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Some formulas of Santaló type in Finsler geometry
and its applications

By LIXIA YUAN (Shanghai) and WEI ZHAO (Shanghai)

Abstract. In this paper, we establish two Santaló type formulas for general Finsler

manifolds. As applications, we derive a universal lower bound for the first eigenvalue

of the nonlinear Laplacian, two Croke type isoperimetric inequalities, and a Yamaguch

type finiteness theorem in Finser geometry.

1. Introduction

In [16], [17], Santaló considered the kinematic measure and established a

formula which describes the Liouville measure on the unit sphere bundle of a

Riemannian manifold in terms of the geodesic flow and the measure of a hyper-

surface. This formula plays an important role in global Riemannian geometry.

Some of its applications are universal bounds for the first eigenvalue [5], Croke’s

isoperimetric inequality [9] and a generalization of Berger’s theorem [8]. More-

over, with Santaló’s formula, Croke in [7] solved a famous isoperimetric problem

in dimension 4. See [5], [7], [8], [10], [9], [11], [16], [17] for more details.

A Finsler manifold is a differentiable manifold, on which every tangent space

is endowed a Minkowski norm instead of a Euclidean norm. There is only one

reasonable notion of the measure for Riemannian manifolds (cf. [4]). However,
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the measure on a Finsler manifold can be defined in various ways and essentially

different results may be obtained, e.g., [1], [2], [18]. Hence, it is interesting to ask

whether an analogue of Santaló’s formula still holds for Finsler manifolds.

Let (M,F ) be a Finsler manifold. Denote by π1 : SM → M the unit sphere

bundle. If F (y) = F (−y) for any y ∈ SM , then F is reversible. In a reversible

Finsler manifold, the reverse of a geodesic is still a geodesic (see [3], [18]). In [23],

Shen and Zhao considered the problem above and established a Santaló type

formula for reversible Finsler manifolds.

There are infinitely many nonreversible Finsler metrics. For example, a Ran-

ders metric in the form F = α + β is non-reversible, where α is a Riemannian

metric and β is a 1-form. The reverse of a geodesic in a non-reversible Finsler

manifold is in general not a geodesic. Moreover, in a non-reversible Finsler man-

ifold, the measure of a hypersurface induced by the inward normal vector field

may be different from the one induced by the outward normal vector filed (see

Example 1 in Section 5 below). The purpose of this paper is to establish some

Santaló type formulas for general Finsler manifolds.

Let (M,∂M,F, dµ) be a compact Finsler manifold with the boundary, where

F is possibly non-reversible and dµ is a measure on M . Denote by n+ and n−
the unit inward and outward normal vector fields along ∂M , respectively. The

measures on ∂M induced by n± are defined by dA± := i∗(n±⌋dµ). Let S+∂M

and S−∂M be the bundles of inwardly and outwardly pointing unit vectors along

∂M , i.e., S±∂M = {y ∈ SM |∂M : gn±(n±, y) > 0}. The measures on S±∂M

are the product measures dχ±(y) := dνπ1(y)(y)dA±(π1(y)), where dνx(y) is the

Riemannian measure on SxM := π−1
1 (x) induced by F . For each y ∈ S+∂M , set

t(y) := sup{t > 0 : γy(s) ∈ M, 0 < s < t} and l(y) := min{i(y), t(y)}, where i(y)

is the cut value of y.

Since F may be non-reversible, to investigate the asymmetry of the Finsler

manifold, we introduce the reverse of F , which is defined by F̃ (y) := F (−y).

Clearly, F̃ is a Finsler metric as well. Let t̃(·), ĩ(·) and l̃(·) be defined as above in

(M,∂M, F̃ ). Then we have the following Santaló type formulas.

Theorem 1.1. For all integral function f on SM , we have∫
V−

M

fdVSM =

∫
y∈S+∂M

eτ(y)gn+(n+, y)dχ+(y)

∫ l(y)

0

f(φt(y))dt, (i)

∫
V+

M

fdVSM =

∫
y∈S−∂M

eτ(y)gn−(n−, y)dχ−(y)

∫ l̃(−y)

0

f(φ−t(y))dt, (ii)

where dVSM is the canonical Riemannian measure on SM , τ is the distortion
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of dµ, φt(y) is the geodesic flow of F , V−
M := {y ∈ SM : t̃(−y) ≤ ĩ(−y)} and

V+
M := {y ∈ SM : t(y) ≤ i(y)}.

One can easily see that Theorem 1.1 implies the Santaló type formulas for

reversible Finsler manifolds [23] and for Riemannian manifolds [16], [17]. It is

remarkable that, in a non-reversible Finsler manifold, A−(∂M) ̸= A+(∂M) and

the formulas (1) and (2) contain information about A+(∂M) and A−(∂M), re-

spectively.

Before giving some applications of Theorem 1.1, we shall recall some notions

and basic facts of the first eigenvalue in the Finsler setting. The first eigenvalue

λ1(M,dµ) in (M,F, dµ) is defined as the smallest positive eigenvalue of the non-

linear Laplacian ∆dµ introduced by Shen (cf. [14], [18], [19]). It should be noted

that both ∆dµ and λ1(M,dµ) are dependent on the choice of the measure dµ.

Theorem 1.1 now yields the following

Theorem 1.2. Let (M,∂M,F ) be a compact Finsler n-manifold with the

boundary such that every geodesic ray in (M,F ) minimizes distance up to the

point that it intersects ∂M . Then

λ1(M,dµ) ≥


λD(S+D)

Λ4n+1
F

, dµ is the Busemann–Hausdorff measure,

λD(S+D)

Λ2n+1
F

, dµ is the Holmes–Thompson measure,

where D := diam(M), ΛF is the uniform constant of F , and S+D denotes the

n-dimensional Riemannian hemisphere of the constant sectional curvature sphere

having diameter equal to D. The equality holds if and only if (M,F ) is isometric

to S+D.

Note that a Finsler metric F is Riemannian if and only if ΛF =1. Hence, The-

orem implies Croke’s sharp universal lower bound for the first eigenvalue [5], [9].

Let (M,∂M,F ) be as above. For each x ∈ M , set

ω := inf
x∈M

min{ω+
x , ω

−
x },

where ω±
x := c−1

n−1

∫
U±

x
eτ(y)dνx(y), U

±
x := π|−1

V±
M

(x) and cn−1 = Vol(Sn−1). Then

Theorem 1.1 furnishes the following inequalities.

Theorem 1.3. Let (M,∂M,F, dµ) be a compact Finsler n-manifold with the

boundary, where dµ is either the Busemann–Hausdorff measure or the Holmes–

Thompson measure. Then

(1)
A±(∂M)

µ(M)
≥ (n− 1)cn−1 ω

cn−2 DΛ
2n+ 1

2

F

,
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where D := diam(M).

(2)
A±(∂M)

µ(M)1−
1
n

≥ cn−1ω
1+ 1

n

(cn/2)1−
1
nΛ

2n+ 5
2

F

,

with equality if and only if (M,F ) is a Riemannian hemisphere of a constant

sectional curvature sphere.

If F is reversible, then ω+ = ω− and A+(∂M) = A−(∂M). Hence, Theo-

rem 1.3 implies Croke type isoperimetric inequalities for reversible Finsler mani-

folds [23, Theorem 1.6] and for Riemannian manifolds [9].

As an application of Theorem 1.3, we obtain a Finslerian version of Yam-

aguchi’s finiteness theorem.

Theorem 1.4. For any n and positive numbers i, V, δ, the class of closed

Finsler n-manifolds (M,F ) with injectivity radius iM≥ i, ΛF≤ δ and µ(M)≤V ,

contains at most finitely many homotopy types. Here, µ(M) is either the Buse-

mann–Hausdorff volume or the Holmes–Thompson volume of M .

2. Preliminaries

In this section, we recall some definitions and properties about Finsler man-

ifolds. See [3], [18] for more details.

Let (M,F ) be a (connected) Finsler n-manifold with Finsler metric F :

TM → [0,∞). Let (x, y) = (xi, yi) be local coordinates on TM . Define

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
, Gi(y) :=

1

4
gil(y)

{
2
∂gjl
∂xk

(y)− ∂gjk
∂xl

(y)

}
yjyk,

where Gi are the geodesic coefficients. A smooth curve γ(t) in M is called a

(constant speed) geodesic if it satisfies

d2γi

dt2
+ 2Gi

(
dγ

dt

)
= 0.

We always use γy(t) to denote the geodesic with γ̇y(0) = y.

The Ricci curvature is defined by Ric(y) :=
∑n

i=1 R
i
i(y), where

Ri
k(y) := 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.
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Let π1 : SM → M be the unit sphere bundle, i.e., SxM := {y ∈ TxM :

F (x, y) = 1} and SM := ∪x∈MSxM . The measure on SM is defined by

dVSM |(x,y) =
√
det gij(x, y)dx

1 ∧ · · · ∧ dxn ∧ dνx(y)

= eτ(y)π∗
1(dµ(x)) ∧ dνx(y).

where

dνx(y) :=
√
det gij(x, y)

(
n∑

i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn

)
.

is the Riemannian measure on SxM induced by F .

The reversibility λF and the uniformity constant ΛF of (M,F ) are defined

by λF := supx∈M λF (x) and ΛF := supx∈M ΛF (x), where

λF (x) := sup
y∈SxM

F (x,−y), ΛF (x) := sup
X,Y,Z∈SxM

gX(Y, Y )

gZ(Y, Y )
.

Clearly, ΛF ≥ λ2
F ≥ 1. λF = 1 if and only if F is reversible, while ΛF = 1 if and

only if F is Riemannian.

The dual Finsler metric F ∗ on M is defined by

F ∗(η) := sup
X∈TxM\0

η(X)

F (X)
, ∀η ∈ T ∗

xM.

The Legendre transformation L : TM → T ∗M is defined as

L(X) :=

{
gX(X, ·) X ̸= 0,

0 X = 0.

In particular, F ∗(L(X)) = F (X). Now let f : M → R be a smooth function onM .

The gradient of f is defined by ∇f = L−1(df). Thus, df(X) = g∇f (∇f,X).

Let dµ be a measure on M . In a local coordinate system (xi), express dµ =

σ(x)dx1 ∧ · · · ∧ dxn. In particular, the Busemann–Hausdorff measure dµBH and

the Holmes–Thompson measure dµHT are defined by

dµBH = σBH(x)dx :=
Vol(Bn)

Vol({y ∈ TxM : F (x, y) < 1})
dx1 ∧ · · · ∧ dxn,

dµHT = σHT (x)dx :=

(
1

cn−1

∫
SxM

√
det gij(x, y)dνx(y)

)
dx1 ∧ · · · ∧ dxn.

For y ∈ TxM\0, define the distorsion of (M,F, dµ) as

τ(y) := log

√
det gij(x, y)

σ(x)
.

By the same argument in [21], one can show the following lemma.



84 Lixia Yuan and Wei Zhao

Lemma 2.1. Let (M,F ) be a Finsler n-manifold with finite uniform con-

stant ΛF . Let dµ denote either the Busemann–Hausdorff measure or the Holmes–

Thompson measure on M . Then the distortion τ of dµ satisfy Λ−n
F ≤ eτ(y) ≤ Λn

F ,

for all y ∈ SM .

The reverse of a Finsler metric F is defined by F̃ (y) := F (−y). It is not hard

to see that G̃i(y) = Gi(−y) and dµ̃ = dµ, where G̃i (resp. Gi) are the geodesic

coefficients of F̃ (resp. F ), and dµ̃ (resp. dµ) denotes the Busemann–Hausdorff

measure or the Holmes–Thompson measure of F̃ (resp. F ). In particular, if γ is

a geodesic of F , then the reverse of γ is a geodesic of F̃ .

3. Santaló type formulas

Let (M,∂M,F ) be compact Finsler manifold with the boundary. Denote by

n+ (resp. n−) the unit inward (resp. outward) normal vector field along ∂M .

Define N+ := {k · n+(x) : x ∈ ∂M, k ∈ R}. The exponential map Exp+ of N+ is

defined by

Exp+ : N+ → M, k · n+(x) 7→ expx(kn+(x)).

We always identify ∂M with the zero section of N+. The same arguments as in

[23, Lemma 5.1, Remark 5.1] show the following lemma.

Lemma 3.1. Exp+ maps a neighborhood of ∂M ⊂ N+ C1-diffeomorphically

onto a neighborhood of ∂M ⊂ M . Hence, there exists a small δ > 0 such that

Exp+ : Mδ → Exp+(Mδ) is C1-diffeomorphic, where Mδ := {k · n+(x) : x ∈
∂M, 0 ≤ k < δ}.

Define ρ : M → R+ by ρ(x) = d(∂M, x). Lemma 3.1 together with the proofs

of [23, Lemma 5.2-5.3, Corollay 5.1] and [18, Lemma 3.2.3] yields

Lemma 3.2. Let σ(t), 0 ≤ t < ϵ, be a C1-curve with σ(0) ∈ ∂M and

σ((0, ϵ)) ⊂ M . Then

0 ≤ d

dt

∣∣∣∣
t=0+

ρ ◦ σ(t) = gn+(n+, σ̇(0)).

Hence, ∇ρ+(x) = n+(x), for any x ∈ ∂M .

Set S±∂M := {y ∈ SM |∂M : gn±(n±, y) > 0}. By the Legendre transforma-

tions, one can show that S±∂M are two submanifolds of SM .
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Remark 1. In general, n+ ̸= −n−. However, by the Legendre transforma-

tions, one can easily show that S±∂M = {y ∈ SM |∂M : gn∓(n∓, y) < 0}.

Set Z := {y ∈ S∂M : ∃ t > 0 such that γy((0, t)) ⊂ M}. Define a function

t : SM ∪S+∂M ∪Z → R+ by t(y) := sup{t > 0 : γy(s) ∈ M, 0 < s < t}, which is

called the t-function. By the same argument as in [23, Lemma 5.4], one can show

that t-function is low semi-continuous on SM ∪ S+∂M .

Since (M,∂M,F ) is compact, we can define a map

Ψ : {(t, y) : y ∈ S+∂M, 0 ≤ t ≤ t(y)} → SM, (t, y) 7→ φt(y),

where φt is the geodesic flow of F . Let t̃ (resp. ĩ) denote the t-function (resp. the

cut value function) defined on (M,∂M, F̃ ), where F̃ (y) := F (−y). Set

U−
M := {y ∈ SM : t̃(−y) < ĩ(−y)}.

Since y ∈ SM implies that F̃ (−y) = 1, U−
M is well-defined. In particular, we have

the following

Lemma 3.3. Ψ|N+ : N+ → U−
M\UZ is a one-one map. Here, N+ := {(t, y) :

y ∈ S+∂M, t ∈ (0, l(y))}, UZ := {φt(y) : y ∈ Z, t ∈ (0, l(y))}, and l(y) :=

min{i(y), t(y)}.

Proof. Since M is compact, for each y ∈ U−
M , 0 < t̃(−y) < ĩ(−y) < ∞.

Thus, γ̃−y(t), 0 ≤ t ≤ t̃(−y) is a unit speed minimal geodesic in (M, F̃ ). Set

Y := − ˙̃γ−y (̃t(−y)). Thus,

F (Y ) = F̃ (−Y ) = F̃ ( ˙̃γ−y (̃t(−y))) = 1.

It follows from Lemma 3.2 that gn+(n+, Y ) ≥ 0. Hence, Y ∈ S+∂M ∪ Z.

Let d (resp. d̃) denote the distance function induced by F (resp. F̃ ). Let

p := π1(y) and q := π1(Y ). Then LF (γY ([0, t̃(−y)])) = t̃(−y) = d̃(p, q) = d(q, p),

which implies that i(Y ) ≥ t̃(−y). We claim that i(Y ) > t̃(−y). If not, then p

is the cut point of q along γY . If p is also a conjugate point of q, then there

exists a non-vanishing Jacobi field J(t) along γY (t) such that J(0) = 0 and

J (̃t(−y)) = 0. It is easy to check that J̃(t) := J (̃t(−y)− t) is a Jacobi field along

γ̃−y in (M, F̃ ). Hence, q is a conjugate point of p along γ̃−y in (M, F̃ ), which

contradicts t̃(−y) < ĩ(−y). Since p is not a conjugate point of q, by the proof of

[3, Proposition 8.2.1], one can show that there exists another minimal geodesic

from q to p. Thus, there exist two distinct minimal geodesic from p to q with the



86 Lixia Yuan and Wei Zhao

length t̃(−y) in (M, F̃ ), which also contradicts t̃(−y) < ĩ(−y). Hence, the claim

is true, which implies that t̃(−y) < min{t(Y ), i(Y )} = l(Y ).

From above, we show that for each y ∈ U−
M , there exist Y ∈ S+∂M ∪Z and

t := t̃(−y) < l(Y ) such that y = Ψ(t, Y ). Let NZ := {(t, y) : y ∈ Z, t ∈ (0, l(y))}.
Then Ψ|N+∪NZ : N+ ∪NZ → U−

M is subjective. Since Ψ is injective, we are done

by Ψ(NZ) = UZ . �

Given any measure dµ on M , the induced volume forms on ∂M by n± are

defined by dA± := i∗(n±⌋dµ), where i : ∂M ↪→ M is the inclusion map (cf. [18]).

Now we have the following Santaló formula.

Theorem 3.4. Let (M,∂M,F, dµ) be a compact Finsler manifold with the

boundary. Thus, for all integral function f on SM , we have∫
V−

M

fdVSM =

∫
y∈S+∂M

eτ(y)gn+(n+, y)dχ+(y)

∫ l(y)

0

f(φt(y))dt, (1)

∫
V+

M

fdVSM =

∫
y∈S−∂M

eτ(y)gn−(n−, y)dχ−(y)

∫ l̃(−y)

0

f(φ−t(y))dt, (2)

where V−
M := {y ∈ SM : t̃(−y) ≤ ĩ(−y)}, V+

M := {y ∈ SM : t(y) ≤ i(y)} and

dχ±(y) = dA±(π1(y)) ∧ dνπ1(y)(y).

Proof. (1). Given any y ∈ S+∂M . We identify Ty(S
+∂M) with its image

in T(0,y)(R× S+∂M). Since Ψ∗(0,y)(X) = X, ∀X ∈ Ty(S
+∂M), we have

Ψ∗(dχ+(y)) ≡ dχ+|(0,y) (mod dt). (3.1)

We claim that [Ψ∗π∗
1dρ]|(0,y) ≡ 0 (mod dt). In fact, for eachX ∈ Ty(S

+∂M),

there exists a curve ξ : [0,+ε) → S+∂M with ξ(0) = y and ξ̇(0) = X. Thus,

⟨X,Ψ∗π∗
1dρ⟩|(0,y) = ⟨π1∗

(
Ψ∗(0,y)X

)
, dρ⟩ = ⟨π1∗X, dρ⟩ = d

ds

∣∣∣∣
s=0

ρ(π1(ξ(s))) = 0.

The claim is true. Lemma 3.2 now yields

[Ψ∗π∗
1dρ] |(0,y) =

⟨
∂

∂t
,Ψ∗π∗

1dρ

⟩
(0,y)

dt

=

(
d

dt

∣∣∣∣
t=0+

ρ ◦ γy(t)
)
dt = gn+(n+, y)dt. (3.2)

Define a function η ∈ C∞(R×S+∂M) by Ψ∗(dVSM ) = η · β, where β|(t,y) =
dt∧dχ+(y) is a (2n−1) form on R×S+∂M . It is easy to check that η(t, y) = η(0, y)
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(cf. [23, Lemma 5.6]). By the co-area formula (see [18, Theorem 3.3.1]), (3.1)

and (3.2), we have

[ηdt ∧ dχ+]|(0,y) = Ψ∗(dVSM (y)) = Ψ∗[eτ(y)π∗
1(dµ)(y) ∧ dνπ1(y)(y)]

= Ψ∗[eτ(y)π∗
1(dρ ∧ dA+)(y) ∧ dνπ1(y)(y)]

= [eτ(y)gn+(n+, y)dt ∧ dχ+]|(0,y),

that is, η(0, y) = eτ(y)gn+(n+, y). It follows from the definition of η that

Ψ∗(dVSM (φt(y))) = eτ(y)gn+(n+, y)dt ∧ dχ, (3.3)

which implies that Ψ is of maximal rank. Hence, Lemma 3.3 yields that Ψ|N+ is

a diffeomorphism.

Let N := {y ∈ SM : t̃(−y) = ĩ(−y)}. Thus, V−
M = U−

M∪N . By an argument

similar to the proof of Lemma 3.3, one has N ⊂ {φl(y)y : y ∈ S+∂M ∪Z, l(y) =

i(y)}, which implies that N has measure zero with respect to dVSM . Also note

that VSM (U−
M\Ψ(N+)) = VSM (UZ) = 0. Hence, by (3.3), we have∫

V−
M

fdVSM =

∫
U−

M

fdVSM =

∫
Ψ(N+)

fdVSM =

∫
N+

Ψ∗(fdVSM )

=

∫
S+∂M

eτ(y)gn+(n+, y)dχ(y)

∫ l(y)

0

f(φt(y))dt.

(2). By considering (M,∂M, F̃ ) and using the formula (1), we have∫
y∈Ṽ−

M

f(−y)dṼSM (y) =

∫
y∈S̃+∂M

eτ̃(y)g̃ñ+(ñ+, y)dχ̃+(y)

∫ l̃(y)

0

f(−φ̃t(y))dt,

where the quantities ∗̃ denote the quantities ∗ defined by F̃ . Note that ñ+ = −n−
and −φ̃t(y) = φ−t(−y), 0 ≤ t ≤ l̃(y). The formula (2) now follows from the

transformation y 7→ −y. �

4. A universal lower bound for the first eigenvalue

of the nonlinear Laplacian

Definition 4.1 ([14], [19]). Let (M,F, dµ) be a compact Finsler manifold.

Denote H0(M,dµ) by

H0(M,dµ) :=

{
{f ∈ W 1

2 (M) :
∫
M

fdµ = 0}, ∂M = ∅,
{f ∈ W 1

2 (M) : f |∂M = 0}, ∂M ̸= ∅.



88 Lixia Yuan and Wei Zhao

Define the canonical energy functional Edµ on H0(M,dµ)− {0} by

Edµ(u) :=

∫
M

F ∗(du)2dµ∫
M

u2dµ
.

λ is an eigenvalue if there is a function u ∈ H0(M,dµ) − {0} such that

duEdµ = 0 with λ = Edµ(u). In this case, u is called an eigenfunction corre-

sponding to λ. The first eigenvalue λ1(M,dµ) is defined by

λ1(M,dµ) := inf
u∈H0(M,dµ)−{0}

Edµ(u),

which is the smallest positive critical value of Edµ.

Remark 2. u is an eigenfunction corresponding to λ if and only if

∆dµu+ λu = 0 (in the weak sense),

where ∆dµ is the nonlinear Laplacian introduced by Shen [14], [18], [19]. It

should be noted that ∆dµ is dependent on the choice of dµ.

Proposition 4.2. Let (M,F ) be a Finsler n-manifold. Then for any p ∈ M

and f ∈ C∞(M), we have

F ∗(df |p)2 ≥ n

cn−1Λ
n+1
F (p)

∫
SpM

⟨y, df⟩2dνp(y), (4.1)

with equality if and only if F (p, ·) is a Eucildean norm.

Proof. Without loss of generality, we may suppose df |p ̸= 0. Set BpM :=

{y ∈ TpM : F (p, y) < 1}. By [21], one can choose a g∇f -orthnormal basis {ei} of

TpM such that en = ∇f/F (∇f) and det gij(p, y) ≤ Λn
F (p). Let {yi} denote the

corresponding coordinates. By Stokes’ formula, we have∫
SpM

⟨y, df⟩2dνp(y) ≤ Λ
n
2

F (p)F 2(∇f)

×
∫
SpM

(yn)2
n∑

k=1

(−1)k−1ykdy1 ∧ · · · ∧ d̂yk ∧ · · · ∧ dyn

= (n+ 2)Λ
n
2

F (p)F 2(∇f)

∫
BpM

(yn)2dy1 ∧ · · · ∧ dyn

≤ (n+ 2)Λ
n
2

F (p)F 2(∇f)

∫
Bn(

√
ΛF (p))

(yn)2dy1 ∧ · · · ∧ dyn

=
cn−1

n
Λn+1
F (p)F 2(∇f) (4.2)
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If equality holds in (4.1), then it follows from (4.2) that BpM = Bn(
√

ΛF (p) ).

Namely, F (y) = 1 if and only if g∇f (y, y) = ΛF (p). In particular, 1 = F (en) =

g∇f (en, en) = ΛF (p), which implies that F (p, ·) is a Eucildean norm. �

Theorem 4.3. Let (M,∂M,F ) be a compact Finsler n-manifold with the

boundary such that every geodesic ray in (M,F ) minimizes distance up to the

point that it intersects ∂M . Then

λ1(M,dµ) ≥


λ1(S+D)

Λ4n+1
F

, dµ = dµBH ,

λ1(S+D)

Λ2n+1
F

, dµ = dµHT ,

(4.3)

where D := diam(M) and S+D denotes the n-dimensional Riemannian hemisphere

of the constant sectional curvature sphere having diameter equal to D. The

equality holds if and only if (M,F ) is isometric to S+D.

Proof. Lemma 2.1 yields that

∫
SpM

eτ(y)dνp(y) = cn−1
σHT (p)

σ(p)
≥


cn−1

Λ2n
F

, dµ = dµBH ,

cn−1, dµ = dµHT .

(4.4)

Since V+
M = SM , Theorem 3.4 together with Proposition 4.2 and (4.4) then

yields∫
M

F ∗2(df)dµ ≥ n

cn−1Λ
n+1
F

∫
M

dµ(p)

∫
SpM

⟨y, df⟩2dνp(y)

=
n

cn−1Λ
n+1
F

∫
SM

e−τ(y)⟨y, df⟩2dVSM (y)

=
n

cn−1Λ
n+1
F

∫
y∈S−∂M

eτ(y)gn−(n−, y)dχ−(y)

∫ 0

−l̃(−y)

e−τ(φt(y))⟨φt(y), df⟩2dt

≥ n

cn−1Λ
2n+1
F

∫
y∈S−∂M

eτ(y)gn−(n−, y)dχ−(y)

∫ 0

−l̃(−y)

(
d

dt
f(γy(t))

)2

dt

≥ n

cn−1Λ
2n+1
F

∫
y∈S−∂M

eτ(y)gn−(n−, y)dχ−(y)

∫ 0

−l̃(−y)

(
π

l̃(−y)

)2

f2(γy(t))dt

≥ n

cn−1Λ
2n+1
F

( π

D

)2 ∫
SM

f2(π1(y))dVSM (y)
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≥


λ1(S+D)

Λ4n+1
F

∫
M

f2dµ, dµ = dµBH ,

λ1(S+D)

Λ2n+1
F

∫
M

f2dµ, dµ = dµHT .

(4.5)

If we have equality in (4.3), then (4.5) together with Proposition 4.2 implies

ΛF = 1. Hence, we obtain that λ1(M) = λ1(S+D) and (M,F ) is a Riemannian

manifold. By the standard argument (see [5, p.131] or [9]), one can show that

(M,F ) is isometric to S+D. �

In [19], Shen shows that the first eigenvalue of a forward metric ball is

bounded from above by a constant depending only on the dimension and lower

bounds on the Ricci curvature and the S-curvature. From Theorem 4.3, we obtain

a lower bound for the first eigenvalue of a forward metric ball.

Corollary 4.4. Let (M,F, dµ) be a forward complete Finsler n-manifold of

injectivity radius iM . For any 0 < r < iM/(1 +
√
ΛF ) and any p ∈ M , we have

λ1(B
+
p (r)) ≥


λ1

(
S+
2
√
ΛF r

)
Λ4n+1
F

, dµ = dµBH ,

λ1

(
S+
2
√
ΛF r

)
Λ2n+1
F

, dµ = dµHT .

with equality if and only if B+
p (r) is isometric to S+2r.

5. Croke type isoperimetric inequalities

In this section, we shall establish Theorem 1.3 and give some applications.

Lemma 5.1. For each x ∈ ∂M , we have∫
S♯
x∂M

gn♯
(n♯, y)e

τ(y)dνx(y) ≤
cn−2

n− 1
Λ
2n+ 1

2

F (x),

with equality if and only if F (x, ·) is a Euclidean norm. Here, “♯” denotes either

“+” or “−”, and S♯
x∂M := {y ∈ SxM : gn♯

(n♯, y) > 0}.

Proof. Suppose ♯ = +. By [21], one can choose a gn+ -orthnormal basis

{ei} of TxM such that en = n+ and det gij(x, y) ≤ Λn
F (x). Let {yi} be the

corresponding coordinates. Set ∥ · ∥ :=
√
gn+(·, ·). Define

B+
x := {y ∈ TxM : F (y) < 1, yn > 0}, B+

x,r := {y ∈ TxM : F (y) = 1, yn = r}
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Bx,r(s) := {y ∈ TxM : yn = r, ∥yαeα∥ < s}, ϖ := gn+(n+, y)e
τ(y)dνp(y).

For each y ∈ B+
x , yn = gn+(n+, y) ≤ F (n+)F (y) ≤ 1. Stokes’ formula together

with Lemma 2.1 then yields∫
S+
x ∂M

ϖ ≤ Λ
3n/2
F (x)

∫
S+
x ∂M

yn
n∑

k=1

(−1)k−1ykdy1 ∧ · · · ∧ d̂yk ∧ · · · ∧ dyn

= (n+ 1)Λ
3n
2

F (x)

∫
B+

x

yndy1 ∧ · · · ∧ dyn = (n+ 1)Λ
3n
2

F (x)

∫ 1

0

Vol(B+
x,yn)yndyn

≤ (n+ 1)Λ
3n
2

F (x)

∫ √
ΛF (x)

0

Vol
(
Bx,yn(

√
ΛF (x)− (yn)2)

)
yndyn

=
cn−2

n− 1
Λ
2n+ 1

2

F (x),

with equality if and only if ΛF (x) = 1, i.e., F (x, ·) is a Euclidean norm.

Suppose ♯ = −. Note that ΛF (x) = ΛF̃ (x). Using the same method as in

Theorem 3.4, one can get the formula. �

Given any point x ∈ M , let (r, y) denote the polar coordinates about x. Set

F (r, y) = eτ(γy(r))σ̂x(r, y), where dµ|(r,y) =: σ̂x(r, y)dr ∧ dνx(y). Then we have

the following inequality of Berger–Kazdan type [23, Theorem 1.3]

Lemma 5.2 ([23]). Let (M,F ) be a compact Finsler n-manifold. For each

y ∈ SM and 0 < t ≤ l ≤ iy, we have∫ l

0

dr

∫ l−r

0

F (t, φr(y)) dt ≥
πcn
2cn−1

(
l

π

)n+1

,

with equality if and only if

Rγ̇y(t)(·, γ̇y(t))γ̇y(t) =
(π
l

)2
id, 0 ≤ t ≤ l,

where R is the (Riemannian) curvature tensor acting on γ̇y(t)
⊥.

Now we have the following theorem.

Theorem 5.3. Let (M,∂M,F, dµ) be a compact Finsler n-manifold with the

boundary, where dµ is either the Busemann–Hausdorff measure or the Holmes–

Thompson measure. Set

ω := inf
x∈M

min{ω+
x , ω

−
x } = min

{
inf
x∈M

ω+
x , inf

x∈M
ω−
x

}
,
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where ω±
x := c−1

n−1

∫
U±

x
eτ(y)dνx(y) and U±

x := π|−1

V±
M

(x). Then

(1)
A±(∂M)

µ(M)
≥ (n− 1)cn−1 ω

cn−2 DΛ
2n+ 1

2

F

,

where D := diam(M).

(2)
A±(∂M)

µ(M)1−
1
n

≥ cn−1ω
1+ 1

n

(cn/2)1−
1
nΛ

2n+ 5
2

F

, (5.1)

with equality if and only if (M,F ) is a Riemannian hemisphere of a constant

sectional curvature sphere.

Proof. (1) Theorem 1.1 together with Lemma 5.1 furnishes

cn−1ωµ(M) ≤ cn−1

∫
M

ω∓
x dµ(x) =

∫
x∈M

dµ(x)

∫
U∓

x

eτ(y)dνx(y) = VSM (V∓
M )

≤ D

∫
S±∂M

eτ(y)gn±(n±, y)dχ±(y) ≤ DA±(∂M)
cn−2

n− 1
Λ
2n+ 1

2

F .

(2) For each y ∈ S+∂M , l(φt(y)) ≥ l(y) − t, for any 0 ≤ t ≤ l(y). By

Theorem 1.1, Lemma 2.1, Theorem 5.2 and Hölder’s inequality, we have

µ2(M) =

∫
M

dµ(x)

∫
SxM

dνx(y)

∫ l(y)

0

σ̂x(r, y)dr

=

∫
SM

dVSM (y)

∫ l(y)

0

e−τ(y)σ̂x(r, y)dr ≥
∫
V−

M

dVSM (y)

∫ l(y)

0

e−τ(y)σ̂x(r, y)dr

=

∫
S+∂M

eτ(y)gn+(n+, y)dχ+(y)

∫ l(y)

0

dt

∫ l(φt(y))

0

e−τ(φt(y))σ̂x(r, φt(y))dr

≥ Λ−2n
F

∫
S+∂M

eτ(y)gn+
(n+, y)dχ+(y)

∫ l(y)

0

dt

∫ l(y)−t

0

F (r, φt(y))dr

≥ cn
2cn−1πnΛ2n

F

∫
S+∂M

l(y)n+1eτ(y)gn+(n+, y)dχ+(y)

≥ cn
2cn−1πnΛ2n

F

(∫
S+∂M

l(y)eτ(y)gn+(n+, y)dχ+(y)

)n+1

×
(∫

S+∂M

eτ(y)gn+(n+, y)dχ+(y)

)−n

≥ cn
2cn−1πnΛ2n

F

VSM (V−
M )n+1

(
n− 1

cn−2 A+(∂M)Λ
2n+ 1

2

F

)n
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≥ (cn−1)
nωn+1µ(M)n+1

(cn/2)n−1 An
+(∂M)Λ

(2n+ 5
2 )n

F

. (5.2)

That is,
A+(∂M)

µ(M)1−
1
n

≥ cn−1ω
1+ 1

n

(cn/2)1−
1
nΛ

2n+ 5
2

F

. (5.3)

Let Ã and ω̃ be define as before on (M, F̃ ). It is easy to check that Ã±(∂M) =

A∓(∂M) and ω̃ = ω. From above, we obtain

A−(∂M)

µ(M)1−
1
n

=
Ã+(∂M)

µ̃(M)1−
1
n

≥ cn−1ω
1+ 1

n

(cn/2)1−
1
nΛ

2n+ 5
2

F

. (5.4)

(5.3) together with (5.4) yields (5.1).

Suppose that equality holds in (5.1). Then we have equality in (5.3) or

(5.4). It follows from (5.2) and Lemma 5.1 that 1 = ΛF = ΛF̃ . Hence, F is an

Riemannian metric and (5.1) becomes

A(∂M)

µ(M)1−
1
n

=
cn−1ω

1+ 1
n

(cn/2)1−
1
n

.

Since V−
M = SM , t(y) ≤ iy, for all y ∈ SM . Hölder’s inequality implies l(y) is

constant, say, equal to l, on all of S+∂M . Hence, t(y) = l, for all y ∈ S+∂M .

And Theorem 5.2 yields M has constant sectional curvature equal to (π/l)2, i.e.,

M is a hemisphere. �

From above, it is easy to see that Theorem 5.3 becomes Croke’s isoperimetric

inequality [9] if ΛF = 1. In the Finslerian case, the upper bound on ΛF in

Theorem 5.3 is very important as the following example shows.

Example 1. Let Bn be the unit open ball in Rn equipped with a Funk met-

ric F , that is,

F (x, y) =

√
(1− |x|2)|y|2 + (x · y)2 + x · y

1− |x|2
,

where “| · |” (resp. “ · ”) denote the Euclidean norm (resp. inner product). For

r ∈ (0, 1), set Ωr := {x ∈ Bn : |x| < r}. Then (Ωr, ∂Ωr, F |Ωr
) is a compact Finsler

manifold. By directly computing, we have µBH(Ωr) = cn−1

n rn and A±(∂Ωr) =

cn−1(1± r)rn−1, where dA± are induced by dµBH . Clearly,

lim
r→1

A+(∂Ωr)

A−(∂Ωr)
= +∞.
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Note that

ΛF |Ωr
=

(
1 + r

1− r

)2

, diam(Ωr) = log

(
1 + r

1− r

)
.

For any x ∈ Ωr,

ω±
x =

1

(1− |x|2)n+1
2

≥ 1, i.e., ω = 1.

Hence, we have

A±(∂Ωr)

µBH(Ωr)
>

(n− 1)cn−1 ω

cn−2 diam(Ωr) Λ
2n+ 1

2

F |Ωr

,
A±(∂Ωr)

µBH(Ωr)1−
1
n

>
cn−1ω

1+ 1
n

(cn/2)1−
1
nΛ

2n+ 5
2

F |Ωr

.

In particular,

lim
r→1

ΛF |Ωr
= +∞, lim

r→1

A−(∂Ωr)

µBH(Ωr)
= lim

r→1

A−(∂Ωr)

µBH(Ωr)1−
1
n

= 0.

Before giving some applications of Theorem 5.3, we introduce the definitions

of the Sobolev constant, Cheeger’s constant and the isoperimetric constant of a

closed Finsler manifold.

Definition 5.4. Let (M,F, dµ) be a closed Finsler manifold. The Sobolev

constant S(M,dµ) is defined as

S(M,dµ) := inf
f∈C∞(M)

{∫
M

F ∗(df)dµ
}n

infα∈R
{∫

M
|f − α|

n
n−1 dµ

}n−1 .

Cheeger’s constant h(M,dµ) and the isoperimetric constant I(M,dµ) are de-

fined by

h(M,dµ) := inf
Γ

min{A±(Γ)}
min{µ(M1), µ(M2)}

,

I(M,dµ) := inf
Γ

min{A±(Γ)}n

{min{µ(M1), µ(M2)}}n−1
,

where Γ varies over compact (n−1)-dimensional submanifolds of M which divide

M into disjoint open submanifolds M1, M2 of M with common boundary ∂M1 =

∂M2 = Γ.
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Remark 3. By using the co-area formula (cf. [18, Theorem 3.3.1]) and the

same argument as in [13], one can obtain a Cheeger type inequality

λ1(M,dµ) ≥ h
2(M,dµ)

4λ2
F

.

And we also have a Federer-Fleming type inequality (see Proposition 6.1 below),

i.e.,

I(M,dµ) ≤ S(M,dµ) ≤ 2I(M,dµ).

Corollary 5.5. Let (M,F, dµ) be a closed Finlser n-manifold with Ric ≥
(n− 1)k, where dµ denotes either the Busemann–Hausdorff measure or the Hol-

mes–Thompson measure. Then

λ1(M,dµ) ≥

[
(n− 1)µ(M)

4cn−2Λ
4n+1
F diam(M)

∫ diam(M)

0
sn−1
k (t)dt

]2
,

S(M,dµ) ≥ µ(M)n+1

4cn−1(cn)n−1Λ
4n2+ 9n

2

F

( ∫ diam(M)

0
sn−1
k (t)dt

)n+1
.

Hence, both λ1(M,dµ) and S(M,dµ) can be bounded from below in terms of the

diameter, volume, uniform constant and a lower bound for the Ricci curvature.

Proof. Step 1. Let Γ be any (n−1)-dimensional compact submanifold of M

dividing M into two open submanifolds M1 and M2, such that ∂M1 = ∂M2 = Γ.

Given x ∈ M1, let

Ox := {q ∈ M : ∃ y ∈ U−
x such that q = γ̃−y(t), t ∈ (0, ĩ(−y)]},

where γ̃−y(t) is the geodesic in (M, F̃ ) with ˙̃γ−y(0) = −y.

For any q ∈ M2, there exists a minimal unit speed geodesic, say γ̃X(t), from

x to q. Clearly, γ̃X(t) must hit the boundary and therefore, t̃(X) ≤ ĩ(X). Since

F (−X) = F̃ (X) = 1, q ∈ Ox which implies that M2 ⊂ Ox.

Note that R̃ic ≥ (n − 1)k, ΛF̃ = ΛF and dµ̃ = dµ. Hence, by Lemma 2.1

and the volume comparison theorem (cf. [23, Theorem 3.1]), we have

µ(M2) = µ̃(M2) ≤ µ̃(Ox) =

∫
y∈U−

x

dν̃x(−y)

∫ ĩ(−y)

0

˜̂σx(r,−y)dr

≤ Λn
F

∫
y∈U−

x

dν̃x(−y)

∫ ĩ(−y)

0

sn−1
k (r)dr
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≤ cn−1Λ
2n
F ω−

1 (x)

∫ diam(M)

0

sn−1
k (r)dr.

That is,

ω−
i ≥ µ(Mj)

cn−1Λ2n
F

∫ diam(M)

0
sn−1
k (r)dr

, i ̸= j.

Set O′
x := {q ∈ M : ∃ y ∈ U+

x such that q = γy(t), t ∈ (0, i(y)]}. It is easy

to see that M2 ⊂ O′
x. By the similar argument, one can show that

ω+
i ≥ µ(Mj)

cn−1Λ2n
F

∫ diam(M)

0
sn−1
k (t)dt

, i ̸= j.

Step 2. The inequalities above together with Theorem 5.3 yield

h(M,dµ) ≥ (n− 1)µ(M)

2cn−2Λ
4n+ 1

2

F diam(M)
∫ diam(M)

0
sn−1
k (t)dt

,

I(M,dµ) ≥ µ(M)n+1

4cn−1(cn)n−1Λ
4n2+ 9n

2

F

( ∫ diam(M)

0
sn−1
k (t)dt

)n+1
.

Corollary now follows from Remark 3. �

Corollary 5.6. Let (M,F, dµ) be a closed Finsler n-manifold, where dµ

is either the Busemann–Hausdorff measure or the Holmes–Thompson measure.

Then for any x ∈ M and 0 < r < iM/(1 +
√
ΛF ), we have

µ(B+
x (r)) ≥ C(n,ΛF )

nn
rn, A±(S

+
x (r)) ≥ C(n,ΛF )

nn−1
rn−1.

Proof. The similar argument as in Lemma 3.3 shows iM = ĩM , where ĩM
is the injectivity radius of (M, F̃ ). Hence, U±

p = SpM for all p ∈ B+
x (r). By

Theorem 5.3 and (4.4), we have

d
drµ(B

+
x (r))

µ(B+
x (r))1−

1
n

=
A−(S

+
x (r))

µ(B+
x (r))1−

1
n

≥ C(n,ΛF ),

which implies that

µ(B+
x (r)) ≥ C(n,ΛF )

nn
rn. (5.5)

Theorem 5.3 together with (5.5) yields

A±(S
+
x (r)) ≥ C(n,ΛF )

nn−1
rn−1. �
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In order to establish Theorem 1.5, let us recall some definitions and properties

of general LGC spaces first. Refer to [20], [24] for more details.

Definition 5.7 ([20], [24]). A general metric space is a pair (X, d), where X

is a set and d : X ×X → R+ ∪ {∞}, called a metric, is a function, satisfying the

following two conditions: (a) d(x, y) ≥ 0, with equality ⇔ x = y; (b) d(x, y) +

d(y, z) ≥ d(x, z). The reversibility λX of a general metric space (X, d) is defined

by λX := supx ̸=y
d(x,y)
d(y,x) .

A contractibility function ρ : [0, r) → [0,+∞) is a function satisfying: (a)

ρ(0) = 0, (b) ρ(ϵ) ≥ ϵ, (c) ρ(ϵ) → 0, as ϵ → 0, (d) ρ is nondecreasing. A general

metric space X is LGC(ρ) for some contractibility function ρ, if for every ϵ ∈ [0, r)

and x ∈ X, the forward ball B+
x (ϵ) is contractible inside B+

x (ρ(ϵ)).

Lemma 5.8 ([24]). Fix a function N : (0, α) → (0,∞) with

lim sup
ϵ→0+

ϵnN(ϵ) < ∞

and a contractibility function ρ : [0, r) → [0,∞). The class

C (N, ρ) := {X ∈ Mδ : X is LGC(ρ), Cov(X, ϵ) ≤ N(ϵ) for all ϵ ∈ (0, α)}

contains only finitely many homotopy types. Here, Mδ denotes the collection of

compact general metric spaces with reversibility ≤ δ and Cov(X; ϵ) denotes the

minimum number of forward ϵ-balls it takes to cover X.

Corollary 5.6 together with Lemma 5.8 yields the following

Theorem 5.9. For any n and positive numbers i, V , δ, the class of closed

Finsler n-manifolds (M,F ) with injectivity radius iM ≥ i, ΛF ≤ δ and µ(M)≤V ,

contains at most finitely many homotopy types. Here, µ(M) is either the Buse-

mann–Hausdorff volume or the Holmes–Thompson volume of M .

Proof. Let cM denote the contractibility radius of (M,F ) (cf. [24]). Since

cM ≥ iM ≥ i, (M,F ) is LGC(ρ), where ρ is the identity map of [0, i). Corollary 5.6

implies that µ(B+
p (ϵ)) ≥ C(n, δ)ϵn for all p ∈ M and ϵ < i/(1 +

√
δ ). It follows

from [20, Proposition 3.11] that

Cov(M, ϵ) ≤ µ(M)

C(n, δ)(ϵ/(2
√
δ))n

= C ′(n, δ, V )ϵ−n.

Define the covering function N(ϵ) := C ′(n, δ, V )ϵ−n, ϵ ∈ (0, i/(1 +
√
δ )). The

conclusion now follows from Lemma 5.8. �

One can easily see that Theorem 5.9 implies Yamaguchi’s finiteness theorem

[22] and [24, Theorem 1.3].
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6. Appendix

Proposition 6.1. Let (M,F, dµ) be a closed Finsler manifold. Then

I(M,dµ) ≤ S(M,dµ) ≤ 2I(M,dµ).

Proof. Fix Γ with µ(M1) ≤ µ(M2). Define a Lipschitz function f+
ϵ by

f+
ϵ (x) :=


1, x ∈ M1, d(Γ, x) ≥ ϵ,

1

ϵ
d(Γ, x), x ∈ M1, d(Γ, x) < ϵ,

0, x ∈ M2.

By letting ϵ → 0+, we obtain that

inf
α∈R

(∫
M

|f+
ϵ − α|

n
n−1 dµ

)n−1

≥ inf
α∈R

{
|1− α|

n
n−1µ(M1) + |α|

n
n−1µ(M2)

}n−1

≥ µ(M1)
n−1 inf

α∈R

{
|1− α|

n
n−1 + |α|

n
n−1
}n−1 ≥ µ(M1)

n−1/2.

Set ρ+(x) = d(Γ, x), x ∈ M1. Lemma 3.2 yields that ∇ρ+|Γ = n+, where n+

denotes the unit inward normal vector field along ∂M1 = Γ. By the co-area

formula (cf. [18, Theorem 3.3.1]), we see that∫
M

F ∗(df+
ϵ )dµ =

1

ϵ

∫ ϵ

0

dt

∫
ρ−1
+ (t)

dA+ → A+(Γ).

Hence, 2A+(Γ)
n ≥ S(M,dµ) · µ(M1)

n−1. Similarly, define a Lipschitz function

f−
ϵ by

f−
ϵ (x) :=


0, x ∈ M2, d(Γ, x) > ϵ

1

ϵ
d(Γ, x)− 1, x ∈ M2, d(Γ, x) ≤ ϵ,

−1, x ∈ M1.

Then one can show 2A−(Γ)
n ≥ S(M,dµ) · µ(M1)

n−1. Therefore, S(M,dµ) ≤
2I(M,dµ).

Given f ∈ C∞, let α0 be a median of f . Set M1 := {x : f(x) < α0} and

M2 := {x : f(x) > α0}. Then µ(Mi) ≤ µ(M)/2, for i = 1, 2. Let h := f −α0 and

hi := h|Mi ∈ C∞
c (Mi), i = 1, 2.
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We claim that ∫
M2

F ∗(dh2)dµ ≥ I(M2)
1
n ∥h2∥n/(n−1),

where I(Mi) is defined by

inf
Ω

min{A±(∂Ω)}n

µ(Ω)n−1
,

where Ω range over all open submanifolds of Mi with compact closures in Mi and

smooth boundary. Clearly, I(Mi) ̸= 0.

Set Mt := {x : h2(x) > t}. Since µ(Mt) is decreasing, we have

d

ds

(∫ s

0

µ(Mt)
n−1
n dt

) n
n−1

=
n

n− 1

(∫ s

0

µ(Mt)
n−1
n dt

) 1
n−1

µ(Ms)
n−1
n

≥ n

n− 1
s

1
n−1µ(Ms),

which implies (∫ s

0

µ(Mt)
n−1
n dt

) n
n−1

≥
∫ s

0

µ(Mt)dt
n

n−1 .

Note that ∇h2 is the inward normal vector field along ∂Mt. Thus,∫
M2

F ∗(dh2)dµ =

∫ ∞

0

A+(∂Mt)dt ≥ I(M2)
1
n

∫ ∞

0

µ(Mt)
n−1
n dt

≥ I(M2)
1
n

(∫ ∞

0

µ(Mt)dt
n

n−1

)n−1
n

= I(M2)
1
n

(
−
∫ ∞

0

t
n

n−1 dµ(Mt)

)n−1
n

= I(M2)
1
n

(∫ ∞

0

t
n

n−1 dt

∫
∂Mt

dA∇h2

F ∗(dh2)

)n−1
n

= I(M2)
1
n

(∫
M

h
n

n−1

2 dµ

)n−1
n

.

Likewise, one can show that
∫
M1

F ∗(dh1)dµ ≥ I(M1)
1
n ∥h1∥n/(n−1). Since µ(Mi) ≤

µ(M)/2, I(Mi) ≥ I(M,dµ). Let χi be the characteristic function of Mi, i = 1, 2.

Thus,∫
M

F ∗(df)dµ =

∫
M

F ∗(dh)dµ =
∑
j

∫
M

F ∗(d(χjf))dµ

≥ I(M,dµ)
1
n

∑
j

{∫
M

χj |f − α0|
n

n−1

}n−1
n

≥ I(M,dµ)
1
n ∥f − α0∥ n

n−1
≥ I(M,dµ)

1
n inf

α∈R
∥f − α∥ n

n−1
,

which implies that S(M,dµ) ≥ I(M,dµ). �
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