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Congruent spectrum for compact linear relations

By MOHAMED AYEDI (Sfax) and HAMADI BAKLOUTI (Sfax)

Abstract. This paper is a new investigation in the analysis of linear multivalued

operators. We introduce the class of congruent linear relations, and we develop the spec-

tral analysis associated with this class. Mainly, we characterize the congruent spectrum

for a compact linear relation on a Banach space. Also, we prove the closeness of some

classes of linear relations under compact perturbation.

1. Introduction

Throughout this paper E will denote a linear vector space. A multivalued

linear operator T on E is a mapping from a subspaceD(T ) of E, called the domain

of T , into the collection of non empty subsets of E, such that T (αx1 + βx2) =

αT (x1) + βT (x2) for all non zero scalars α, β ∈ C and x1, x2 ∈ D(T ). The

multivalued part of T is a linear subspace of E denoted by T (0). It is clear that

T is singlevalued if and only if T (0) = {0}. We use R(T ) := T (D(T )) for the

range of T . The subspace T−1(0) = {x ∈ E; T (x) = T (0)} is called the kernel of

T and is denoted by Ker(T ). T is said to be surjective if R(T ) = E, and is said

to be injective if Ker(T ) = {0}.
The graph of T is the linear subspace of E × E defined by

G(T ) = {(x, y) ∈ E × E; x ∈ D(T ), y ∈ T (x)}.

The inverse of T is the linear relation T−1 on E with D(T−1) = R(T ) given by

G(T−1) = {(y, x) ∈ E × E; (x, y) ∈ G(T )}.

Mathematics Subject Classification: 47A05, 47A06.
Key words and phrases: linear relation, congruent spectrum, Fredholm operator.



192 Mohamed Ayedi and Hamadi Baklouti

Let T and S be two linear relations on E. The sum of T and S is the linear

relation defined by

(T + S)(x) = T (x) + S(x) for all x ∈ D(T ) ∩D(S).

The composition ST is the linear relation defined by:

ST (x) = S(T (x)) for all x ∈ T−1(D(S)).

The algebraic resolvent set of T is defined as

ρ(T ) = {λ ∈ C; T − λI is injective and surjective},

where I denotes the identity operator on E.

Throughout the sequel, we shall be mostly interested in the everywhere de-

fined operators on E. We use the term “linear relation” to refer to a multivalued

linear operator, while the term “operator” refers to a singlevalued linear operator.

The concept of a linear relation goes back at least to R. Arens [8]. In the

last few years many papers have been interested in this theme. Fundamental

notions known for operators have been extended to the frame of linear relations.

Some related important results have been carried out in various contexts: Spectral

analysis (see [2], [4], [9]), classification (see [5], [13]), perturbation problem (see

[3], [6], [7], [11]), decomposition and functional calculus (see [1], [14], [15]). A

standard reference work in the field is the Cross’s book [10].

The interaction between the multivalued part and the kernel plays an im-

portant role in the theory of linear relations. In the present paper, we focus

on this fact. To that purpose, we introduce, in Section 2, some new notions

related to a linear relation. Let T be a linear relation on E and let s(T ) :=

dim(T (0)/(T (0) ∩ T−1(0))). We call upper (resp. lower) defect number of T , the

quantity s(T ) (resp. s(T−1)). A linear relation with equal defect numbers is said

to be congruent. We investigate in this section the class of congruent linear rela-

tions. Also, we introduce the spectrum associated with this class, called congruent

spectrum, and we present, in this context, a spectral mapping theorem.

Section 3 treats compact linear relations on a Banach space. We investigate

the structure of the set of such relations. Also, we describe the usual spectrum of

a compact linear relation. We show that the resolvent set of a non-singlevalued

compact relation is empty. As to a (singlevalued) compact operator, it’s well

known that the spectrum is at most countable, see for example ([12], Ch6 Theo-

rem 1.8). In Section 3.2 we present the main results of this paper. We characterize
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the congruent spectrum, introduced in Section 2, in the context of compact linear

relations. Note that in this section, it is assumed that T (0) is (topologically)

complemented in E. This condition is fulfilled in the context of a Hilbert space.

However, for the sake of completeness, the results are being presented in the gen-

eral context of a Banach space. In Section 4, we establish some stability results

in the set of closed range linear relations with finite lower defect number.

2. Defect numbers of linear relations

In this section, for special emphasis on the duality of T and its inverse T−1,

the notation T−1(0) is used instead of Ker(T ).

Definition 2.1. Let T be a linear relation on E and let

∆(T ) := T (0)/(T (0) ∩ T−1(0)).

(i) The upper defect number of T is defined by s(T ) := dim(∆(T )).

(ii) The lower defect number of T is defined as s(T−1).

(iii) The defect numbers are not necessarily finite, in which case they are defined

as ∞.

We list below some simple properties:

(1) If T is singlevalued, then s(T ) = 0.

(2) If T satisfies that T (0) ⊂ D(T ) and that T 2(0) = T (0), then T (0) ⊂ T−1(0)

and therefore ∆(T ) = {0}, which implies that s(T ) = 0.

(3) If T satisfies T (0) ∩ T−1(0) = {0}, then ∆(T ) = T (0), which implies that

s(T ) = dim(T (0)).

(4) ∆(T ) describes the position of T−1(0) with respect to T (0). Likewise, ∆(T−1)

describes the position of T (0) with respect to T−1(0).

(5) Let PT be the canonical projection on the quotient space E/(T (0)∩T−1(0)),

it is forward that s(T ) = dim(PT (T (0))).

Proposition 1. Let T and S be two linear relations on E.

(i) If S(T (0) ∩ T−1(0)) ⊂ T (0), then ∆(T + S) ⊂ ∆(T ).

(ii) Furthermore, if S(T (0)) ⊂ T (0), then ∆(T + S) = ∆(T ).
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Proof. At first observe that, S(0) ⊂ T (0) leads to (T + S)(0) = T (0).

In order to prove (i), let x ∈ T (0)∩T−1(0). Then (T +S)(x) = T (0)+S(x).

On the other hand, since S(T (0) ∩ T−1(0)) ⊂ T (0), it follows that S(x) ⊂ T (0),

and therefore that (T + S)(x) = T (0). Hence T (0)∩ T−1(0) ⊂ (T + S)−1(0). We

have thus proven (i).

To get (ii), all that remains to be proved is that ∆(T ) ⊂ ∆(T +S). Let x be

in T (0)∩ (T +S)−1(0). Then (T +S)(x) = (T +S)(0) = T (0). Also, the stability

property S(T (0)) ⊂ T (0) yields S(x) ⊂ T (0). Thus T (x) = T (0), which implies

that T (0) ∩ (T + S)−1(0) ⊂ T−1(0). �

Corollary 2.1. Let T be a linear relation on E and let λ ∈ C. Then

∆(T + λI) = ∆(T ), in particular, s(T + λI) = s(T ).

According to ([17], Lemma 6.1), if ρ(T ) ̸= ∅, then Tn(0)∩ (Tn)−1(0) = {0},
in which case ∆(Tn) = Tn(0). It follows from ([17], Lemma 5.1) that s(Tn) ≤
ns(T ). A further generalization is obtained in the following Proposition.

Proposition 2. Let T be a linear relation on E. Then s(Tn) ≤ ns(T ), for

every integer n.

Proof. Since Tn(0)/(Ker(Tn) ∩ Tn(0)) ⊂ Tn(0)/(Ker(T ) ∩ Tn(0)), it is

enough to prove that

dim(Tn(0)/(Ker(T ) ∩ Tn(0))) ≤ ns(T ). (1)

To do this, proceed by induction on n. The case n = 1 is obvious. Let n ≥ 1 and

suppose that (1) holds true. It is clear that

Tn+1(0)/(Ker(T ) ∩ Tn+1(0)) ⊂ Tn+1(0)/(Ker(T ) ∩ T (0)). (2)

Since dim(T (0)/(Ker(T ) ∩ T (0))) = s(T ), it follows that

dim(Tn+1(0)/(Ker(T ) ∩ T (0))) = dim(Tn+1(0)/T (0)) + s(T ). (3)

On the other hand, the map that assigns to each x̄ ∈ Tn(0)/(Ker(T )∩Tn(0)) the

class QTT (x) ∈ Tn+1(0)/T (0) is a vector space isomorphism. It follows from this

and the induction hypothesis (1), that

dim(Tn+1(0)/T (0)) = dim(Tn(0)/(Ker(T ) ∩ Tn(0))) ≤ ns(T ).

Combining this with the identity (3) yields the following inequality.

dim(Tn+1(0)/(Ker(T ) ∩ T (0))) ≤ (n+ 1)s(T ).

Finally, the inclusion (2) completes the proof. �
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In the following example, it is shown that the inequality in Proposition 2 is

optimal.

Example 1. Let T be an injective linear relation on E satisfying that T (0) =

vect{e1} for some non vanishing vector e1 ∈ E, so that s(T ) = 1. Construct a

sequence of linearly independent vectors of E, by considering T k(e1) = ek+1 +

T k(0). Notice that ek+1 is outside T k(0) since T k is injective. Thus Tn(0) =

vect{e1, e2, . . . , en}, and therefore s(Tn) = n = ns(T ).

Remark 2.1. Proposition 2 shows that s(Tn) is finite provided that s(T ) is

finite. However, s(T ) need not be finite even if s(Tn) is finite for some integer

n > 1. For instance, let E = E1⊕E2 where E1 and E2 are two infinite dimensional

subspaces of E. Consider the linear relation T defined on E as follows,

y = (y1, y2) ∈ T (x) for x = (x1, x2) ∈ E, if y2 = x1.

Then T (0) = E1, T
−1(0) = E2 and T 2(0) = E. Thus s(T 2) = 0, but s(T ) = ∞.

2.1. Congruent linear relations. Let linear relation T be such that T (0) and

T−1(0) are both finite dimensional. Then dim(T (0)) − dim(T−1(0)) = s(T ) −
s(T−1). On the other hand, to be injective, an operator T should satisfy

dim(T−1(0)) = dim(T (0)). These simple observations suggest to introduce the

notion of congruent linear relation.

Definition 2.2. A linear relation T on E is said to be congruent if s(T ) and

s(T−1) are both finite and s(T ) = s(T−1).

We list below some immediate properties

(1) T is congruent if and only if so is T−1.

(2) If T (0) ⊂ T−1(0)), then T is congruent if and only if T−1(0) = T (0).

(3) If dim(T (0))<∞ then T is congruent if and only if dim(T−1(0))= dim(T (0)).

(4) Congruent operators are those that are injective.

Observe that, for operators on a finite dimensional linear space, the surjec-

tivity and the injectivity are equivalent properties provided that the domain is

the whole space. The following two propositions make the connection between

the surjectivity and the congruent property for a linear relation.

Proposition 3. Let T be an everywhere defined linear relation on a finite

dimensional vector space E. Then T is congruent if and only if it is surjective.
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Proof. Since T is everywhere defined, it follows from ([17], Lemma 4.1),

that

dim(E) + dim(T (0)) = dim(R(T )) + dim((T−1(0))).

The result follows from the property (3) above. �

Proposition 4. Let T be an everywhere defined linear relation on E. As-

sume that T (0) has finite codimension. Then T is congruent if and only if it is

surjective.

Proof. Since T is everywhere defined, it follows from ([17], Lemma 3.1),

that

dim(E/T−1(0)) = dim(R(T )/T (0)) ≤ dim(E/T (0)).

Then T−1(0) and hence T (0) ∩ T−1(0) must have a finite codimension. This

implies that s(T ) and s(T−1) are both finite. On the other hand, according to

([17], Lemma 2.1),

dim(E/T (0) ∩ T−1(0)) = dim(E/T (0)) + dim(T (0)/T (0) ∩ T−1(0))

= dim(E/T−1(0)) + dim(T−1(0)/T (0) ∩ T−1(0)).

Then

s(T−1)− s(T ) = dim(E/T (0))− dim(E/T−1(0))

= dim(E/T (0))− dim(R(T )/T (0)) = dim(E/R(T )).

The last identity follows from ([17], Lemma 2.1). This completes the proof. �

Proposition 5. Let (Ti)i=1,...,k be a family of everywhere defined linear

relations from E onto itself. Assume that Ti(0) = Tj(0) and that Ti(0)∩Ker(Ti) =

Tj(0) ∩ Ker(Tj), for all 0 ≤ i, j ≤ k. If Ti is congruent for all i = 1, . . . , k then

T1T2 . . . Tk is congruent.

Proof. First observe that for all 1 ≤ i, j ≤ k,

s(Ti) = s(T−1
i ) = s(Tj) = s(T−1

j ) := s < ∞.

Then T1(0) decomposes as follows

T1(0) = T1(0) ∩Ker(T1)⊕ E1 with dim(E1) = s. (4)

Also, combining the identities T1(0) = T2(0) with T1(0) ∩ Ker(T1) = T2(0) ∩
Ker(T2) implies that E1 ∩ Ker(T2) = {0}. Since T2 is everywhere defined, it

follows by (4) that T2(T1(0)) = T2(0)⊕ E2, with dim(E2) = s. Thus

T2(T1(0)) = T1(0) ∩Ker(T1)⊕ E1 ⊕ E2.
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Likewise, since T1 is onto E, it follows that

T−1
1 (T−1

2 (0)) = T1(0) ∩Ker(T1)⊕ F1 ⊕ F2, with dim(F1) = dim(F2) = s.

The same procedure applied many times yields

TkTk−1 . . . T1(0) = T1(0) ∩Ker(T1)⊕ Ẽk with dim(Ẽk) = ks, and

T−1
1 T−1

2 . . . T−1
k (0) = T1(0) ∩Ker(T1)⊕ F̃k with dim(F̃k) = ks.

The result follows since dim(Ẽk) = dim(F̃k). �

Corollary 2.2. Let T be an everywhere defined congruent linear relation

onto E. Then Tn is congruent for all integer n.

2.2. Congruent spectrum.

Definition 2.3. The congruent resolvent set of T is defined by

ρs(T ) = {λ ∈ C such that λI − T is congruent and surjective}.

The congruent spectrum of T is defined as σs(T ) = C\ρs(T ).

Notice that for (singlevalued) operators, the congruent spectrum is nothing

but the usual spectrum (σ(T ) = C \ ρ(T )).

Theorem 2.3. Let T be an everywhere defined linear relation on E, and let

P (X) be a complex polynomial. Then

σs(P (T )) ⊂ P (σs(T )).

Proof. Let λ ∈ C be outside P (σs(T )). Then

P (X) =

k∏
i=1

(X − αi), with αi ∈ ρs(T ), ∀i = 1, . . . , k.

Consider the family of linear relations {Ti = T − αi, i = 1, . . . , k}. Then each Ti

is congruent linear relation from E onto itself. Moreover

Ti(0) = T (0) and Ti(0) ∩Ker(Ti) = T (0) ∩Ker(T ), for all i = 1, . . . , k.

It follows, from Proposition 5, that P (T ) − λ =
∏k

i=1 Ti is congruent. On the

other hand, since each Ti is surjective, the
∏k

i=1 Ti is surjective. This implies that

λ is outside σs(P (T )). �

The example in Remark 2.1 shows that the reverse inclusion fails to hold.
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3. Compact linear relation

Throughout this section E will denote a Banach space. A linear relation T on

E is naturally associated with the (singlevalued) linear operator QTT from E to

the quotient space E/T (0) defined by QTT (x) = ŷ, where ŷ := y + T (0) denotes

the class of some y ∈ T (x). The norm of T is defined as the operator norm

of QTT .

Definition 3.1. Let T be a linear relation on E. Then

(i) T is said to be bounded if D(T ) = E and ∥ T ∥< ∞. The set of all bounded

linear relations on E is denoted by BR(E).

(ii) T is said to be closed if G(T ) is closed. The set of all bounded and closed

relations on E is denoted by CR(E).

(iii) T is said to be compact if QTT is compact. The set of all bounded compact

relations on E is denoted by KR(E).

Notice that an everywhere defined linear relation, that is closed or compact,

is necessary bounded, see ([10], II.5.1, V.2.3). Also, it follows from ([10], II.1.7,

II.3.13) that BR(E) is an algebra.

Proposition 6. Let T and S be two linear relations on E.

(i) If T and S are both compact then so is T + S.

(ii) If S is bounded and T is compact then ST is compact.

(iii) KR(E) is a left-ideal of BR(E).

Proof. The statements (i) and (ii) follow from ([10], IV.2.12, V.2.2, V.2.11).

Consequently, (iii) follows immediately. �

Definition 3.2. A linear operator A is called a selection (or singlevalued part)

of a linear relation T if T = A + T − T and D(A) = D(T ). If A is a selection

of T , then for all x ∈ D(T ), Tx = Ax+ T (0).

Proposition 7. Let S be a linear relation with a bounded selection. If

T ∈ KR(E) then TS is compact.

Proof. Let A be a bounded selection of S. Then S = A + S − S, which

implies that TS = T (A+ S − S). Since T is everywhere defined, it follows from

([10], I.4.2) that TS = TA+ T (S −S). On one hand, since A is singlevalued and

bounded, it follows from ([10], V.2.12) that TA is compact. On the other hand,

observe that T (S−S) = TS−TS is compact. It follows from (Proposition 6, (i))

that TS = TA+ T (S − S), is compact. �
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Corollary 3.1. Let H be a Hilbert space. Then KR(H) is a two-sided ideal

of BR(H).

Proof. It follows from ([10], II.4.6) that each bounded linear relation has a

bounded selection. Hence, the result follows from Propositions 6 and 7. �

Lemma 3.2. Let A be a selection of a linear relation T on E. If A is compact

then T is compact.

Proof. The result follows easily from the identity T = A+ (T − T ) �

In general, a selection of a compact linear relation need not be compact. For

instance, let T be the relation defined on E by T (x) = E for all x ∈ D(T ). Every

linear operator on E with domain D(T ) is a selection of T .

3.1. Spectral analysis of compact relations. This section deals with linear

relations, on a Banach space E, that are everywhere defined and closed. Recall

that if T ∈ CR(E), then T (0) is closed. Also, as the algebraic resolvent, ρ(T ) =

{λ ∈ C; (λ − T )−1 is everywhere defined and singlevalued} is called the (usual)

resolvent set of T . The (usual) spectrum of T is the set σ(T ) = C \ ρ(T ).
Observe that: if T ∈ CR(E) and E is not isomorphic to E, the resolvent set

ρ(T ) = ∅. In particular, if dim(E) < ∞, then ρ(T ) = ∅, for every non-singlevalued

operator T ∈ CR(E). A. Sandovici et al present in [16] some structure theorems

for the spectrum of a linear relation on a finite-dimensional space. In this section,

we investigate the structure of some spectra of compact relations in CR(E). First,

recall the following

Definition 3.3. Let T be a linear operator from E into a Banach space F .

(1) T is said to be upper semi-Fredholm if R(T ) is closed and the nullity n(T ) :=

dim(Ker(T )) is finite;

(2) T is said to be lower semi-Fredholm if the deficiency d(T ) := codimR(T ) is

finite;

(3) T is said to be Fredholm if n(T ) and d(T ) are both finite. The index of T is

given by i(T ) := n(T )− d(T ).

A linear relation T ∈ CR(E) is said to be Φ, Φ+ and Φ−-relation, respectively, if

QTT is Fredholm, upper semi-Fredholm and lower semi-Fredholm. As usual, the

corresponding spectrum is defined respectively by:

σΦ,Φ+,Φ−(T ) = {λ ∈ C such that T − λI fails to be Φ,Φ+,Φ−-relation}.



200 Mohamed Ayedi and Hamadi Baklouti

According to ([18], Theorems 5.10, 5.22, 5.28), the class of Fredholm, upper

semi-Fredholm and lower semi-Fredholm bounded operators between two Banach

spaces is closed under compact perturbation, with stability of the index. Notice

that for upper (resp. lower) semi-Fredholm the index is assumed to be +∞ (resp.

−∞).

Theorem 3.3. Let T ∈ CR(E) be compact. Then

(1) ρ(T ) = ∅ if and only if T (0) ̸= {0}.
(2) σΦ−(T ) = {0}
(3) If T (0) is finite dimensional, then σΦ(T ) = {0}
(4) If T (0) is infinite dimensional, then σΦ(T ) = C.
(5) σΦ+(T ) = σΦ(T ).

Proof. For β ∈ C, consider the bounded operator Tβ = QT (βI − T ) from

E to E. If β ̸= 0 then

QT = − 1

β
Tβ +

1

β
QTT. (5)

To prove the first statement, suppose that there exists β ̸= 0 ∈ ρ(T ), so that Tβ is

invertible (injective and surjective). Since QTT is compact, it follows, by (5), that

QT is a Fredholm operator with null index (see [18], Theorem 5.10). On the other

hand QT is surjective, and therefore it is injective. Thus Ker(QT ) = T (0) = {0}.
We have thus proven the first statement.

Now, observe that QT is already lower semi-Fredholm. Moreover, QT is

upper semi-Fredholm if and only if dim(T (0)) < ∞. Thus, the other statements

follow immediately from (5). �

3.2. Congruent spectrum of compact relations. A well-known result of

functional analysis is that, the spectrum of a compact operator is at most count-

able. In the next theorem we characterize the congruent spectrum for compact

linear relation. We show, in this context, that compact linear relations in CR(E)

behave almost like compact operators. We shall need the following lemma.

Lemma 3.4. Let T be a linear relation on E satisfying that T (0) is closed

and complemented in E. Let E1 be a complement of T (0), that is a closed

subspace being so that E = T (0) ⊕ E1. Denote by P be the projection on E1

with kernel T (0).

Then HT := PQ−1
T is a bounded operator from E to E satisfying:

(i) HTQT = P .

(ii) QTHT = IE .
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(iii) If T (0) ⊂ Ker(T ), then QTTHT does not depend on the choice of the com-

plement of T (0).

Moreover, PT is a selection of T that is compact if so is T .

Proof. It is easy to check that HT is a bounded operator satisfying

HTQT = P and QTHT = IE . All that remains is to show (iii). Suppose that

T (0) ⊂ Ker(T ), and let E2 be a complement of T (0). Denote by P2 the projection

on E2 associated with the decomposition E = T (0)⊕E2. Consider GT : E → E :

x 7→ P2(x), so that GTQT = P2 and QTGT = IE . Hence

QTTGT = QTTPGT +QTT (I − P )GT = QTTHT +QTT (I − P )GT .

On the other hand, since R((I −P )GT ) ⊂ T (0) ⊂ Ker(T ), it follows immediately

that QTT (I − P )GT = 0, which implies that QTTGT = QTTHT . Hence, (iii)

has been shown.

Finally, it follows from ([10], I.5.2) that PT is a selection of T . Suppose

that T is compact. Since HT is bounded, it follows that PT = HTQTT is

compact. �
Theorem 3.5. Let T ∈ CR(E) be compact. Assume that T (0) ⊂ Ker(T )

and that T (0) is complemented in E. Then

(i) s((I − T )−1) is finite.

(ii) I − T is congruent if and only if it is surjective.

(iii) σs(T ) is countable.

(iv) If E is infinite dimensional, then 0 ∈ σs(T ).

Proof. (i) Let P and HT be as in Lemma 3.4. We first claim that

QT (Ker(I − T )) = Ker(QT (I − T )HT ). (6)

Let x = QT (x), for some x ∈ Ker(I−T ). Then QT (I−T )HTx = QT (I−T )P (x).

Since x−P (x) ∈ T (0) ⊂ Ker(T ), it follows that P (x) ∈ Ker(I−T ), which implies

thatQT (I−T )HTx = 0. We have thus proven the first inclusionQT (Ker(I−T )) ⊂
Ker(QT (I − T )HT ).

Conversely, let x = QT (x) for some x ∈ E be such that QT (I − T )HTx = 0.

Then QT (I − T )P (x) = 0, so that P (x) ∈ Ker(I − T ). Thus QT (P (x)) = x ∈
QT (Ker(I − T )). Hence, (6) is shown.

On the other hand,

QT (I − T )HT = IE −QTTHT . (7)

Since QTTHT is a compact (singlevalued) operator from E into itself, it follows

that Ker(QT (I − T )HT ) is finite dimensional. Then Ker(I − T )/T (0) has a finite
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dimension.

(ii) Since T (0) ⊂ Ker(T ), it follows that s(T ) = 0, and therefore s(I−T ) = 0.

Hence, I − T is congruent if and only if Ker(I − T ) = T (0). By this and (6) it

follows that:

I − T is congruent if and only if QT (I − T )HT is injective. (8)

If I − T is surjective, then so is QT (I − T ). Let y ∈ E, there exists x ∈ E such

that QT (I − T )x = y. On the other hand, HTx = P (x) and T (0) ⊂ Ker(I − T ).

Then QT (I−T )x = QT (I−T )P (x), which shows that QT (I−T )HT is surjective.

Conversely, if QT (I − T )HT is surjective, then so is QT (I − T ), which implies

that I − T is surjective. We have thus proven that:

I − T is surjective if and only if so is QT (I − T )HT . (9)

On the other hand, since QTTHT is compact, according to ([12], Ch 6, Proposi-

tion 1.6), it follows by (7) that:

QT (I − T )HT is surjective if and only if it is injective.

In combination with (9) and (8), the last assertion yields (ii).

(iii) Proceeding as above, it follows that:

λ ̸= 0 ∈ ρs(T ) if and only if λ ∈ ρ(QTTHT ).

Since QTTHT is a compact operator, the result follows from ([12], Ch 6, Theo-

rem 1.8.).

(iv) Suppose that 0 ∈ ρs(T ), so that QTTHT is invertible (injective and

surjective). Then IE is compact, and therefore E is finite dimensional. �

Proposition 8. Let T ∈ CR(E) be such that T (0) is complemented in E,

and let P be the associated projection with kernel T (0). Consider T̃ the relation

defined on E by T̃ (x) = PT (x) + T (0) ∩ T−1(0). Then T̃ ∈ CR(E) and satisfies

T̃ (0) ⊂ Ker(T̃ ). Moreover, if T is compact and s(T ) < ∞, then T̃ is a compact.

Proof. Since T is everywhere defined and closed, it follows that T (0) is

closed and that T is bounded, which implies that T̃ (0) = T (0)∩T−1(0) is closed.

Also, PT is bounded. Hence T̃ is closed.

Next we claim that Ker(T̃ ) = Ker(T ). To see this, let x ∈ Ker(T̃ ). Then

PTx ∈ T (0) ∩ T−1(0) ⊂ T (0). This implies that Tx = T (0) that is x ∈ Ker(T ).
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Conversely, let x ∈ Ker(T ). Then T (x) = T (0), so that PT (x) = 0, and therefore

x ∈ Ker(T̃ ). Hence our claim has been proved. Also, since T̃ (0) = T (0)∩T−1(0) ⊂
Ker(T ), it follows that T̃ (0) ⊂ Ker(T̃ ).

Suppose now that T is compact and that s(T ) < ∞. Let x̃ (resp x) denotes

the class of some x ∈ E in E/T̃ (0) (resp. E/T (0)). Consider S : E/T̃ (0) →
E/T (0) defined by S(x̃) = x. Then the operator S is surjective, and Ker(S)

is finite dimensional since s(T ) < ∞. Thus S is a Fredholm operator. Also,

QTT = SQT̃ T̃ . Therefore, since QTT is compact, it follows that QT̃ T̃ is compact,

that is T̃ is compact. �

Theorem 3.6. Let T ∈ CR(E) be compact. Assume that T (0) is comple-

mented in E and that s(T ) < ∞. Then:

(i) The range of I − T has a finite codimension.

(ii) σs(T ) is countable.

(iii) s((I − T )−1) is finite.

Proof. Since QT is surjective and QTT is compact, it follows that QT (I−T )

is lower semi-Fredholm (see [18], Theoremm 5.28). Then I − T is lower semi-

Fredholm (see [10], V.1.1). This completes the proof of (i).

Let P and T̃ be as defined in Proposition 8. According to Theorem 3.5,

σs(T̃ ) is countable. To prove (ii), it’s enough to show that σs(T ) ⊂ σs(T̃ ). Let

λ ̸= 0 ∈ ρs(T̃ ). If x ∈ Ker(λI − T ), then (λI − PT (x)) ∈ T (0). Consider Ψλ(x)

the class of (λI − PT )(x) in ∆(T ) = T (0)/T̃ (0). We claim that:

Ψλ : Ker(λI − T ) → ∆(T ) is surjective. (10)

Indeed, let y ∈ T (0), and denote by ȳ the class of y in ∆(T ). Since λ ̸= 0 ∈ ρs(T̃ ),

it follows by Theorem 3.5 that λI − T̃ is surjective. Then there exists x ∈ E such

that (λI − T̃ )x = y + T̃ (0). This implies that (λI − PT )x ∈ T (0), and therefore

(λI − T )x = T (0). Hence x ∈ Ker(λI − T ) satisfies Ψλ(x) = ȳ. We have thus

proven our claim. Furthermore:

Ker(Ψλ) = {x ∈ Ker(λI − T ) such that (λI − PT )x ∈ T̃ (0)}

= {x ∈ Ker(λI − T ) such that (λI − T̃ )x = T̃ (0)} = Ker(λI − T̃ ).

Then, it follows from (10) that:

dimKer(λI − T )/Ker(λI − T̃ ) = dim ∆(T ) = s(T ). (11)

On the other hand, T̃ (0) ⊂ Ker(T̃ ), and therefore s(T̃ ) = 0, which implies by

Corollary 2.1 that s(λI− T̃ ) = 0. Hence, since λ ∈ ρs(T̃ ) it follows that Ker(λI−
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T̃ ) = T̃ (0). Observing that T̃ (0) = T (0) ∩ T−1(0) = T (0) ∩ (λI − T )−1(0),

the identity (11) shows that λI − T is congruent. On the other hand, it follows

from (Theorem 3.5, (ii)) that λI − T̃ is surjective, and then so is λI − T . Thus

λ ∈ ρs(T ), and therefore ρs(T̃ ) ⊂ ρs(T ). Hence (ii) has been shown.

Turning to (iii), by equation (11), dim(Ker(I − T )/Ker(I − T̃ )) < ∞. On

the other hand, according to (Theorem 3.5, (i)), it follows that dim(Ker(I −
T̃ )/T̃ (0)) < ∞. Then s((I − T )−1) = dim(Ker(I − T )/T̃ (0)) is finite. �

Corollary 3.7. Let T ∈ CR(E) be compact. Assume that dim(T (0)) < ∞.

Then:

(i) 0 ∈ σs(T ).

(ii) Ker(I − T ) is finite dimensional.

(iii) R(I − T ) has finite codimension.

(iv) σs(T ) is countable.

4. Stability results

Observe that, by Proposition 1, if s(T ) is finite then so is s(T + K) for all

linear relation K satisfying K(T (0) ∩ T−1(0)) ⊂ T (0). In the following theorem

we get further important stability results.

Theorem 4.1. Let T and K be in CR(E). Assume that K is compact and

that K(T (0) ∩ T−1(0)) ⊂ T (0). Then, if T is closed range and s(T−1) is finite,

T +K is closed range and s((T +K)−1) is finite.

Proof. Let PT be the canonical projection on Ê := E/(T (0) ∩ T−1(0)),

and consider the operator T̂ = QTTP
−1
T : Ê → E. Then Ker(T̂ ) = PT (Ker(T )),

which implies that n(T̂ ) = s(T−1) is finite. Also, R(T̂ ) = R(QTT ) is closed

since T is closed range. Hence T̂ is an upper semi-Fredholm operator. On the

other hand, since K(T (0) ∩ T−1(0)) ⊂ T (0), the operator K̂ = QTKP−1
T : Ê →

E is singlevalued. Also K̂(BÊ(0, 1)) = QTK(BE(0, 1)), where BÊ(0, 1) (resp.

BE(0, 1)) denotes the unit ball of Ê (resp. E). According to Proposition 6, QTK

is compact, which implies that K̂ is compact. Since T and K are everywhere

defined, it follows from ([10], I.4.2) that QT (T+K)P−1
T = T̂+K̂. Now, since K̂ is

compact and T̂ is upper semi-Fredholm, T̂ +K̂ is also upper semi-Fredholm. This

implies that R(QT (T +K)) = R(T̂ +K̂) is closed, and then so is R(T +K). Also,

since T (0)∩T−1(0) ⊂ Ker(T +K), it follows that PT (Ker(T +K)) = Ker(T̂ +K̂),

which is finite dimensional. Hence s((T +K)−1) is finite. �
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The following lemma shall be used in the proof of next theorem.

Lemma 4.2. Let T be an upper semi-Fredholm operator between normed

vector spaces E and F , with negative index. There exists a finite rank operator

K such that T +K is injective closed range.

Proof. Write Ker(T ) = vect{e1, . . . , en(T )}, and E = Ker(T ) ⊕ E1. Since

d(T ) ≥ n(T ), there exits F1 = vect{f1, . . . , fn(T )} ⊂ F , with dim(F1) = n(T ),

such that F1 ∩ R(T ) = {0}. The finite rank operator K : E → F defined by

K(x) = 0 for all x ∈ E1 and K(ei) = fi, for i = 1, . . . , n(T ) provides an answer

for the lemma. �

Theorem 4.3. Let T ∈ CR(E).

(i) If s(T ) is finite, then there exists some compact linear operator K1 such that

s(T +K1) = 0.

(ii) Assume that T is closed range, s(T−1) is finite and that s(T−1) ≤ d(T ). Then

there exists some compact linear relation K2 ∈ CR(E) such that T +K2 is

closed range and s((T +K2)
−1) = 0.

(iii) Assume that T is closed range and that it is not lower semi-Fredholm. Then

if s(T ) and s(T−1) are finite, there exists some compact linear relation K ∈
CR(E) such that T +K is closed range and s(T +K) = s((T +K)−1) = 0.

Proof. Since s(T ) is finite, T (0) = T (0) ∩ T−1(0) ⊕ E1 for some subspace

E1 of E, with dim(E1) = s(T ) := s. Write E1 = vect{e1, . . . , es}, and consider

ui ∈ T (ei), i = 1, . . . , s. Let a finite rank operator K1 be such that, R(K1) =

vect{u1, . . . , us}, K1(ei) = −ui for each i, and K1(T (0) ∩ T−1(0)) = {0}. Then

(T +K1)(0) = T (0) ⊂ Ker(T +K1). This completes the proof of (i).

As to (ii), an argument similar to that given in the proof of Theorem 4.1,

shows that the operator T̂ = QTTP
−1
T : Ê → E is singlevalued upper semi-

Fredholm, with n(T̂ ) = s(T−1). Moreover, since R(T̂ ) = R(QTT ), it follows

immediately that d(T̂ ) = d(T ) ≤ s(T−1) = n(T̂ ). Hence, by Lemma 4.2, there

exists a finite rank operator K̂2 : Ê → E such that T̂ + K̂2 is injective. Consider

the compact linear relation K2 = Q−1
T K̂2PT . Observe that K2 is bounded and

that K2(0) = T (0) is closed, showing that K2 is closed. Also

K2(T (0) ∩ T−1(0)) = T (0). (12)

Since K̂2 = QTK2P
−1
T , it follows that PT (Ker(T +K2)) = Ker(T̂ + K̂2) = {0}.

Thus s((T + K2)
−1) = dim(PT (Ker(T + K2))) = 0. Finally, it follows from

Theorem 4.1 together with the identity (12), that T +K2 is closed range. Hence

(ii) has been proved.
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Turning to the proof of (iii). By (i), there exists a compact operator K1

such that s(T + K1) = 0. Since K1(T (0) ∩ T−1(0)) = {0} ⊂ T (0), and T is

closed range, it follows from Theorem 4.1 that T +K1 is closed range and that

s((T + K1)
−1) is finite. Moreover, T is not lower semi-Fredholm, so neither is

T +K1. Hence, by (ii), there is a compact linear relation K2 ∈ CR(E) such that

T +K1+K2 is closed range, and s((T +K1+K2)
−1) = 0. Since s(T +K1) = 0, it

follows immediately that (T +K1)(0) ⊂ Ker(T +K1). Hence, K2((T +K1)(0)) =

(T +K1)(0). It follows from Proposition 1 that s(T +K1 +K2) = 0. It is clear

that K := K1 +K2 ∈ CR(E). This completes the proof. �
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