xn) a non-central multilinear polynomial over C,

F a non-zero generalized derivation of R, m ≥ 1 a fixed integer. Denote f(R) the
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set of all evaluations of the polynomial f(x1, . . . , xn) in R. If F (um) = F (u)m,

for any u ∈ f(R), then one of the following holds:

(1) char(R) = 2 and R ⊆ M2(C), the ring of 2× 2 matrices over C;

(2) there exists λ ∈ C such that F (x) = λmx, for all x ∈ R, with λm−1 = 1.

Theorem 6. Let R be a prime ring, U the right Utumi quotient ring of R,

C its extended centroid, f(x1, . . . , xn) a non-central multilinear polynomial over

C, F a non-zero generalized derivation of R, m ≥ 1 a fixed integer. Denote f(R)

the set of all evaluations of the polynomial f(x1, . . . , xn) in R. If F acts as a

Jordan homomorphism on f(R) then F is the identity map on R, unless when

char(R) = 2 and R ⊆ M2(C).

We would like to conclude this section with the following generalization to

semiprime rings. We first recall the following:

Remark 2. Let R be a prime ring, d a derivation of R and F (x) = ax+d(x) a

generalized derivation of R. If F (x) = 0, for all x ∈ R, then a = 0 and d(R) = 0.

Theorem 7. Let R be a semiprime ring, U the right Utumi quotient ring

of R, C its extended centroid, F and G two non-zero generalized derivations of R,

m ≥ 1 a fixed integer. If F (um) = G(u)m, for any u ∈ R, then either R contains

a non-zero central ideal or there exists λ ∈ C such that F (x) = λmx, G(x) = λx,

for all x ∈ R.

Proof. By Fact 1, we assume that F (x) = ax+ d(x) and G(x) = cx+ g(x),

for some a, c ∈ U and d, g derivations on U .

Hence we have that R satisfies the generalized differential identity

axm + d(xm)−
(
cx+ g(x)

)m
. (31)

By [21, Theorem 3], U satisfies the differential identity (31). Now letB the boolean

algebra of central idempotents of U . Let M any maximal ideal of B, then MU is

a prime ideal of U , which is invariant under d and
∩

M MU = 0 (see [2, Lemma 1,

Theorem 1]). Let dM and gM be the derivations induced by d and g on U/MU .

So one has

arm + dM (rm)−
(
cr + gM (r)

)m
= 0

for all r ∈ U/MU . Therefore, by Theorem 4 and Remark 2, one of the following

holds:

(1) either both dM and gM are zero derivations on U/MU , that is d(U) ⊆ MU

and g(U) ⊆ MU . Moreover a ∈ Z(U) and b ∈ Z(U), that is [a, U ] ⊆ MU

and [b, U ] ⊆ MU ;
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(2) or U/MU is commutative, that is [U,U ] ⊆ MU .

In any case we have [d(U), U ] ⊆
∩

MU = 0, [g(U), U ] ⊆
∩
MU = 0, [a, U ] ⊆∩

MU = 0 and [b, U ] ⊆
∩
MU = 0.

If either d ̸= 0 or g ̸= 0, then by [18], R contains a non-zero central ideal.

Assume both d = 0 and g = 0. Thus U satisfies axm − (bx)m, and since

a, b ∈ C, one has that U satisfies (a− bm)xm. In particular, by replacing x with

y(a− bm), it follows that U satisfies ((a− bm)x)m+1. Therefore (a− bm)U is a nil

right ideal of U . If (a− bm)U ̸= 0, then by [16, Lemma 2.1.1], R has a non-zero

nilpotent right ideal, which is a contradiction because of the semiprimeness of U .

Thus (a− bm)U = 0, and we conclude that a = bm. �

4. Generalized derivations on right ideals

Here we assume that the right ideal I of R satisfies

(
af(x1, . . . , xn)

m + d(f(x1, . . . , xn)
m)

)
−

(
cf(x1, . . . , xn) + g(f(x1, . . . , xn))

)m
. (32)

Remark 3. In all that follows we write the polynomial f(x1, . . . , xn) by using

the following notation:

f(x1, . . . , xn) =
∑
i

gi(x1, . . . , xi−1, xi+1, . . . , xn)xi

where any gi is a multilinear polynomial of degree n − 1 and xi never appears

in any monomial of gi. Note that if there exists an idempotent e ∈ H = Soc(U)

such that any gi is a polynomial identity for eHe, then we get the conclusion that

f(x1, . . . , xn) is a polynomial identity for eHe.

Thus, if one assumes that f(x1, . . . , xn) is not a polynomial identity for eHe,

then there exists an index i and r1, . . . , rn−1 ∈ eHe such that gi(r1, . . . , rn−1) ̸= 0.

Now let f(x1, . . . , xn) = gi(x1, . . . , xi−1, xi+1, . . . , xn)xi + h(x1, . . . , xn) where gi
and h are multilinear polynomials, xi never appears in any monomials of gi and xi

never appears as last variable in any monomials of h. Without loss of generality

we assume i = n, say gn(x1, . . . , xn−1) = t(x1, . . . , xn−1) and so f(x1, . . . , xn) =

t(x1, . . . , xn−1)xn + h(x1, . . . , xn) where t(eHe) ̸= 0.

We also would like to recall a well know result in literature:
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Fact 7. Let R be a prime ring, I a non-zero right ideal of R, d a derivation of

R such that d(I)I = 0. Then there exists q ∈ U and α ∈ C such that d(x) = [q, x]

for all x ∈ R and (q − α)I = 0.

Proof. Let d be an inner derivation induced by the element q ∈ Q and

x, y ∈ I, r ∈ R. Then [q, xr]y = 0, whence qxry − xrqy = 0, that is qx = βxx,

with βx ∈ C, and analogously qy = βyy, q(x+ y) = βx+y(x+ y). From this, it is

easy to see that βx is independent from the choice of x ∈ I, therefore there exists

β ∈ C such that (q − β)I = 0.

Let now d an outer derivation. Then, for any 0 ̸= c ∈ I, R satisfies d(cx)cy =

d(c)xcy + cd(x)cy. By using Kharchenko’s result in [13], it follows that R

satisfies d(c)x1cx2 + cx3cx2 and in particular R satisfies the blended component

cx3cx2. This means, since R is prime, that c = 0, a contradiction. �

4.1. The proof of Theorem 2. Of course, in case f(x1, . . . , xn)xn+1 is an

identity for I, we are done. Thus, in all that follows, we assume that I does not

satisfy f(x1, . . . , xn)xn+1.

We also suppose that the following hold simultaneously:

(1) either d(I)I ̸= (0), or g(I)I ̸= (0), or [c, I]I ̸= 0, or (a− cm)I ̸= 0.

(2) [f(x1, . . . , xn), xn+1]xn+2 is not an identity for I;

(3) if char(R) = 2, s4(x1, . . . , x4)x5 is not an identity for I;

(4) either [f(x1, . . . , xn)
m, xn+1]xn+2 is not an identity for I, or g(I)I ̸= 0, or

[c, I]I ̸= 0, or (a− cm)I ̸= 0;

We proceed to derive a contradiction. By Lemma 1, we may assume that R is a

GPI ring, so is also U (see [3] and [7]). By [26] U is a primitive ring with H =

Soc(U) ̸= 0, moreover we may assume that f(x1, . . . , xn)xn+1 is not an identity

for IH, otherwise, by [3] and [7], it should be an identity also for IU , which is a

contradiction. Let a1, . . . , an+2 ∈ IH such that [f(a1, . . . , an), an+1]an+2 ̸= 0.

Analogously, we assume that there exist b1, . . . , b5; c1, . . . , cn+7; h1, . . . , h7 ∈
IH such that

• either d(h1)h2 ̸= 0, or g(h3)h4 ̸= 0, or [c, h5]h6 ̸= 0, or (a− cm)h7 ̸= 0.

• s4(b1, . . . , b4)b5 ̸= 0 if char(H) = 2;

• either [f(c1, . . . , cn)
m, cn+1]cn+2 ̸=0, or g(cn+3)cn+4 ̸=0, or [c, cn+5]cn+6 ̸=0,

or (a− cm)cn+7 ̸= 0;

Since H is a regular ring, exists e2 = e ∈ H such that

eH =
n+2∑
i=1

aiH +
5∑

j=1

bjH +
n+7∑
k=1

ckH +
7∑

l=1

hlH
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where ai = eai, bj = ebj , ck = eck, hl = ehl, for all i = 1, . . . , n+ 2, j = 1, . . . , 5,

k = 1, . . . , n+ 7 and l = 1, . . . , 7.

By our assumption and by [21, Theorem 2] we also assume that (32) is an

identity for IU . In particular (32) is an identity for eH. It follows that, for all

r1, . . . , rn ∈ H,(
af(er1, . . . , ern)

m + d(f(er1, . . . , ern)
m)

)
−
(
cf(er1, . . . , ern) + g(f(er1, . . . , ern))

)m
. (33)

As we said above, write f(x1, . . . , xn) = t(x1, . . . , xn−1)xn +h(x1, . . . , xn), where

xn never appears as last variable in any monomials of h.

Let r ∈ H and pick rn = er(1− e). Hence we have f(er1, . . . , ern(1− e)) =

t(er1, . . . , ern−1)ern(1− e), and by (33) it follows(
ct(er1, . . . , ern−1)ern(1− e) + g(t(er1, . . . , ern−1)ern(1− e))

)m
(34)

and left multiplying by (1− e), one has

(1− e)(ce+ g(e))e
(
t(er1, . . . , ern−1)ern

)m+1
= 0

that is H satisfies

(1− e)(ce+ g(e))e
(
t(ex1, . . . , exn−1)eH

)m+1
.

By [11], H satisfies (1 − e)(ce + g(e))t(ex1, . . . , exn−1)eH, that is (1 − e)(ce +

g(e))t(er1, . . . , ern−1)e = 0, for all r1, . . . , rn ∈ H. Since eHe is a simple artinian

ring and t(eHe) ̸= 0 is invariant under the action of all inner automorphisms

of eHe, by [6, Lemma 2], (1 − e)(ce + g(e)) = 0 and so G(e) = ce + g(e) =

ece + eg(e) ∈ eH. Thus G(eH) ⊆ eH. Therefore the generalized derivation G

induces another one G, which is defined in the prime ring IH = IH
IH∩lH(IH) , where

lH(IH) is the left annihilator in H of IH, and G(x) = G(x), for all x ∈ IH.

On the other hand, left multiplying (33) by (1 − e), and since (1 − e)(ce +

g(e)) = 0, we also have that H satisfies

(1− e)
(
aef(ex1, . . . , exn)

m + d(e)f(ex1, . . . , exn)
m)

)
that is (1−e)(ae+d(e))ef(r1e, . . . , rne)

m = 0, for all r1, . . . , rn ∈ H. Again by [6],

and since f(x1, . . . , xn)xx+1 is not an identity for eH, we get (1−e)(ae+d(e))e=0.

By using the same above argument, it follows F (eH) ⊆ eH.

Moreover we obviously have that (32) is a differential identity for eH. So, the

application of Theorem 1 to the prime ring eH implies that one of the following

holds:
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(1) d(eH)eH = (0) and g(eH)eH = (0), [c, eH]eH = 0 and (a−cm)eH = 0. This

is a contradiction since either d(h1)h2 ̸= 0, or g(h3)h4 ̸= 0, or [c, h5]h6 ̸= 0,

or (a− cm)h7 ̸= 0;

(2) [f(x1, . . . , xn), xn+1]xn+2 is an identity for eH. This contradicts with

[f(a1, . . . , an), an+1]an+2 ̸= 0.

(3) char(H) = 2 and eH satisfies the standard identiy s4(x1, . . . , x4)x5, which

contradicts with s4(b1, . . . , b4)b5 ̸= 0;

(4) eH satisfies [f(x1, . . . , xn)
m, xn+1]xn+2, g(eH)eH = 0, [c, eH]eH = 0 and

(a − cm)eH = 0. Also in this case we get a contradiction, since either

[f(c1, . . . , cn)
m, cn+1]cn+2 ̸= 0, or g(cn+3)cn+4 ̸= 0, or [c, cn+5]cn+6 ̸= 0, or

(a− cm)cn+7 ̸= 0.

The previous contradictions imply that one of the following holds:

(1): d(I)I = (0), g(I)I = (0), [c, I]I = 0, (a − cm)I = 0. In particular by

Fact 7, there exist b, q ∈ U and α, β, λ ∈ C such that d(x) = [b, x], g(x) = [q, x]

for all x ∈ R and (b− α)I = 0, (q − β)I = 0, (c− λ)I = 0 and (a− λm)I = 0.

Moreover, in this case, relation (32) reduces to

f(x1, . . . , xn)
m
(
λm + α− b)− λm−1(λ+ β − q)

)
.

Since f(x1, . . . , xn)xn+1 is not an identity for I and by [6], we get b = α+λm−1(q−
β), that is F (x) = ax+ λm−1[q, x] (this is the conclusion (1) of Theorem 2).

(2): [f(x1, . . . , xn), xn+1]xn+2 is an identity for I; then, by [23] (see the

proof of Theorem 6, page 17, rows 3–8) it follows that there exists an idempotent

element e ∈ Soc(U) such that CI = eRC and f(x1, . . . , xn) is central valued on

eRCe (this is the conclusion (2) of Theorem 2).

(3): char(R) = 2 and s4(x1, . . . , x4)x5 is an identity for I; also in this

case there exists an idempotent element e ∈ Soc(U) such that CI = eRC and

s4(x1, . . . , x4) is an identity for eRCe (this is the conclusion (3) of Theorem 2).

(4): [f(x1, . . . , xn)
m, xn+1]xn+2 is an identity for I, g(I)I = 0, [c, I]I = 0

and (a− cm)I = 0. In partucular by Fact 7, there exist q ∈ U and α, λ ∈ C such

that g(x) = [q, x] for all x ∈ R and (q−α)I = 0, (c−λ)I = 0 and (a−λm)I = 0.

Also in this case, by [23], we have that CI = eRC and f(x1, . . . , xn)
m is central

valued on eRCe.

Then by (32), it follows that eRC satisfies

(λm+b)f(x1, . . . , xn)
m−f(x1, . . . , xn)

mb−
(
(λ+α)f(x1, . . . , xn)−f(x1, . . . , xn)q

)
.
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Left multiplying by (1 − e), we have that (1 − e)bf(x1, . . . , xn)
m is a gener-

alized polynomial identity for eRC. Thus by [6] and since f(x1, . . . , xn)xn+1

is not an identity for eRC, we get (1 − e)be = 0, that is be ∈ eRCe. Hence

[b, f(r1, . . . , rn)
m] = 0 for all r1, . . . , rn ∈ eRCe and (32) reduces to

λm−1f(x1, . . . , xn)
m(α− q).

Once again by [6] and since f(x1, . . . , xn)xn+1 is not an identity for eRC, one has

that either λ = 0 or q = α ∈ C. In the first case ae = ce = 0 (and we get the

conclusion (5) of Theorem 2); in the latter one, it follows q ∈ C (and we get the

conclusion (4) of Theorem 2).

Remark 4. We conclude this paper by considering what happens when either

F (I) = 0 or G(I) = 0. We observe that, in both cases and by using the same

argument in the proof of Theorem 2, one has:

(1) if F (I) = 0, then either G(I) = 0 or one of the following holds:

1. either there exists an idempotent element e ∈ Soc(U) such that CI =

eRC and f(x1, . . . , xn) is central valued on eRCe;

2. or there exist c, q ∈ U and λ ∈ C such that G(x) = cx + [q, x] for all

x ∈ R, with cI = 0 and (q − λ)I = 0.

(2) if G(I) = 0, then either F (I) = 0 or there exists an idempotent element

e ∈ Soc(U) such that CI = eRC and one of the following holds

1. either f(x1, . . . , xn) is central valued on eRCe;

2. or char(R) = 2 and eRCe satisfies s4(x1, . . . , x4);

3. or f(x1, . . . , xn)
m is central valued on eRCe and there exist a, q ∈ U

and α ∈ C such that F (x) = ax + [q, x] for all x ∈ R, with ae = 0 and

qe = eqe.

Notice that the previous results are special cases of the conclusions of Theo-

rem 2.
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