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Integers with large practical component

By ANDREAS WEINGARTNER (Cedar City)

Abstract. A positive integer n is called practical if all integers between 1 and n

can be written as a sum of distinct divisors of n. We give an asymptotic estimate for

the number of integers ≤ x which have a practical divisor ≥ y.

1. Introduction

A positive integer n is called practical if all integers between 1 and n can

be written as a sum of distinct divisors of n. In 1948, Srinivasan [8] began

the study of practical numbers, which have been the source of a fair amount of

research activity ever since. Let P (x) denote the number of practical numbers

≤ x. Increasingly precise estimates for P (x) have been obtained by Erdős and

Loxton [2], Hausman and Shapiro [3], Margenstern [4], Tenenbaum [10]

and Saias [6], who found that the order of magnitude of P (x) is x/ log x. In [12]

we showed that there is a positive constant c such that

P (x) =
cx

log x

(
1 +O

(
log log x

log x

))
, (1)

confirming a conjecture by Margenstern [4]. In this note we want to generalize

(1) to integers which have a large practical divisor.

Let g(n) denote the practical component of n, i.e. the largest divisor of n

which is practical. We have g(n) = n if and only if n is practical, hence we can

think of g(n) as a measure for how close n is to being practical. Let M(x, y) be
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the number of integers ≤ x whose practical component is at least y, i.e.

M(x, y) := #{n ≤ x : g(n) ≥ y}.

A closely related arithmetic function is f(n), the largest integer with the

property that all integers in the interval [1, f(n)] can be written as a sum of

distinct divisors of n. Clearly, n is practical if and only if f(n) ≥ n. Thus f(n)

represents another measure for how close n is to being practical. Pollack and

Thompson [5] call an integer n a practical pretender (or a near-practical number)

if f(n) is large. More precisely, they define

N(x, y) := #{n ≤ x : f(n) ≥ y}

and show that there are two positive constants c1, c2 such that

c1
x

log y
≤ N(x, y) ≤ c2

x

log y
(4 ≤ y ≤ x).

In [5, Lemma 2.1] they find that f(n) satisfies f(n) = σ(g(n)), where σ(m)

denotes the sum of the positive divisors of m.

To describe the asymptotic behavior of M(x, y) and N(x, y) we need the

following notation. Let c be the positive constant in (1), χ(n) be the characteristic

function of the set of practical numbers,

u =
log x

log y
,

and ω(u) be Buchstab’s function, i.e. the unique continuous solution to the

equation

(uω(u))′ = ω(u− 1) (u > 2)

with initial condition ω(u) = 1/u for 1 ≤ u ≤ 2.

Theorem 1. For x ≥ y ≥ 2 we have

(i) M(x, y) = c(xω(u)−y)
log y +O

(
x log log 2y
(log y)2

)
,

(ii) N(x, y) = cxω(u)
log y +O

(
y

log y + x log log 2y
(log y)2

)
,

(iii) M(x, y) = xµy +O(2y),

(iv) N(x, y) = xνy +O(2y),

where

µy := 1−
∑
n<y

χ(n)

n

∏
p≤σ(n)+1

(
1− 1

p

)
and

νy := 1−
∑

σ(n)<y

χ(n)

n

∏
p≤σ(n)+1

(
1− 1

p

)
.
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It may seem a little surprising to see Buchstab’s function appear in the as-

ymptotic formulas for M(x, y) and N(x, y). The reason for this is that M(x, y)

and N(x, y) satisfy functional equations (see Lemma 1 below) which closely re-

semble the functional equation

Φ(x, y) = 1 +
∑

y<p≤x

Φ(x/p, p− 0) (2)

satisfied by

Φ(x, y) := #{n ≤ x : P−(n) > y}.

Here P−(n) denotes the smallest prime factor of n and P−(1) = ∞. The main

difference is that the primes in (2) are replaced by the practical numbers in Lem-

ma 1, which explains the constant factor c in Theorem 1. With Lemma 2 (ii) we

find that M(x, y) ∼ cΦ(x, y) for y ≤ (1− ε)x and y → ∞.

Moreover, combining (1), Theorem 1, Lemma 2 and the prime number the-

orem, we have

P (x)

M(x, y)
∼ π(x)

Φ(x, y)
∼ 1

uω(u)
(y → ∞, x/y → ∞).

Hence the probability that a random integer n≤x is practical, given that g(n)≥ y,

is asymptotically equivalent to the probability that a random integer n ≤ x is

prime, given that P−(n) > y, as y → ∞, x/y → ∞.

The rapid convergence of ω(u) to e−γ (see Lemma 3 (ii)) and Theorem 1

imply that, for x ≥ y ≥ 2,

M(x, y), N(x, y) =
ce−γx

log y

(
1 +O

(
1

Γ(u+ 1)
+

log log 2y

log y

))
, (3)

where Γ denotes the usual gamma function. Combining (3) with (iii) and (iv)

gives the estimate

µy, νy =
ce−γ

log y

(
1 +O

(
log log y

log y

))
.

The following table shows µy = limx→∞ M(x, y)/x and νy = limx→∞ N(x, y)/x

for small values of y:

y ∈ µy

[0, 1] 1

(1, 2] 1/2

(2, 4] 1/3

(4, 6] 29/105

y ∈ νy
[0, 1] 1

(1, 3] 1/2

(3, 7] 1/3

(7, 12] 29/105
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From part (iii) of Theorem 1 we obtain the natural density of integers whose

practical component is equal to m.

Corollary 1. Let m ≥ 1 and

αm := µm − µm+ =
χ(m)

m

∏
p≤σ(m)+1

(
1− 1

p

)
.

For x ≥ 1 we have #{n ≤ x : g(n) = m} = xαm +O(2m).

Pollack and Thompson [5, Corollary 1.2] found that the set of integers n with

f(n) = m has a natural density ρm. Part (iv) of Theorem 1 implies

Corollary 2. Let m ≥ 1 and

ρm := νm − νm+ =
∑

σ(n)=m

χ(n)

n

∏
p≤σ(n)+1

(
1− 1

p

)
=

∑
σ(n)=m

αn.

For x ≥ 1 we have #{n ≤ x : f(n) = m} = xρm +O(2m).

The following table shows non-zero values of αm and ρm for small m. Note

that αm > 0 if and only if m is practical, while ρm > 0 if and only if m = σ(n)

for some practical number n.

m αm

1 1/2

2 1/6

4 2/35

6 32/1001

m ρm
1 1/2

3 1/6

7 2/35

12 32/1001

The equality of αm and ρσ(m) does not always hold. For example, since

σ(54) = σ(56) = 120 and both 54 and 56 are practical, we have ρ120 = α54 +α56.

Moreover, Pollack and Thompson [5, Theorem 1.3] show that the number of

integers m ≤ x for which ρm > 0 is ≪ x
(log x)A

for every fixed A > 0. Thus the

support of ρm is a much thinner set than the support of αm, the set of practical

numbers.

The reader may have noticed that practical integers n < y are not counted in

M(x, y). This suggests that we may want to consider replacing the parameter y

by an increasing function of n, so that smaller values of n are not ignored. To

this end, we define

Mλ(x) := #{n ≤ x : g(n) ≥ nλ}, Nλ(x) := #{n ≤ x : f(n) ≥ nλ}.
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Nevertheless, the following result shows that, for xλ → ∞, x1−λ → ∞,

Mλ(x) ∼ M(x, xλ) ∼ Nλ(x) ∼ N(x, xλ) ∼ cxω(1/λ)

log(xλ)
.

Corollary 3. For x ≥ y ≥ 2 we have

(i) M1/u(x) =
cxω(u)
log y +O

(
x log log 2y
(log y)2

)
,

(ii) N1/u(x) =
cxω(u)
log y +O

(
y

log y + x log log 2y
(log y)2

)
.

2. Proofs

Stewart [9] and Sierpinski [7] independently discovered the following char-

acterization of practical numbers. An integer n ≥ 2 with prime factorization

n = pα1
1 · · · pαk

k , p1 < p2 < . . . < pk, is practical if and only if

pj ≤ 1 + σ

( ∏
1≤i≤j−1

pαi
i

)
(1 ≤ j ≤ k).

It follows that the practical component of n is the largest practical divisor of n

of the form
∏

1≤i≤j p
αi
i . If j < k, i.e. n is not practical, then we have pj+1 >

1 + σ
(∏

1≤i≤j p
αi
i

)
.

Lemma 1. For x ≥ 1, y ≥ 1 we have

(i) [x] =
∑
n≤x

χ(n)Φ(x/n, σ(n) + 1)

(ii) M(x, y) =
∑

y≤n≤x

χ(n)Φ(x/n, σ(n) + 1)

(iii) N(x, y) =
∑
n≤x

σ(n)≥y

χ(n)Φ(x/n, σ(n) + 1)

(iv) Mλ(x) =
∑
n≤x

χ(n)Φ(min(x/n, n1/λ−1), σ(n) + 1)

(v) Nλ(x) =
∑
n≤x

χ(n)Φ(min(x/n, σ(n)1/λ/n), σ(n) + 1)

Proof. Each of these equations is based on the same principle, which is to

count the integers m contributing to the left-hand side according to their practical

component n. Part (i) is Lemma 2.3 of [12]. We only take a closer look at (ii).

Every integer m counted in M(x, y) factors uniquely as m = nr, where n is the

practical component of m, n ≥ y and P−(r) > σ(n) + 1. Given a practical com-

ponent n, the number of admissible values of r is given by Φ
(
x/n, σ(n) + 1

)
. �
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Lemma 2. We have

(i) Φ(x, y) = x
∏

p≤y

(
1− 1

p

)
+O

(
2π(y)

)
(x ≥ 1, y ≥ 2)

(ii) Φ(x, y) = xω(u)−y
log y +O

(
x

(log y)2

)
(x ≥ y ≥ 2)

(iii) Φ(x, y) = xω(u)
log y +O

(
y

log y + x
(log y)2

)
(x ≥ 1, y ≥ 2)

(iv) Φ(x, y)− 1 ≪ x
log y (x ≥ 1, y ≥ 2)

Proof. Part (i) is elementary (see e.g. de Bruijn [1]). For (ii) see Tenen-

baum [11, Theorem III.6.3]. Parts (iii) and (iv) follow easily from (ii). �

Lemma 3. We have

(i) |ω′(u)| ≤ 1/Γ(u+ 1) (u ≥ 1)

(ii) |ω(u)− e−γ | ≪ 1/Γ(u+ 1) (u ≥ 1)

Proof. See Tenenbaum [11, Theorems III.5.5, III.6.4]. �

In the proof of Theorem 1 we will use the well-known fact (see for example

[11, Theorem I.5.5]) lim supn→∞ σ(n)/(n log log n) = eγ .

Proof of Theorem 1. (i) We use Lemma 1(ii). If
√
x < y ≤ x, then

M(x, y) = P (x) − P (y − 0) because Φ(x, y) = 1 for y ≥ x ≥ 1. Thus the result

follows from (1) in this case. If y ≤
√
x we have

M(x, y) = P (x)− P (
√
x) +

∑
y≤n≤

√
x

χ(n)Φ
(
x/n, σ(n) + 1

)
.

We approximate Φ by Lemma 2(iii). The contribution from the error term

O(x/(log y)2) is ∑
y≤n≤

√
x

χ(n)
x/n

(log n)2
≪ x

(log y)2
,

and from the error term O(y/ log y) it is

∑
y≤n≤

√
x

χ(n)
σ(n) + 1

log(σ(n) + 1)
≪

√
x log log x

log x

∑
y≤n≤

√
x

χ(n) ≪ x log log 2x

(log x)2
,

which is acceptable. The contribution from the main term is

x
∑

y≤n≤
√
x

χ(n)

n log(σ(n) + 1)
ω

(
log x/n

log(σ(n) + 1)

)
.
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In the last sum, we replace the two occurrences of log(σ(n) + 1) by log n +

O(log log log(8n)). Lemma 3 and (1) show that the resulting error is

≪ x(log log 2y)/(log y)2. We thus have

M(x, y) = P (x) + x
∑

y≤n≤
√
x

χ(n)

n log n
ω

(
log x

log n
− 1

)
+O

(
x log log 2y

(log y)2

)
.

Partial summation together with the estimates in Lemma 3 and (1) yields

M(x, y) = P (x) + x

∫ √
x

y

c

t(log t)2
ω

(
log x

log t
− 1

)
dt+O

(
x log log 2y

(log y)2

)
.

The term with the integral simplifies to

cx

log x

∫ u

2

ω(s− 1) ds =
cx

log x
(uω(u)− 1) .

The result now follows from (1).

(ii) Lemma 1 shows that

0 ≤ N(x, y)−M(x, y) =
∑
n<y

σ(n)≥y

χ(n)Φ
(
x/n, σ(n) + 1

)
≤

∑
y

A log log 2y<n<y

χ(n)Φ
(
x/n, σ(n) + 1

)
,

for some suitable constant A. Splitting the range by powers of 2 and using the

estimate (1) and Lemma 2 (iv), the last sum is

≪ P (y) +
∑

y
A log log 2y<n<y

x

n(log n)2
≪ y

log y
+

x log log 2y

(log y)2
.

Hence (ii) follows from (i).

(iii) From Lemmas 1 and 2 we have

[x]−M(x, y) =
∑
n<y

χ(n)Φ
(
x/n, σ(n) + 1

)
=

∑
n<y

χ(n)

(
x

n

∏
p≤σ(n)+1

(
1− 1

p

)

+O

(
2π(σ(n)+1)

))
= x(1− µy) +O

(∑
n<y

2π(σ(n)+1)

)
= x(1− µy) +O

(
2(1+o(1))eγy log log y/ log y

)
,

since σ(n) ≤ (1 + o(1))eγn log log n and π(y) ≤ (1 + o(1))y/ log y.

We omit the proof of (iv), since it is almost the same as that of (iii). �
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Proof of Corollary 3. (i) From Lemma 1 and Lemma 2 (iv) we have,

with λ = 1/u,

Mλ(x)−M(x, xλ) =
∑
n<xλ

χ(n)Φ

(
n1/λ−1, σ(n) + 1

)

= P (y) +O

(∑
n≤y

χ(n)
nu−1

log 2n

)
= P (y) +O

(
x

(log y)2

)
,

by partial summation. The result now follows from Theorem 1 and (1). The

proof of (ii) follows the same idea. In the end we need an estimate for

∑
σ(n)<y

χ(n)
σ(n)u

n log 2n
.

We split this sum into two parts. The contribution from large n is

≤
∑

y

A(log y)3
<n<y

χ(n)
yu

n log 2n
≪

∑
y

A(log y)3
<n<y

x

n(log 2n)2
≪ x log log y

(log y)2
,

where A is a positive constant such that σ(n) ≤ y
(log y)2 whenever n ≤ y

A(log y)3

and y ≥ 2. The contribution from small n is

≤
∑

n≤ y

A(log y)3

χ(n)
(y(log y)−2)u

n log 2n
≪ x

(log y)2

∑
n≥1

1

n(log 2n)2
≪ x

(log y)2
. �
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