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Abstract. In this paper, we study conformally flat (α, β)-metrics in the form

F = αϕ(β/α), where α is a Riemannian metric and β is a 1-form on a C∞ manifold M .

We prove that conformally flat (α, β)-metrics with constant flag curvature on a manifold

of dimension n > 2 must be either a locally Minkowski metric or a Riemannian metric.

1. Introduction

In Riemannian geometry, the conformal properties of Riemannian metrics

have been well studied by many geometers. There are many important local and

global results in Riemannian conformal geometry. For example, the Poincaé met-

ric on Bn is conformally flat Riemannian metric of constant sectional curvature

K = 1. More generally, the conformal properties of a Finsler metric deserve extra

attention. The Weyl theorem states that the projective and conformal properties

of a Finsler space determine the metric properties uniquely ([14], [18]). The study

of conformal geometry is a recent popular trend in Finsler geometry. Two Finsler

metrics F and F̃ on a manifold M are said to be conformally related if there is

a scalar function c(x) on M such that F̃ = ec(x)F . A Finsler metric which is

Mathematics Subject Classification: Primary: 53B40, 53C60.
Key words and phrases: conformally flat Finsler metric, (α, β)-metric, flag curvature, Minkowski

metric, Riemannian metric.
Supported in part by the NSFC grant (No.11171297, No.11471246)

The second author is the corresponding author.



388 Guangzu Chen, Qun He and Zhongmin Shen

conformally related to a Minkowski metric is called conformally flat Finsler met-

ric. The conformal transformation between F and F̃ is defined by L : F → F̃ ,

F̃ = ec(x)F .

In conformal Finsler geometry, it is one hot issue to study the conformal

transformation. The famous Matsumoto’s problem states how many different ways

are there essentially to realize conformal equivalence of a Finsler manifold to a

Berwald manifold? In other words, whether or not are there two Berwald mani-

folds which are conformally equivalent (but not homothetic) to each other ([17])?

The Matsumoto’s problem is closely related to the theory of generalized Berwald

manifolds, especially Wagner spaces. C. Vincze answers this problem and shows

that the conformal equivalence between two Berwald manifolds must be homo-

thetic unless they are Riemannian [20]. Recently, the first author, X. Cheng and

Y. Zou characterize the conformal transformations between two (α, β)-metrics.

We prove that if both conformally related (α, β)-metrics F and F̃ are Douglas

metrics, then the conformal transformation between them is a homothety ([3]).

It is well-known that the set of Berwald metrics is included in the set of Douglas

metrics. Our theorem can be deemed to be the generalization of C. Vincze’

result in part.

There is the other hot issue how to characterize conformally flat Finsler met-

rics (conformally Berwald metrics). M. Hashuiguchi and Y. Ichijyō defined a

conformally invariant linear connection in a Finsler space with an (α, β)-metric

and gave a condition that a Randers metric is conformally flat based on their

connection ([11]). Later, S. Kikuchi found a conformally invariant Finsler con-

nection and gave a necessary and sufficient condition for a Finsler metric to be con-

formally flat by a system of partial differential equations under an extra condition

([13]). By using Kikuchi’s conformally invariant Finsler connection, S.-I. Hojo,

M. Matsumoto and K. Okubo studied conformally Berwald Finsler spaces and

its applications to (α, β)-metrics ([10]). In fact, a Finsler manifold is a confor-

mally Berwald manifold if and only if it is a Wagner manifold ([9]). In 2006,

C. Vincze gets a structure theorem for conformally Berwald Randers manifolds

and gives examples of Wagnerian Finsler manifolds ([21]). But the local structure

of conformally flat Finsler metrics (conformally Berwald metrics) is unknown in

general. In [12], L. Kang has proved that any conformally flat Randers metric

of scalar flag curvature is projectively flat and classified completely such metrics.

The first author and X. Cheng classify conformally flat weak Einstein polyno-

mial (α, β)-metrics and show also that there is no non-trivial conformally flat
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(α, β)-metrics with isotropic S-curvature. However, it is unfortunate that the lo-

cal structure of conformal flat Finsler metrics is still unknown, even if conformal

flat (α, β)-metrics.

For a Finsler manifold (M,F ), the flag curvatureK = K(P, y) is a function of

tangent planes P ⊂ TxM and non-zero vectors y ∈ P . This quantity tells us how

curved the space is at a point. When F is Riemannian, K = K(P ) is independent

of y ∈ P \ {0}, which is just the sectional curvature. Thus the flag curvature is

an analogue of sectional curvature in Riemannian geometry. A Finsler metric F

is said to be of constant flag curvature if the flag curvature K = constant. It is

one of important problems in Finsler geometry to study and characterize Finsler

metrics of constant flag curvature [5], [8], [19]. In [15], B. Li and the third author

finish the classification of the projectively flat (α, β)-metrics with constant flag

curvature.

In this paper, we mainly focus on studying the conformally flat (α, β)-metrics

with constant flag curvature. The condition “conformally flat” is very different

from the condition “projectively flat”. In [2], S. Bácsó and X. Cheng prove that

if the conformal transformation L : F → F̃ , F̃ = ec(x)F preserves the geodesics,

then it must be a homothety, that is, c = constant. It implies that conformally

flat Finsler metrics are not projectively flat in general. We get the following

Theorem 1.1. Let F = αϕ(s), s = β/α be a conformally flat (α, β)-metric

on a manifold M of dimension n > 2. If F is of constant flag curvature, then it

is either a locally Minkowski metric or a Riemannian metric.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M and Gi be the

geodesic coefficients of F , which are defined by

Gi =
1

4
gil

{[
F 2

]
xkyly

k −
[
F 2

]
xl

}
, (2.1)

where gij(x, y) := 1
2 [F

2]yiyj (x, y) and (gij) := (gij)
−1. For any x ∈ M and

y ∈ TxM\{0}, the Riemann curvature Ry = Ri
k

∂
∂xi ⊗ dxk is defined by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
. (2.2)

For a tangent plane P ⊂ TxM containing y, let

K(P, y) :=
gy(Ry(u), u)

gy(y, y)gy(u, u)− [gy(y, u)]2
,
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where gy(u, v) := giju
ivj and u ∈ P such that P = span{y, u}. It is well-known

that a Finsler metric is of scalar flag curvature if and only if

Ri
k = K(x, y)F 2hik,

where hik = δik − F−2gkqy
qyi.

In Finsler geometry, there are some important geometric quantities which

have many important influences on the geometric structures of Finsler metrics

and vanish in Riemannian case. We call them non-Riemannian quantities. For

a non-zero vector y ∈ TxM , the Cartan torsion Cy = Cijkdx
i ⊗ dxj ⊗ dxk :

TxM ⊗ TxM ⊗ TxM → R is defined by

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

.

The mean Cartan torsion Iy = Ii(x, y)dx
i : TxM → R is defined by

Ii := gjkCijk.

It is obvious that C = 0 if and only if F is Riemannian. Also, according to

Deicke’s theorem, a Finsler metric is Riemannian if and only if the mean Cartan

torsion I = 0 .

We consider the following tensor χ = χidx
i on TM for a Finsler metric F

on a manifold M defined by

χi :=
1

2

(
∂2Π

∂xm∂yi
ym −Πxi − 2Gm ∂2Π

∂ym∂yi

)
, (2.3)

where Π := ∂Gm

∂ym . When F =
√
aij(x)yiyj is a Riemannian metric, its geo-

desic coefficients Gi = 1
2Γ

i
jk(x)y

jyk are quadratic in y. Further, Π = Γm
jmy

j =

yj ∂
∂xj (ln

√
det(aml(x))) is a 1-form by (2.1). Thus χi = 0, i.e., χ = χidx

i is a

non-Riemannian quantity. We can easily check that

Lemma 2.1 ([16]). If a spray Gi is of isotropic curvature, then χi = 0.

Especially, if a Finsler metric F is of isotropic flag curvature, i.e., Gi induced by

F is of isotropic curvature, then χi = 0.

By the definition, an (α, β)-metric is a Finsler metric expressed in the fol-

lowing form

F = αϕ(s), s =
β

α
,
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where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form with

∥βx∥α < b0, x ∈ M . It is proved ([8]) that F = αϕ(β/α) is a positive definite

Finsler metric if and only if the function ϕ = ϕ(s) is a C∞ positive function on

an open interval (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s| ≤ b < b0.

Let Gi and Gi
α denote the geodesic coefficients of F and α, respectively. Denote

rij := (bi|j + bj|i), sij :=
1

2
(bi|j − bj|i),

sij := ailslj , si := bjsji,

where (aij) := (aij)
−1 and bi|j denote the covariant derivative of β with respect

to α. Let b := ∥β∥α denotes the norm of β with respect to α. Then we have

Lemma 2.2 ([8]). The geodesic coefficients of Gi are related to Gi
α by

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}{Ψbi +Θα−1yi}, (2.4)

where si0 := sijy
j , s0 := siy

i, r00 := rijy
iyj and

Q :=
ϕ′

ϕ− sϕ′
, Θ :=

Q− sQ′

2∆
, Ψ :=

Q′

2∆
and

∆ := 1 + sQ+ (b2 − s2)Q′.

3. Conformally flat (α, β)-metrics with χi = 0

Let F = αϕ(s), s = β/α be an (α, β)-metric on a manifold M , where α =√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form on M . Assume

that F is conformally related to a Finsler metric F̃ onM , that is, there is a scalar

function c(x) on M such that F = ec(x)F̃ . It is easy to see that F̃ = α̃ϕ(β̃/α̃) is

also an (α, β)-metric, where α̃ = e−c(x)α, β̃ = e−c(x)β. Write α̃ =
√
ãij(x)yiyj ,

β̃ = b̃i(x)y
i. Then ãij = e−2c(x)aij , b̃i = e−c(x)bi. Further, denote ci :=

∂c(x)
∂xi and

ci := ãijcj , we have ([5])

bj|k = ec(x)
(
b̃j||k − b̃kcj + b̃mc

mãjk

)
. (3.1)

Here b̃j||k denote the covariant derivative of b̃j with respect to α̃. Note that

aij(x, y) = e−2c(x)ãij(x, y). We have b̃ := ∥β̃∥α̃ = b.
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Under the assumption that F is conformally flat, we can compute the cur-

vature tensor χi of F . Why is the χi? Firstly, the Lemma 2.1 implies

{F | F is of constant flag curvature.} ⊂ {F | F satisfies χi = 0.}

Thus the non-Riemanian curvature tensor χi is useful to characterize the Finsler

metrics of constant flag curvature. Secondly, computing the curvature tensor χi

is simpler than computing the Riemannian curvature directly.

Now, write cij := ∂2c(x)
∂xi∂xj , yi := ãijy

j , b̃i := ãij b̃j , c
i := ãijcj , f := b̃ici,

pi := cij b̃
j , p0 := piy

i, ci0 := cijy
j , c0 := ciy

i, c00 := cijy
iyj . We can obtain the

following

Proposition 3.1. Let F = αϕ(s), s = β/α be a conformally flat (α, β)-

metric on a manifold M , that is, there exists a locally Minkowski metric F̃ =

α̃ϕ(β̃/α̃) such that F = ec(x)F̃ , where c = c(x) is a scalar function on M . Then

the curvature tensor χi of F is determined by

χi =
1

2

{[
A1α̃fc0 +A2(α̃f)

2 +A3c
2
0 +N ′α̃p0 +M ′c00

+M ′(1 + sQ)α̃2∥∇c∥α̃
] b̃i
α̃

+
[
B1α̃fc0 +B2(α̃f)

2 +B3c
2
0

+ (N − sN ′)α̃p0 − sM ′c00 − sM ′(1 + sQ)α̃2∥∇c∥α̃
] yi
α̃2

+ [C1c0 + C2α̃f ]ci − α̃Npi

}
, (3.2)

where

M := n+
Φ

2∆2
(s+ b̃2Q), N := − Φ

2∆2
(1 + sQ),

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b̃2 − s2)(1 + sQ)Q′′

and

A1 := (1 + sQ)(2s2ΘN ′′ + 2s2ΨM ′′ − sN ′′ + 4sΨM ′ + 2sΘN ′ − 2ΘN +M ′′

− 2ΘM ′ − 2Ψb̃2M ′′ − 2Θb̃2N ′′),

A2 := −(1 + sQ)(2Ψb̃2N ′′ + 2ΨN −N ′′ − 2sΨN ′ − 2s2ΨN ′′ + 2ΨM ′),

A3 := (1 + sQ)(2s2ΘM ′′ − 2Θb̃2M ′′ − sM ′′ + 4sΘM ′ −M ′),

B1 := (1 + sQ)(−2s3ΨM ′′ − 2s3ΘN ′′ − 2s2ΘN ′ − 6s2ΨM ′ + s2N ′′ + 2sΘN

+ 2sΘM ′ + 2sb̃2ΨM ′′ − sM ′′ + 2sb̃2ΘN ′′ + sN ′ −M ′ + 2b̃2ΨM ′ −N),

B2 := −sA2,
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B3 := (1 + sQ)(3sM ′ + 2sb̃2ΘM ′′ + 2b̃2ΘM ′ − 6s2ΘM ′ + s2M ′′ − 2s3ΘM ′′),

C1 := −2(1 + sQ)[s+Θ(b̃2 − s2)]M ′,

C2 := −(1 + sQ)(2b̃2ΨM ′ −M ′ −N − 2s2ΨM ′ + sN ′).

Proof. It is well-known that (α, β)-metric F̃ is a locally Minkowski metric

if and only if α̃ is flat and b̃j||k = 0 ([1]). By Lemma 2.2, we have

Gi = {Θ(1 + sQ)α̃f + [1−Θ(s+ b̃2Q)]c0}yi

− α̃2ci

2
(1 + sQ) + α̃b̃i(Ψα̃f +Θc0)(1 + sQ), (3.3)

Π =
∂Gm

∂ym
=Mc0 +Nα̃f. (3.4)

Further, we need to compute the following

Πxi =Mci0 +Nα̃pi, (3.5)

Πyi = (M ′c0 +N ′α̃f)syi +Mci +N
yi
α̃
f, (3.6)

Πyiym = (M ′c0 +N ′α̃f)syiym +
[
(M ′′c0 +N ′′α̃f)syi +M ′ci +N ′ yi

α̃
f
]
sym

+M ′syicm +N
ãim
α̃
f +

(
N ′fsyi −N

yi
α̃2
f
) ym
α̃
. (3.7)

By a series of direct computations, we have

syi =
b̃iα̃− syi

α̃2
, (3.8)

syiym =

(
− b̃i
α̃3

+ 3s
yi
α̃4

)
ym − b̃myi

α̃3
− sãim

α̃2
, (3.9)

syi b̃i =
b̃2 − s2

α̃
, syici =

α̃f − sc0
α̃2

, (3.10)

syiym b̃m =

(
− b̃i
α̃2

+ 3s
yi
α̃3

)
s− b̃2yi

α̃3
− sb̃i
α̃2
, (3.11)

syiymcm =

(
− b̃i
α̃3

+ 3s
yi
α̃4

)
c0 −

yif

α̃3
− sci
α̃2
. (3.12)

Plugging (3.5)–(3.7) into (2.3) and by using (3.8)–(3.12), we get (3.2). �
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It is obvious that b̃ = constant. If b̃ = 0, then F = ec(x)α̃ is a Riemannian

metric. So we always assume b ̸= 0 in the following.

Lemma 3.2 ([7]). For an (α, β)-metric F = αϕ(s), the mean Cartan torsion

is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi, (3.13)

where

∆ := 1 + sQ+ (b2 − s2)Q′, hi := bi − α−1syi.

According to Deicke’s theorem, an (α, β)-metric is Riemannian if and only if

Φ ≡ 0. In fact, such identity is a differential equation in ϕ which is very difficult

to solve. However, if ϕ = ϕ(s) satisfies

Q− sQ′ = 0,

it is easy to get

ϕ(s) = a1
√

1 + a2s2,

where a1 and a2 are constants. Similarly, we have

Lemma 3.3. If there is a neighborhood Us ⊂ [−b, b] such that ∀s ∈ Us, ϕ(s)

satisfies

b2Q+ s = 0, (3.14)

then

ϕ(s) = a0
√
b2 − s2,

where a0 is a constant.

Remark 3.4. If ∀s ∈ Us, ϕ(s) = a0
√
b2 − s2, we have

ϕ− sϕ′ + (b2 − s2)ϕ′′ = 0.

Thus (α, β)-metric F is not a positive definite Finsler metric.

Further, we have

Lemma 3.5. If ϕ(s) satisfies

s(b2 − s2)Q′ +Q(b2 + s2) + 2s = 0, (3.15)

then

Q =
k1(b

2 − s2)− 1

s
.

where k1 is a number independent of s.
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Proof. By maple program, we get the solution of (3.15)

Q =
k1(b

2 − s2)− 1

s
.

In special, if k1 = 1
b2 , then we have

ϕ′

ϕ− sϕ′
= − s

b2
.

Thus

ϕ(s) = k2
√
b2 − s2.

where k2 is a number independent on s. �

The following lemma is trivial. One can verify it directly.

Lemma 3.6. For any given ϕ(s), if l(s) satisfies

[l − sl′]k =
ϕ− sϕ′

ϕ− sϕ′ + (b2 − s2)ϕ′′
[l − sl′ + (b2 − s2)l′′],

where k is a constant, then

l(s) = k1

∫
[(ϕ− sϕ′)

√
b2 − s2 ]k

s2
√
b2 − s2

ds+ k2s,

where k1, k2 are constant.

In the following, considering conformally flat (α, β)-metric F = αϕ(s), s =

β/α with χi = 0 on a manifold M , we have

Proposition 3.7. Let F = αϕ(s), s = β/α be a conformally flat non Rie-

mannian (α, β)-metric on a manifold M of dimension n > 2. If F has vanishing

χi, then it is a locally Minkowski metric.

Proof. By assumption and (3.2), we have

[A1α̃fc0 +A2(α̃f)
2 +A3c

2
0 +N ′α̃p0 +M ′c00 +M ′(1 + sQ)α̃2∥∇c∥2α̃]α̃b̃i

+ [B1α̃fc0 +B2(α̃f)
2 +B3c

2
0 + (N − sN ′)α̃p0 − sM ′c00

− sM ′(1 + sQ)α̃2∥∇c∥2α̃]yi + [C1c0 + C2α̃f ]α̃
2ci − α̃3Npi = 0. (3.16)

To simplify the computations, we take an orthonormal basis at x with respect to

α̃ such that

α̃ =

√√√√ n∑
i=1

(yi)2, β̃ = b̃y1.
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Further, we take the following coordinate transformation in TxM ,

ψ : (s, uA) → (yi):

y1 =
s√

b̃2 − s2
ᾱ, yA = uA,

where ᾱ =
√∑n

i=2(u
A)2 (see [6]). Here, our index conventions are

1 ≤ i, j, k, · · · ≤ n, 2 ≤ A,B,C, · · · ≤ n.

We have

α̃ =
b̃√

b̃2 − s2
ᾱ, β̃ =

b̃s√
b̃2 − s2

ᾱ.

Further,

c0 =
c1s√
b̃2 − s2

ᾱ+ c̄0, f = c1b̃,

p0 =
p1s√
b̃2 − s2

ᾱ+ p̄0, c00 =
c11s

2

b̃2 − s2
ᾱ2 +

2c̄10s√
b̃2 − s2

ᾱ+ c̄00,

where

c̄0 :=
n∑

A=2

cAy
A, p̄0 :=

n∑
A=2

pAy
A,

c̄10 :=

n∑
A=2

c1Ay
A, c̄00 :=

n∑
A,B=2

cABy
AyB .

For i = A, (3.16) is equivalent to the following two equations by the rational

terms and irrational terms in yA.[
B1

b2sc21ᾱ
2

b̃2 − s2
+B2

b̃4c21ᾱ
2

b̃2 − s2
+B3

(
c21s

2ᾱ2

b̃2 − s2
+ c̄20

)
+ (N − sN ′)

b̃2sc11ᾱ
2

b̃2 − s2

− sM ′
(
c11s

2ᾱ2

b̃2 − s2
+ c̄00

)
− sM ′(1 + sQ)

b̃2∥∇c∥ᾱᾱ2

b̃2 − s2

]
yA

+ C1
b̃2c̄0ᾱ

2

b̃2 − s2
cA = 0, (3.17)

[B1b̃
2c1c̄0 + 2B3sc1c̄0 + (N − sN ′)b̃p̄0 − 2s2M ′c̄10]yA

+ (C1c1s+ C2b̃
2c1)

b̃2ᾱ2

b̃2 − s2
cA −N

b̃3ᾱ2

b̃2 − s2
pA = 0. (3.18)
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Then (3.17) implies that there is a scalar function d := d(s) such that

B3c̄
2
0 − sM ′c̄00 = dᾱ2.

Plugging it into (3.17) yields

[
B1

b2sc21

b̃2 − s2
+B2

b̃4c21

b̃2 − s2
+B3

c21s
2

b̃2 − s2
+ (N − sN ′)

b̃2sc11

b̃2 − s2
− s3M ′ c11

b̃2 − s2

− sM ′(1 + sQ)
b̃2∥∇c∥ᾱ
b̃2 − s2

+ d

]
yA + C1

b̃2c̄0

b̃2 − s2
cA = 0,

Contracting (??) with yA yields q(s)ᾱ2 = q̄(s)c̄20, where

q(s) := B1
b2sc21
b̃2 − s2

+B2
b̃4c21
b̃2 − s2

+B3
c21s

2

b̃2 − s2
+ (N − sN ′)

b̃2sc11

b̃2 − s2

− s3M ′ c11

b̃2 − s2
− sM ′(1 + sQ)

b̃2∥∇c∥ᾱ
b̃2 − s2

+ d,

q̄(s) := C1
b̃2

b̃2 − s2

We claim that c̄0 = 0. Suppose c̄0 ̸= 0. When n > 2, if q(s) ̸= 0 and q̄(s) ̸= 0,

noting that s is independent on yA, then

1 ≥ Rank(cAcB) = Rank(δAB) ≥ 2,

which is impossible. Hence q(s) = q̄(s) = 0, then we have C1 = 0, i.e.,

(1 + sQ)[s+Θ(b̃2 − s2)]M ′ = 0. (3.19)

Noting that F is a positive definite (α, β)-metric, we have

∆ =
ϕ[ϕ− sϕ′ + (b̃2 − s2)ϕ′′]

(ϕ− sϕ′)2
> 0, 1 + sQ =

ϕ

ϕ− sϕ′
> 0.

Then (3.19) becomes to [s(b̃2 − s2)Q′ +Q(b̃2 + s2) + 2s]M ′ = 0, ∀s ∈ [−b̃, b̃].
By above equation, we can prove M ′ = 0 ∀s ∈ [−b̃, b̃]. If not, there must be

a neighborhood Us ⊂ [−b̃, b̃] such that M ′ ̸= 0,∀s ∈ Us. Then s(b̃2 − s2)Q′ +

Q(b̃2 + s2) + 2s = 0, ∀s ∈ Us, by Lemma 3.5, we have

Q =
k1(b̃

2 − s2)− 1

s
.
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Plugging it into the formulation of M , we get M = k1b̃
2(n − 1), ∀s ∈ Us. It is

impossible. Thus M ′ = 0, ∀s ∈ [−b̃, b̃].
Noting that the formulation of M , we have

n+
Φ

2∆2
(s+ b̃2Q) = d̄, (3.20)

where d̄ is a constant. Put h(s) := s+ b̃2Q, we can obtain

h(s) =
(b̃2 − s2)ϕ′ + sϕ

ϕ− sϕ′
.

Then we have

h(b̃) =
b̃ϕ(b̃)

ϕ(b̃)− b̃ϕ′(b̃)
> 0, h(−b̃) = −b̃ϕ(−b̃)

ϕ(−b̃) + b̃ϕ′(−b̃)
< 0

Thus there exists b̄ ∈ (−b̃, b̃) such that b̄+ b̃2Q(b̄) = 0. Taking s = b̄ in (3.20), we

get d̄− n = 0. Then (3.20) becomes

Φ(s+ b̃2Q) = 0.

By Lemma 3.2, Lemma 3.3 and Remark 3.4, F is a Riemannian metric. It is a

contraction. Thus c̄0 = 0.

Substituting c̄A = 0 into (3.17) yields

[B1b̃
2s+B2b̃

4+B3s
2−sM ′(1+sQ)b̃2]c21+[(N −sN ′)b̃2−s2M ′]sc11 = 0. (3.21)

By a direct computation,

B1b̃
2s+B2b̃

4 +B3s
2 − sM ′(1 + sQ)b̃2 = −s(1 + sQ)

∆
(N ′′b̃4 + b̃2sM ′′ + 2M ′b̃2

−b̃2s2N ′′ − b̃2sN ′ + b̃2N − s3M ′′ − 3s2M ′). (3.22)

It is easy to check

(N − sN ′)b̃2 − s2M ′ = Nb̃2 + sM − s(Nb̃2 + sM)′,

N ′′b̃4 + b̃2sM ′′ + 2M ′b̃2 = b̃2(Nb̃2 + sM)′′,

−b̃2s2N ′′ − b̃2sN ′ + b̃2N − s3M ′′ − 3s2M ′ = [s(N − sN ′)b̃2 − s3M ′]′.

Let l := Nb̃2 + sM , then (3.21) can be reduced to

−1 + sQ

∆
[l − sl′ + (b̃2 − s2)l′′]c21 + (l − sl′)c11 = 0. (3.23)
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Finally, we show c1 = 0. Suppose that c1 ̸= 0, let k = c11/c
2
1, then (3.23)

becomes

[l − sl′]k =
ϕ− sϕ′

ϕ− sϕ′ + (b2 − s2)ϕ′′
[l − sl′ + (b2 − s2)l′′].

By Lemma 3.6, we have

l(s) = k1

∫
[(ϕ− sϕ′)

√
b2 − s2 ]k

s2
√
b2 − s2

ds+ k2s.

Then

l′ = k1
[(ϕ− sϕ′)

√
b2 − s2 ]k

s2
√
b2 − s2

+ k2.

Using the formulation of l, we have

k1

[
(ϕ− sϕ′)

√
b̃2 − s2

]k
=

[
n− k2 +

Φ

∆2
s−

(
Φ

2∆2

)′

(b̃2 − s2)

]
s

√
b̃2 − s2.

Taking s = 0 in above equation, we obtain k1 = 0. Thus l = k2s, i.e.,

sn− Φ

2∆2
(b̃2 − s2) = k2s. (3.24)

Further, let s = b̃ in (3.24), we get k2 = n. Then (3.24) can be reduced to

Φ

2∆2
(b̃2 − s2) = 0.

It implies that Φ ≡ 0. By Lemma 3.2, F is a Riemannian metric. We get a

contraction. Thus c1 = 0.

Hence ci = 0, that is c(x) = constant. Then F is a Minkowski metric. �

By Lemma 2.1 and Proposition 3.7, we can obtain

Corollary 3.8. Let F = αϕ(s), s = β/α be a conformally flat (α, β)-metric

on a manifold M of dimension n > 2. If F is of constant flag curvature, then it

is either a locally Minkowski metric or a Riemannian metric.
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