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Parallelism of normal Jacobi operator for real hypersurfaces
in complex two-plane Grassmannians

By IMSOON JEONG (Taegu) and YOUNG JIN SUH (Taegu)

Abstract. In this paper, we give a partial classification of D⊥-invariant real hy-

persurfaces in complex two-plane Grassmannians with Reeb parallel normal Jacobi op-

erator.

1. Introduction

The Jacobi fields along geodesics of a given Riemannian manifold (M̃, g̃)

satisfy a well-known differential equation. This classical differential equation nat-

urally inspires the so-called Jacobi operator. That is, if R̃ is the Riemannian cur-

vature tensor of M̃ , and X is any tangent vector field to M̃ , the Jacobi operator

with respect to X at p ∈ M̃ is defined by

(R̃XY )(p) = (R̃(Y,X)X)(p)

for any Y ∈ TpM̃ , becomes a self adjoint endomorphism of the tangent bundle

TM̃ of M̃ . Clearly, each tangent vector field X to M̃ provides a Jacobi operator

with respect to X.

In the geometry of real hypersurfaces in complex space forms or in quater-

nionic space forms there have been many characterizations of homogeneous hy-

persurfaces of type (A1), (A2), (B), (C), (D) and (E) in complex projective
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space CPn, of type (A0), (A1), (A2) and (B) in complex hyperbolic space CHn

or of type (A1), (A2) and (B) in quaternionic projective space HPn, which are

completely classified by Takagi ([14]), Cecil and Ryan ([6]), Kimura ([9]),

Montial and Romero ([11]) and Martinez and Pérez ([10]), respectively.

In quaternionic space forms Berndt ([2]) has introduced the notion of nor-

mal Jacobi operator

R̄N = R̄(X,N)N∈End TxM, x∈M

for real hypersurfaces M in a quaternionic projective space HPn or in a quater-

nionic hyperbolic space HHn, where R̄ denotes the Riemannian curvature ten-

sor of HPn and HHn respectively. The almost contact structure vector fields

{ξ1, ξ2, ξ3} are defined by ξi = −JiN , i = 1, 2, 3, where {J1, J2, J3} denote a

canonical local basis of quaternionic Kähler structure on HPn and N a unit nor-

mal vector field of M in HPn. He has also shown that the curvature adaptedness,

that is, the normal Jacobi operator R̄N commutes with the shape operator A,

is equivalent to the fact that the distributions D and D⊥ = span{ξ1, ξ2, ξ3}
are invariant by the shape operator A of M , that is, g(AD,D⊥) = 0, where

TxM = D⊕D⊥, x∈M . And he gave a complete classification of curvature adapted

real hypersurfaces in non-flat quaternionic space forms with the assumption of

constant principal curvatures in the hyperbolic case (See [2]).

Now let us consider a complex two-plane Grassmannian G2(Cm+2) which

consists of all complex two-dimensional linear subspaces in Cm+2. The ambient

space G2(Cm+2) has a remarkable geometric structure. It was known that the

complex two-plane Grassmannian G2(Cm+2) is the unique compact irreducible

Riemannian symmetric space equipped with both a Kähler structure J and a

quaternionic Kähler structure J. By using such kinds of two natural geomet-

ric structures, many geometers have investigated some characterizations for real

hypersurfaces in G2(Cm+2). Among them, Berndt and Suh ([4], [5]) and Suh

([13]) have shown some examples of two kinds of tubes, which said to be of type

(A) and of type (B), and have given a characterization of type (A) (resp. of type

(B)) by the isometric Reeb flow in [5](resp. contact hypersurfaces in [13]).

As one of examples Berndt and Suh [4] considered two natural geomet-

ric conditions for hypersurfaces in G2(Cm+2) that [ξ] = span{ξ} and D⊥ =

span{ξ1, ξ2, ξ3} are invariant under the shape operator. By using such conditions

and the result in Alekseevskii [1], they have proved the following

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.

Then both [ξ] and D⊥ are invariant under the shape operator of M if and only if
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(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in

G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(Cm+2).

The structure vector field ξ, ξ = −JN , of a real hypersurfaceM in G2(Cm+2)

is said to be a Reeb vector field. If the Reeb vector field ξ of a real hypersurface

M in G2(Cm+2) is invariant by the shape operator, M is said to be a Hopf

hypersurface. In such a case the integral curves of the Reeb vector field ξ are

geodesics (See [5]).

The Riemannian curvature tensor R̄(X,Y )Z for any tangent vector fields X,

Y and Z on G2(Cm+2) is explicitly defined in [3]. In a paper [12] due to Pérez,

Jeong and Suh, we have introduced a notion of normal Jacobi operator R̄N for

hypersurfaces M in G2(Cm+2) in such a way that

R̄NX = R̄(X,N)N∈End TxM, x∈M,

for any tangent vector field X on M , where R̄ and N respectively denote the

Riemannian curvature tensor and a unit normal vector field of M in G2(Cm+2).

Related to such a normal Jacobi operator R̄N , Jeong, Kim and Suh [7] obtained

a non-existence theorem for Hopf hypersurfaces in G2(Cm+2) with parallel normal

Jacobi operator, that is, (∇XR̄N )Y = 0, ∀X ∈ TM , where ∇ denotes the induced

Riemannian connection on M .

Motivated by this fact, in such a paper we consider more general notion of

parallelism weaker than the notion of parallel normal Jacobi operator. So we

consider a real hypersurface M in G2(Cm+2) with Reeb parallel normal Jacobi

operator, that is, ∇ξR̄N = 0. The normal Jacobi operator R̄N is said to be

Reeb parallel on M if the covariant derivative of the normal Jacobi operator R̄N

along the direction of the Reeb vector ξ identically vanishes, that is, ∇ξR̄N = 0.

Here the meaning of Reeb parallel normal Jacobi operator R̄N gives that every

eigenspaces of the normal Jacobi operator R̄N are parallel along the integral curve

γ of the Reeb vector field ξ in M . Here the eigenspaces of the normal Jacobi

operator R̄N are said to be parallel along the curve γ if they are invariant under

the parallel displacement along the curve γ in M .

Related to such a Reeb parallel normal Jacobi operator R̄N in section 3 we

prove an important theorem for D⊥-invariant real hypersurfaces in G2(Cm+2) as

follows:

Main Theorem. Let M be a D⊥-invariant real hypersurface in G2(Cm+2),

m≥3, with Reeb parallel normal Jacobi operator. If the distribution D and D⊥
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components of the Reeb vector field are eigenvectors of the shape operator at

every point, then M is locally congruent to an open part of a tube around a

totally geodesic G2(Cm+1) in G2(Cm+2) with radius r ∈ (0, π/
√
8 ).

As a corollary of this theorem, together with the result in [7], we may assert

the following

Corollary. There do not exist any connected D⊥-invariant real hypersur-

faces in G2(Cm+2), m≥3, with parallel normal Jacobi operator if the distribution

D and D⊥ components of the Reeb vector field are eigenvectors of the shape

operator at every point.

In the sequel we will use some notations as in [4] and [5].

2. Reeb parallel normal Jacobi operator

In this section we want to derive some formulas related to the Reeb parallel

normal Jacobi operator from the curvature tensor R̄(X,Y )Z of G2(Cm+2). More-

over, we will show whether the hypersurfaces of type (A) or (B) in Theorem A

have Reeb parallel normal Jacobi operator, that is, result mentioned in our main

theorem satisfy the assumption of Reeb parallel, that is, ∇ξR̄N = 0. From now,

unless otherwise stated, let us follow the notations such as η, ην , ϕ, and ϕν in [4],

[5], [7], [12] and [13].

Then first the normal Jacobi operator R̄N can be defined in such a way that

R̄N (X) = R̄(X,N)N = X + 3η(X)ξ + 3
∑3

ν=1
ην(X)ξν

−
∑3

ν=1

{
ην(ξ)(ϕνϕX − η(X)ξν)− ην(ϕX)ϕνξ

}
. (2.1)

We used these standard notations such as η, ην , ϕ, ϕν in (2.1). These were

used in [8]. Of course, we know that the normal Jacobi operator R̄N is a symmetric

endomorphism of TxM , x∈M([8], [12]).

A real hypersurface M in G2(Cm+2) with parallel normal Jacobi operator,

that is, ∇XR̄N = 0 for any tangent vector field X on M , satisfies the following

0 = (∇XR̄N )Y = 3g(ϕAX, Y )ξ + 3η(Y )ϕAX

+ 3
∑3

ν=1

{
g(ϕνAX,Y )ξν + ην(Y )ϕνAX

}
−
∑3

ν=1

[
2ην(ϕAX)(ϕνϕY − η(Y )ξν)− g(ϕνAX,ϕY )ϕνξ

− η(Y )ην(AX)ϕνξ − ην(ϕY )(ϕνϕAX − g(AX, ξ)ξν)
]
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(See [8]).

From this, by putting X = ξ and replacing Y by X, we have

0 = (∇ξR̄N )X = 3g(ϕAξ,X)ξ + 3η(X)ϕAξ

+ 3
∑3

ν=1

{
g(ϕνAξ,X)ξν + ην(X)ϕνAξ

}
−

∑3

ν=1

[
2ην(ϕAξ)(ϕνϕX − η(X)ξν)− g(ϕνAξ, ϕX)ϕνξ

− η(X)ην(Aξ)ϕνξ − ην(ϕX)(ϕνϕAξ − g(Aξ, ξ)ξν)
]

(2.2)

for any tangent vector field X on M in G2(Cm+2). And by putting X = ξ into

(2.2), we have

0 = (∇ξR̄N )ξ = 3ϕAξ + 5
∑3

ν=1
ην(ϕAξ)ξν

+ 3
∑3

ν=1
ην(ξ)ϕνAξ +

∑3

ν=1
ην(Aξ)ϕνξ. (2.3)

Now we check whether the normal Jacobi operator R̄N for hypersurfaces of

type (A) or of type (B) is Reeb parallel or not. By using (2.2), (2.3) and from

Proposition 3 in [4], we check for a tube over a totally geodesic G2(Cm+1) in

G2(Cm+2) whether it has Reeb parallel normal Jacobi operator or not as follows:

Case I : ξ = ξ1 ∈ Tα.

Then by (2.3) we have

(∇ξR̄N )ξ = 4α
∑3

ν=1
ην(ξ)ϕνξ = 4αϕ1ξ1 = 0.

Case II : ξ2, ξ3 ∈ Tβ .

Putting X = ξ2 into (2.2) and using ϕξ2 = −ξ3, ϕξ3 = ξ2, we have

(∇ξR̄N )ξ2 = 3
∑3

ν=1

{
g(ϕνAξ, ξ2)ξν + ην(ξ2)ϕνAξ

}
−
∑3

ν=1

{
− g(ϕνAξ, ϕξ2)ϕνξ + ην(ϕξ2)g(Aξ, ξ)ξν

}
= 3α(g(ϕ2ξ, ξ2)ξ2 + g(ϕ3ξ, ξ2)ξ3) + 3αϕ2ξ + αϕ2ξ + αξ3 = 0.

Similarly, by putting X = ξ3 into (2.2) we know that (∇ξR̄N )ξ3 = 0.

Case III : Xi ∈ Tλ, i = 1, . . . , 2(m− 1).

Then by Proposition 3 in [4] we know that the eigenspace Tλ has the property

that ϕX = ϕ1X for any X∈Tλ. Moreover, it is invariant by the structure tensor

ϕ, that is ϕTλ⊂Tλ. Because for any Xi∈D such that ϕXi = ϕ1Xi we have ϕϕXi =
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−Xi and ϕ1ϕXi = ϕ2
1Xi = −Xi. Then ϕϕXi = ϕ1ϕXi. So it follows that ϕXi∈Tλ.

From this, together with (2.2), we have (∇ξR̄N )Xi = 0, i = 1, . . . , 2(m− 1).

Case IV : Yi ∈ Tµ, i = 1, . . . , 2(m− 1).

The eigenspace Tµ has the property that ϕY = −ϕ1Y for any Y ∈Tµ. More-

over, such an eigenspace Tµ is ϕ-invariant, that is, ϕTµ⊂Tµ. In fact, suppose

Yi∈D such that ϕYi = −ϕ1Yi. Then ϕYi∈D and satisfies ϕϕYi = −Yi and

ϕ1ϕYi = −ϕ2
1Yi = Yi. So it follows that ϕYi∈Tµ. Then also by using (2.2)

we have (∇ξR̄N )Yi = 0, i = 1, . . . , 2(m− 1).

Then by these Cases I, II, III and IV we know that a real hypersurface of

type (A) in Theorem A has Reeb parallel normal Jacobi operator R̄N for ξ ∈ D⊥.

Next, we check whether the normal Jacobi operator R̄N for hypersurfaces of

type (B) is Reeb parallel or not. Now let us consider a unit eigenvector X ∈ Tβ

from Proposition 2 in [4]. In other words, we can substitute X = ξµ ∈ Tβ into

(2.2). Then it follows that

0 = (∇ξR̄N )ξµ = 3
∑3

ν=1

{
g(ϕνAξ, ξµ)ξν + ην(ξµ)ϕνAξ

}
+
∑3

ν=1
g(ϕνAξ, ϕξµ)ϕνξ = 4αϕµξ.

Since α = −2 tan(2r) is non zero for some r ∈ (0, π/4), we have ϕµξ = 0. But

g(ϕµξ, ϕµξ) = 1, which makes a contradiction. So we know that the normal Jacobi

operator R̄N for hypersurfaces of type (B) in G2(Cm+2) can not be Reeb parallel

when the Reeb vector ξ belongs to the distribution D.

3. Proof of Main Theorem

Now let us consider a real hypersurface M in G2(Cm+2) with Reeb parallel

normal Jacobi operator, that is, (∇ξR̄N )X = 0 for any tangent vector field X ∈
TM .

We assert the following

Lemma 3.1. Let M be a real hypersurface in G2(Cm+2), m ≥ 3, with Reeb

parallel normal Jacobi operator. If the distribution D and D⊥ components of the

Reeb vector field are eigenvectors of the shape operator at every point, then the

Reeb vector field ξ belongs to either the distribution D or the distribution D⊥.

Proof. Let us assume that ξ = η(X0)X0 + η(ξ1)ξ1 for some unit X0∈D,

non-zero functions η(X0) and η(ξ1).
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From this, together with formula (2.3), we have

0 = 3(η(X0)ϕAX0 + η(ξ1)ϕAξ1) + 5
∑3

ν=1
g(ξν , η(X0)ϕAX0

+ η(ξ1)ϕAξ1)ξν + 3η(ξ1)(η(X0)ϕ1AX0 + η(ξ1)ϕ1Aξ1)

+
∑3

ν=1
g(ξν , η(X0)AX0 + η(ξ1)Aξ1)ϕνξ. (3.1)

And we consider the distribution D and D⊥ components of the Reeb vector field

are eigenvectors of the shape operator at every point. Then this gives the following

AX0 = g(AX0, X0)X0, Aξ1 = g(Aξ1, ξ1)ξ1.

By using this in (3.1), we have

0 = 3{η(X0)g(AX0, X0)ϕX0 + η(ξ1)g(Aξ1, ξ1)ϕξ1}

+ 5
∑3

ν=1
g(ξν , η(X0)g(AX0, X0)ϕX0 + η(ξ1)g(Aξ1, ξ1)ϕξ1)ξν

+ 3η(ξ1)η(X0)g(AX0, X0)ϕ1X0 + η(ξ1)g(Aξ1, ξ1)ϕ1ξ.

From this, by the assumption of η(X0)η(ξ1) ̸= 0, we have

0 = g(Aξ1, ξ1)ϕ1X0,

where we have used the following

ϕξ1 = η(X0)ϕ1X0, ϕX0 = −η(ξ1)ϕ1X0, ην(ϕ1X0) = 0 (ν = 1, 2, 3).

So we assert that g(Aξ1, ξ1) = 0.

From this, we obtain the following

Aξ = η(X0)g(AX0, X0)X0.

So we put Aξ = σX0, where σ = η(X0)g(AX0, X0).

On the other hand, we may put X = X0 ∈ D in (2.2). Then we have the

following

0 = ση(X0)η(ξ1)ϕ1X0.

From this, it follows that σ = 0, where we have used the assumption of

η(X0)η(ξ1) ̸= 0. Then we say that the geodesic Reeb flow is vanishing, that is,

Aξ = 0.

Since M is Hopf, we can use the result due to Bernt and Suh (see [5], p. 92).

Then we have the following

0 =
∑3

ν=1
ην(ξ)ϕξν = η1(ξ)ϕξ1 = η(ξ1)η(X0)ϕ1X0.

We have ϕ1X0 = 0, where we have used the assumption of η(X0)η(ξ1) ̸= 0. This

makes a contradiction, so the result follows. �
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According to Lemma 3.1 we divide two cases such that ξ ∈ D or ξ ∈ D⊥.

First, we consider the case that ξ belongs to the distribution D⊥.

Lemma 3.2. Let M be a real hypersurface in G2(Cm+2), m ≥ 3, with Reeb

parallel normal Jacobi operator. If the Reeb vector ξ belongs to the distribution

D⊥, then M becomes a Hopf hypersurface.

Proof. Now let us consider the case ξ ∈ D⊥. So we may put ξ = ξ1. Then

we know that

ϕ2ξ = −ξ3, ϕ3ξ = ξ2, η2(ϕAξ) = η3(Aξ), η3(ϕAξ) = −η2(Aξ).

By using these formulas and together with (2.3) we get the following

0 = 3ϕAξ + 6η3(Aξ)ξ2 − 6η2(Aξ)ξ3 + 3ϕ1Aξ. (3.2)

From this, by taking an inner product with ξ3 and ξ2, respectively, we obtain the

following

η2(Aξ) = 0, η3(Aξ) = 0. (3.3)

Then substituting (3.3) into (3.2) implies

0 = ϕAξ + ϕ1Aξ.

From this, if we apply the structure tensor ϕ, we have

0 = −Aξ + η(Aξ)ξ + ϕϕ1Aξ. (3.4)

And we have

ϕϕ1Aξ=ϕ1ϕAξ=ϕ1∇ξξ= − (∇ξϕ1)ξ = q2(ξ)ξ2 + q3(ξ)ξ3 −Aξ+ η(Aξ)ξ. (3.5)

Now substituting (3.5) into (3.4), we have

0 = −2Aξ + 2η(Aξ)ξ + q2(ξ)ξ2 + q3(ξ)ξ3. (3.6)

On the other hand, by using assumption we have

∇ξξ = ∇ξξ1.

So we have

ϕAξ = q3(ξ)ξ2 − q2(ξ)ξ3 + ϕ1Aξ.

From this, by taking an inner product with ξ2 and ξ3, respectively, we obtain the

following

q3(ξ) = 2η3(Aξ), q2(ξ) = 2η2(Aξ).
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And by using this, together with formula (3.3) we have

q3(ξ) = 0, q2(ξ) = 0.

Then substituting these formulas into (3.6) gives

Aξ = η(Aξ)ξ.

This means that a real hypersurface M satisfying Reeb parallel normal Jacobi

operator and ξ ∈ D⊥ becomes a Hopf hypersurface in this case. �

Next in the latter case we consider that ξ belongs to the distribution D.

Lemma 3.3. Let M be a real hypersurface in G2(Cm+2), m ≥ 3, with Reeb

parallel normal Jacobi operator. If the Reeb vector ξ belongs to the distribution

D, then M becomes a Hopf hypersurface.

Proof. Now let us consider the case ξ ∈ D. Then by using (2.3) we have

0 = 3ϕAξ + 5
∑3

ν=1
ην(ϕAξ)ξν +

∑3

ν=1
ην(Aξ)ϕνξ. (3.7)

From this, by taking an inner product with ξµ, µ = 1, 2, 3, we have

ηµ(ϕAξ) = 0, µ = 1, 2, 3. (3.8)

By taking an inner product with ϕµξ, µ = 1, 2, 3, into (3.8), we have

ηµ(Aξ) = 0, µ = 1, 2, 3. (3.9)

Applying (3.8) and (3.9) into (3.7) gives

0 = ϕAξ.

From this, if we apply the structure tensor ϕ, we have

Aξ = η(Aξ)ξ.

This means that a real hypersurface M with Reeb parallel normal Jacobi operator

and ξ ∈ D becomes also a Hopf hypersurface. �

Remark. If M is a Hopf hypersurface in G2(Cm+2) and the Reeb vector field

ξ belongs to the distribution D⊥, the normal Jacobi operator R̄N becomes Reeb

parallel. Even in such a case the condition of Hopf does not give us any meaning

when we consider the Reeb parallel normal Jacobi operator. From such a point

of a view, instead of Hopf we have considered the notion of D⊥-invariant real

hypersurfaces in G2(Cm+2) in our Main Theorem.
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Then summing up Lemmas 3.1, 3.2, 3.3 and together with Theorem A ([4]),

we know that a D⊥-invariant real hypersurface in G2(Cm+2), m≥3, with Reeb

parallel normal Jacobi operator is locally congruent to of type (A) or of type (B)

if the distribution D and D⊥ components of the Reeb vector field are eigenvectors

of the shape operator at every point.

The converse part of our main result is checked in section 2, in which a

real hypersurface of type (A) in Theorem A satisfies Reeb parallel normal Jacobi

operator for ξ ∈ D⊥. But we can easily verify that the normal Jacobi operator

R̄N for hypersurfaces of type (B) in G2(Cm+2) can not be Reeb parallel for ξ ∈ D.

From this, we have completed the proof of our Main Theorem in the introduction.
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