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A Coincidence point theorem for densifying mappings

By M. S. KHAN (Al Khod, Oman) and K. P. R. RAO (Nuzvid, India)

Abstract. A common fixed point theorem for a new class of densifying map-
pings is obtained. Our result generalizes many previously known theorems and can be
regarded as an extension of Jungck’s fixed point theorem for densifying mappings.

1. Introduction

Using the fact that a fixed point of any mapping can be regarded as
a common fixed point of the mapping and the identity mapping, Jungck
[3] obtained a generalization of the celebrated Banach Contraction Prin-
ciple by replacing the identity mapping by a continuous mapping. In the
past few years, Jungck Contraction Principle has been extensively stud-
ied by many mathematicians for single-valued as well as for multi-valued
mappings in metric, 2-metric, Banach, uniform and probabilistic metric
spaces.

In this note, we intend to prove a generalization of Jungck’s fixed
point theorem for a class of densifying mappings, a notion introduced and
studied by Furi and Vignoli [2]. It is well-known that a contraction
mapping, completely continuous mappings and a number of others are
densifying. Also the results due to Furi and Vignoli [2] are more general
than a number of known results.

We remark that we are not aware of any research paper dealing with
the ideas presented here.

2. Preliminaries

Let (X, d) denote a metric space, and f be a mapping of X into itself.
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Definition 2.1. (Kuratowski [4]). Let A be a bounded subset of
X. Then α(A), the measure of non-compactness of A, is the infimum of
all ε > 0 such that A admits a finite covering consisting of subsets with
diameters less than ε.

The following properties of α are well-known:
(i) 0 ≤ α(A) ≤ δ(A), where δ(A) stands for the diameter of A.
(ii) α(A) = 0 =⇒ A is pre-compact.
(iii) α(A∪B) = max{α(A), α(B)} for bounded subsets A and B

of X,
(iv) A ⊂ B =⇒ α(A) ≤ α(B).

Definition 2.2. (Furi and Vignoli [2]). A continuous mapping f of
a metric space X into itself is said to be densifying, if for every bounded
subset A of X with α(A) > 0, we have α(f(A)) < α(A).

Definiton 2.3. (Sastry and Naidu [8]). A self-mapping f on a metric
space X is said to be nearly-densifying if α(f(A)) < α(A) for every f -
invariant and bounded subset A of X with α(A) > 0.

Definition 2.4. (Sastry and Naidu [8]). Let f, g and s be three self-
mappings on a metric space X, and S be the subsemigroup generated by
f, g and s in the semigroup of all self-mappings on X with composition
operation. Then for any x ∈ X, the orbit θ(x) at x is defined by

θ(x) = {y ∈ X : y = x or y = hx for some h ∈ S}.

3. Results

Throughout this section, X stands for a complete metric space, and
for some x0 ∈ X the orbit θ(x0) is assumed to be bounded.

Let F1, F2 : X × X → [0,∞) be such that either F1 or F2 is lower
semi-continuous, and further F1(x, x) = F2(x, x) = 0 for all x ∈ X.

The following is our main result.
Theorem 3.1. Let f, g and s be three continuous and nearly densi-

fying self-mappings on X such that s commutes with f and g. Suppose
that

(i) . . . F1(fx, gy) < max{F2(sx, sy), F2(sx, fx), F1(sy, gy),
{min{F2(sx, gy), F1(fx, sy)}} for sx 6= sy and fx 6= gy, and
also

(ii) . . . F2(gx, fy) < max{F1(sx, sy), F1(sx, gx), F2(sy, fy),
{min{F1(gx, sy), F2(sx, fy)}} for sx 6= sy and gx 6= fy.
Then f and s or g and s have a coincidence point provided
that θ(x0) is bounded for some x0 ∈ X.

Proof. Let x0 ∈ X such that θ(x0) is bounded. Put A = θ(x0).
Then

A = {x0} ∪ f(A) ∪ g(A) ∪ s(A).
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So

α(A) = max{α(f(A)), α(g(A)), α(s(A))}.

As f, g and s are nearly densifying mappings and X is complete, it follows
that Ā is compact. Let

B =
∞⋂

n=1

Sn(Ā).

Then as proved in Theorem 2 of Shih and Yeh [9], we can show that B is
a non-empty compact subset of Ā and s(B) = B.So s2(B) = B. Further,
it is clear that f(B) ⊂ B and g(B) ⊂ B. Now, assume that F1 is lower
semi-continuous. Define φ : B → [0,∞) by putting φ(x) = F1(sx, gx).
Then φ is a lower semi-continuous function on a compact set B and hence
attains its minimum value p ∈ B. Clearly, p ∈ s2(B). So there is a ω ∈ B
such that p = s2(ω). Suppose that neither f and s nor g and s have a
coincidence point. Then

φ(fg(w)) = F1(sfg(w), gfg(w)) = F1(fsg(w), gfg(w))

< max{F2(s2g(w), sfg(w)), F2(s2g(w), fsg(w)),

F1(sfg(w), gfg(w)), min{F2(s2g(w), gfg(w)), F1(fsg(w), sfg(w))}}
= F2(s2g(w), sfg(w)) (By (i))

= F2(gs2(w), fsg(w)) < max{F1(s3(w), s2g(w)), F1(s3(w), gs2(w)),

F2(s2g(w), fsg(w)), min{F1(gs2(w), s2g(w)), F2(s3(w), fsg(w))}}
= F1(s3(w), s2g(w)) (By (ii))

= F1(s(s2(w)), g(s2(w))) = F1(s(p), g(p)) = φ(p),

a contradiction to the choice of p. Hence f and s or g and s must have
a coincidence point. Similarly, when F2 is lower semi-continuous, we can
prove the existence of a coincidence point of f and s or g and s.

Theorem 3.2. Let f, g, s, F1 and F2 be as in the statement of Theorem
3.1. If z is a common coincidence point of f, g and s, then sz is a unique
common fixed point of f, g and s.

Proof. Given that z is a common coincidence point of f, g and s.
The fz = gz = sz. Using commutativity of s with f and g, we see that
f(sz) = s(fz) = s(sz) = s(gz) = g(sz). Now suppose that s2z 6= sz.
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Then

F1(s2z, sz) = F1(fsz, gz)

< max
{
F2(s2z, sz), F2(s2z, fsz), F1(sz, gz),

min{F2(s2z, gz), F1(fsz, sz)}}

= F2(s2z, sz) = F2(gsz, fz)

< max
{
F1(s2z, sz), F1(s2z, gsz), F2(sz, fz),

min{F1(gsz, sz), F2(s2z, fz)}}

= F1(s2z, sz),

which is a contradiction. Hence s2z = sz. Thus sz is a common fixed
point of f, g and s.

The unicity of a common fixed point follows from (i) and (ii). This
completes the proof.

Corollary 3.3. Let f, g and s be three continuous and nearly densi-
fying self-mappings on X such that s commutes with f and g. Suppose
that

(iii) . . . F1(fx, gy) < max{F2(sx, gy), F2(sx, fx), F1(sy, gy)}.
for sx 6= sy and fx 6= gy, and also

(iv) . . . F2(gx, fy) < max{F1(sx, sy), F1(sx, gy), F2(sy, fy)}.
for sx 6= sy and gx 6= fy. Then f, g and s have a unique
common fixed point.

Remark. Corollary 3.3 extends results due to Ray-Fisher [5],
Fisher-Khan [1], Ray-Chatterjee [6] and Singh [10].

Corollary 3.4. Let f, g and s be three continuous and nearly densi-
fying self-mappings on X such that s commutes with f and g. Suppose
that

F1(fx, gy) < F2(sx, sy),

for sx 6= sy and fx 6= gy, and also

F2(gx, fy) < F1(sx, sy),

for sx 6= sy and gx 6= fy. Then f, g and s have a unique common fixed
point.

Remark. For F1 = F2 and f = g, Corollary 3.4 can be regarded as an
extension of Jungck’s theorem [3] for denisfying mappings.

Finally, we state the following result which is motivated by the con-
traction condition given in Rhoades [7]. It can be proved using techniques
of Theorem 3.1.
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Theorem 3.5. Let f, g and s be three continuous and nearly densify-
ing self-mappings on X such that s commutes with f and g. Suppose that
the inequality

F (fx, gy) < max
{
F (sx, sy), F (sx, fy), F (sy, gy),
1
2 [F (sx, gy) + F (sy, fx)]

}
,

holds for sx 6= sy and fx 6= gy, where F : X×X → [0,∞) is a lower semi-
continuous symmetric function satisfying triangle inequality and F (x, x) =
0 for all x ∈ X. Then f, g and s have a unique common fixed point.

Example. Consider X = {0, 1} with the usual metric. Define f, g :
X → X as

f(0) = 0, g(0) = 1,

f(1) = 1, g(1) = 0.

Then d(fx, gy) < d(x, y), for x 6= y, fx 6= gy, because 0 6= 1 =⇒
d(f0, g1) = 0 < d(0, 1) = 1, and

1 6= 0 =⇒ d(f1, g0) = 0 < d(1, 0) = 1.

Clearly, fg = gf . But f and g have no common fixed point.

Thus in all results (except Theorem 3.2), we can just conclude that
either f and s or g and s have a coincidence point. In the above example
s is taken as the identity map on X.

Acknowledgement. Authors are grateful to the learned referee for sev-
eral useful comments which have improved the contents of the paper.
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