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On a generalized functional equation of Abel

By MACIEJ SABLIK (Katowice)

Abstract. We present some results concerning the following generalization of a
functional equation of Abel

ψ (xf(y) + yg(x)) = ϕ(x) + ϕ(y).

With f = g we get the original Abel’s equation that was mentioned explixitly by
D. Hilbert in the second part of his fifth problem. The present generalization implies
many applications in the theory of functional equations, particularly those dealing with
determination of parametrized subsemigroups. We solve the equation in the class of
continuous real functions defined in an interval containing 0.

1. Introduction

In the second part of his fifth problem D. Hilbert (cf. [13]) dealt
with functional equations, usually investigated only under the assumption
of the differentiability of functions involved, and asked the following: In
how far are the assertions which we can make in the case of differentiable
functions true under proper modifications without this assumption? In
particular, Hilbert mentioned explicitly the following equation

(A) ψ (xf(y) + yf(x)) = ϕ(x) + ϕ(y)

which was considered by N. Abel (cf. [1]). Hilbert’s question was re-
called by J. Aczél during the Twenty-fifth International Symposium on
Functional Equations in 1987 (see [2] and [3]). In our papers [15], [17]
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and [18] we gave a complete answer to Hilbert’s question, as it was posed.
Namely we determined all triples (ψ, f, ϕ) of real-valued continuous func-
tions satisfying (1) for all x, y from a real interval. We have also shown
that continuity assumption can be relaxed.

2. Generalized equation of Abel

In the present paper we shall consider the functional equation

(2.1) ψ(xf(y) + yg(x)) = ϕ(x) + ϕ(y)

which at first glance is not that much different from the original equation
of Abel but it has applications hardly available if we assume f = g.

All the functions ψ, f , g and ϕ are unknown. We assume that f ,
g and ϕ map a real interval I (also to be determined) into R. We shall
also admit that 0 ∈ I. Let us define functions Af,g : I × I → R and
Bf,g : I → R by

Af,g(x, y) = xf(y) + yg(x)

and

Bf,g(x) = Af,g(x, x).

Of course the function ψ is supposed to be defined in Af,g(I × I). In the
sequel we shall determine all quadruples (ψ, f, g, ϕ) of continuous functions
which satisfy (2.1).

Let us begin with some simple observations which lead to a reduction
of the problem. Suppose that (ψ, f, g, ϕ) is a quadruple of continuous
functions satisfying (2.1). If we put x = y = 0 into (2.1) we see that
ψ(0) = 2ϕ(0). Consequently, putting y = 0 into (2.1) we get the following
formula for ϕ

ϕ(x) = ψ(xf(0))− 1
2ψ(0).

If we define ψ1 by ψ1(u) = ψ(u)−ψ(0) then we easily check that ψ1(0) = 0
and

(2.2) ψ1(Af,g(x, y)) = ψ1(xf(0)) + ψ1(yf(0)).

To solve (2.2) let us consider the case f(0) = 0 first. Then ψ1 = 0,
which means that ψ is constant. The functions f and g may be arbitrary
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(except that f(0) = 0), and ϕ = 1
2ψ. An analogous argument shows that

if g(0) = 0 then ψ is constant, f and g may be arbitrary (with g(0) = 0),
and ϕ = 1

2ψ.
In what follows we shall assume therefore that f(0) 6= 0 6= g(0). Let

us define F,G : I → R by

F (x) =
f(x)
f(0)

, and G(x) =
g(x)
f(0)

,

and Ψ : AF,G(I × I) → R by

Ψ(u) = ψ1(uf(0)).

Let us note that if u = xF (y) + yG(x) for some x, y ∈ I then uf(0) ∈
Af,g(I×I) which means that the above definition of Ψ is correct. From (2.2)
we derive the following equation

(2.3) Ψ(xF (y) + yG(x)) = Ψ(x) + Ψ(y)

for functions Ψ, F and G. Moreover, it is sufficient to look for solutions
of (2.3) satisfying

(∗) Ψ(0) = 0, F (0) = 1 and G(0) 6= 0.

The above condition which implies in particular that

I = AF,G(I × {0}) ⊂ AF,G(I × I),

will be assumed in sequel.
Further consideration is divided into two parts. The first one deals

with the situation where Ψ does not vanish outside zero, the second one
treats the remaining case in which some nondifferentiable solutions of (2.3),
and hence of (2.1), come up.

A. Let us assume that Ψ(u) 6= 0 if u 6= 0. Under this assumption we
get the following



32 Maciej Sablik

Lemma 2.1. If (Ψ, F, G) is a continuous solution of (2.3) then

(i) F (x) + G(x) 6= 1 for every x ∈ I,

(ii) F (x) + G(x) 6= 0 for every x ∈ I \ {0}.
Proof. If F (x) + G(x) = 1 for some x ∈ I then in view of (2.3) we

have Ψ(x) = 0, and hence x = 0. But F (0) + G(0) = 1 + G(0) 6= 1. Next,
if F (x) + G(x) = 0 for some x ∈ I then (2.3) implies Ψ(x) = 0 and hence
x = 0. ¤

In view of the above lemma only the following three cases can occur
if I+ 6= ∅ (I− 6= ∅)
α) F (x) + G(x) ∈ (0, 1) for every x ∈ I+ (x ∈ I−);

β) F (x) + G(x) < 0 for every x ∈ I+ (x ∈ I−);

γ) F (x) + G(x) > 1 for every x ∈ I+ (x ∈ I−).

Let us show that neither α) nor β) is posssible. We will show it for
I+, the remaining case is analogous. If α) holds then

(2.4) 0 < BF,G(x) < x, x ∈ I+.

From (2.3) we derive

Ψ(x) =
1
2
Ψ(BF,G(x))

for every x ∈ I+ whence by induction

Ψ(x) =
1
2n

Ψ(Bn
F,G(x))

for every n ∈ N and x ∈ I+. Hence by (2.4) and continuity of Ψ we get
Ψ(x) = 0, contrary to our general assumption in the present case.

Similarly, if β) holds then for every x ∈ I+ we get

AF,G(x, 0) = x > 0 > AF,G(x, x)

whence AF,G(x, y) = 0 for a y ∈ (0, x). Applying (2.3) we get

Ψ(x) + Ψ(y) = Ψ(0) = 0

which implies that Ψ changes the sign in I+, again impossible in the case A.
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Thus γ) holds in I+ and I− which together with continuity of F and
G yields

(2.5) F (x) + G(x) > 1

for every x ∈ I which in particular implies that

(2.6)
BF,G(x)

x
> 1 for every x 6= 0.

Let us prove now

Lemma 2.2. If I+ 6= ∅ 6= I− then sgnΨ | I+ 6= sgnΨ | I−.

Proof. Since AF,G is continuous and vanishes at (0, 0) there exists
an interval J ⊂ I such that 0 ∈ J and AF,G(J × J) ⊂ I. Let x ∈ J−
and y ∈ J+. Suppose that AF,G(x, y) > 0. Then in view of (2.6) we
get AF,G(x, z) = 0 for a z ∈ (x, y). Similarly, if AF,G(x, y) < 0 then
AF,G(z, y) = 0 for some z ∈ (x, y). In other words, for every u ∈ J \ {0}
there exists a z ∈ J such that AF,G(u, z) = 0 or AF,G(z, u) = 0. This in
view of (2.3) means that for every u ∈ J \ {0} there exists a z ∈ J such
that

Ψ(u) + Ψ(z) = 0

which means that Ψ cannot be of constant sign. Its continuity implies in
the present case that sgn Ψ | J+ 6= sgn Ψ | J−. ¤

Now we can prove the invertibility of Ψ.

Proposition 2.3. If (Ψ, F, G) is a continuous solution of (2.3) satis-
fying (∗) and Ψ(x) 6= 0 for x 6= 0 then Ψ | I is strictly monotonic.

Proof. Without loss of generality let us assume (cf. Lemma 2.2) that
Ψ | I+ > 0 > Ψ | I−. Fix an x ∈ I+ and let z ∈ (x,BF,G(x)) (cf. (2.6)).
Then

AF,G(x, 0) = x < z < AF,G(x, x)

whence z = AF,G(x, y) for a y ∈ (0, x). Hence by (2.3)

Ψ(z) = Ψ(x) + Ψ(y) > Ψ(x).

Continuity of Ψ implies now its strict monotonicity in I+. Similarly one
can prove that Ψ | I− is strictly increasing, which concludes the proof.

¤
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Corollary 2.4. Under the assumptions of Proposition 2.3, G(0) = 1.

Proof. Let y ∈ I \ {0} be such that yG(0) ∈ I. In view of (2.3) we
get Ψ(yG(0)) = Ψ(y), whence by Proposition 2.3 we infer that yG(0) = y
and thus G(0) = 1. ¤

The next step is to show cancellativity of the operation AF,G. We
have

Proposition 2.5. If (Ψ, F, G) is a continuous solution of (2.3) satis-
fying (∗) and Ψ(x) 6= 0 for x 6= 0 then

(i) For every x ∈ I the functions AF,G(x, ·) and AF,G(·, x) are strictly
increasing, and hence BF,G is strictly increasing;

(ii) AF,G(I × I) = BF,G(I).

Proof. Fix an x ∈ I and let y, y′ ∈ I be different. Then in view of
Proposition 2.3 and (2.3) we get

Ψ(AF,G(x, y)) 6= Ψ(AF,G(x, y′))

whence AF,G(x, y) 6= AF,G(x, y′) which implies that AF,G(x, ·) is invertible.
Since for every x ∈ I+ we have AF,G(x, 0) = x < AF,G(x, x), it follows
that AF,G(x, ·) is strictly increasing. Similarly, using Corollary 2.4, we
show that AF,G(·, x) is strictly increasing.

To prove (ii) let us observe that obviously BF,G(I) ⊂ AF,G(I×I). On
the other hand, just established monotonicity implies for every x, y ∈ I
that

BF,G(min(x, y)) ≤ AF,G(x, y) ≤ BF,G(max(x, y)),

which shows that AF,G(I × I) ⊂ BF,G(I) and concludes the proof. ¤
Corollary 2.6. Under the assumptions of Proposition 2.5, Ψ is invert-

ible.

Proof. Let u, u′ ∈ AF,G(I × I) be different. By Proposition 2.5 we
can find x, x′ ∈ I such that u = BF,G(x) and u′ = BF,G(x′). Now, using
(2.3) and Proposition 2.3 we get

Ψ(u) = 2Ψ(x) 6= 2Ψ(x′) = Ψ(u′),

which proves invertibility of Ψ. ¤
The next step is to show that F and G cannot be quite independent,

if they solve (2.3). Indeed, we have
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Proposition 2.7. If (Ψ, F, G) is a continuous solution of (2.3) which

satisfies (∗) and Ψ(x) 6= 0 for x 6= 0 then there exists a c ∈ R such that

(2.7) G(x) = F (x) + cx

for every x ∈ I.

Proof. With the invertibility of Ψ (cf. Corollary 2.6) we get from
(2.3)

AF,G(x, y) = Ψ−1(Ψ(x) + Ψ(y)) = AF,G(y, x),

for every x, y ∈ I which implies that

G(y)− F (y)
y

=
G(x)− F (x)

x

for every x, y ∈ I \ {0}. In other words, the function I \ {0} 3 y →
G(y)−F (y)

y is constant, which together with F (0) = G(0) = 1 (cf. (∗) and
Corollary 2.4) yields the assertion. ¤

Let us observe that defining H : I → R by

(2.8) H(x) = F (x) +
c

2
x

we get in view of (2.7)

AF,G(x, y) = xF (y) + y(F (x) + cx) = xH(y) + yH(x) = AH,H(x, y).

Thus we get the following

Proposition 2.8. If a triple (Ψ, F, G) is a continuous solution of (2.3)
satisfying (∗) and Ψ(u) 6= 0 for u 6= 0 then Ψ is invertible and the cou-

ple (Ψ,H), where H is defined by (2.8) for some c ∈ R, is a continuous

solution of

Ψ(xH(y) + yH(x)) = Ψ(x) + Ψ(y)(2.9)

satisfying

H(0) = 1.(2.10)
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Conversely, if a couple (Ψ, H) is a continuous solution of (2.9) satisfying

(2.10) and Ψ(u) 6= 0 for u 6= 0 then the triple (Ψ, F,G) where F and G

are given by

(2.11) F (x) = H(x)− c

2
x and G(x) = H(x) +

c

2
x

for some c ∈ R, is a continuous solution of (2.3), satisfying (∗).

Thus the problem of solving (2.3) (and hence (2.1)) in the present
case is reduced to the problem considered in [15]. More exactly, by the
above Proposition we get invertibility of Ψ and hence by (2.9) the operation
AH,H is locally associative. Therefore (and because of (2.10)) we can apply
[16; Proposition 1] to determine H. It suffices to determine Ψ. Inserting
formulae given in [16; Proposition 1] to the equation (2.9) we obtain for
Ψ different equations of Cauchy type on restricted domain which can be
easily solved using the metods from previous chapters (cf. also [15]). Since
we work under assumption that Ψ vanishes uniquely at 0 some additional
restrictions have to be imposed on I. Summarizing we obtain the following

Proposition 2.9. If a triple (Ψ, F, G) is a continuous solution of (2.3)
satisfying (∗) and Ψ(u) 6= 0 for u 6= 0 then F and G are given by (2.11)
and (Ψ,H) and I satisfy one of the following

(R1) H(x) = 1, I is arbitrary and Ψ(u) = Du, where D 6= 0 is an

arbitrary constant;

(R2) H(x) = 1+ax, I ⊂ 1
2a (−1,∞), Ψ(u) = D ln(2au+1), where a,D

are arbitrary constants different from 0;

(R3) H(x) = γ−1( x
E ), I ⊂ E[− 1

2
√

2
,∞), Ψ(u) = d ln γ−1( u

E ), where

d,E are arbitrary constants different from 0 and γ : [ 1e ,∞) → R
is defined by γ(u) = u ln u;

(R4) H(x) = g−1
α (ax) + ax, Ψ(u) = d ln g−1

α (au) where a 6= 0 6= d

and α 6= 1 are arbitrary constants, gα : Kα → R is given by

gα(u) = uα−u
2 ,

Kα =
{

(0,∞), if α ≤ 0,(
α1/(1−α),∞)

, if α ∈ (0,∞) \ {1},
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and the interval I is contained in Iα where

Iα =





R, if α < 0,

1
a

(
−∞,

1
2

)
, if α = 0,

(
1
a

)
gα

(
α1/2(1−α)

)
(−∞, 1], if α ∈ (0,∞) \ {1};

(R5) H(x) =
{

ax/r−1
D (x), if x ∈ I \ {0},

1, if x = 0,

Ψ(u) = C arctan r−1
D (u), if |(BH ◦ rD)−1(u)| ≤ 1, and

Ψ(u) = C
(
(sgn L)π + arctan l−1

D (−u/ exp(|D|π)
)
,

if |(BH ◦ rD)−1(u)| > 1. Here a 6= 0 6= C and D ∈ R are some

constants, and rD = sD | RD, lD = sD | LD, R0 = L0 = R and

LD = −((2/D) + RD) = (1/D)(−∞, 1] and sD : R → R is a

function given by

sD(u) =
1
a

u√
1 + u2

exp(D arctanu).

Moreover, I is contained in rD([D −√1 + D2, D +
√

1 + D2]).
We adopt here the convention arctan(±∞) = ±π

2 and

r−1
D (±(1/a) exp(±Dπ/2)) = ±∞.

Let us procede now to the case

B. Ψ(u) = 0 for some u 6= 0.

Define the set Z by Z = Ψ−1({0}) ∩ I. We have the following

Lemma 2.10. If Z+ 6= ∅ then there exists a b > 0 such that Ψ |
[0, b] = 0, and if Z− 6= ∅ then there exists an a < 0 such that Ψ|[a, 0] = 0.

Proof. We prove the first statement, the second one may be dealt
with in an analogous way. Suppose that the first statement is false.
Then without loss of generality we can admit that there exists a sequence
(yn)n∈N ∈ (I+)N, converging to 0 and such that Ψ(yn) > 0 for every n ∈ N.
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Let x ∈ Z+, our supposition implies that the open set [0, x] \Z+ 6= ∅. Let
(u, v) be its component such that Ψ | (u, v) > 0. Since Ψ(u) = Ψ(v) = 0,
Ψ|[u, v] admits its maximum at a t ∈ (u, v). Continuity of F and G implies
together with (∗) that

lim
n→∞

AF,G(t, yn) = lim
n→∞

(tF (yn) + ynG(t)) = t,

whence there exists an N ∈ N such that AF,G(t, yN ) ∈ (u, v). By choice of
t, yN and (2.3) we get

Ψ(t) ≥ Ψ(AF,G(t, yN ) = Ψ(t) + Ψ(yN ) > Ψ(t).

This contradiction concludes the proof. ¤

Let us prove now

Lemma 2.11. If 0 ∈ Int I then there exist an a < 0 and b > 0 such

that Ψ | [a, b] = 0.

Proof. Assume that Z+ 6= ∅, the other case may be treated analo-
gously. By Lemma 2.9 we have Ψ|[0, b] = 0 for some b > 0. By continuity
of F and G and because of (∗) we get

lim
y→0−

AF,G

(
b

2
, y

)
=

b

2
∈ (0, b).

Thus there exists an a < 0 such that

AF,G

(
b

2
, y

)
∈ [0, b],

for every y ∈ [a, 0] which implies by (2.3)

Ψ(y) = Ψ
(

AF,G

(
b

2
, y

))
−Ψ

(
b

2

)
= 0,

for every y ∈ [a, 0]. This concludes the proof. ¤

Put M := sup{b ∈ I+ : Ψ|[0, b] = 0} and m := inf{a ∈ I− : Ψ |
[a, 0] = 0}. In view of Lemma 2.9 we have M > 0 if I+ 6= ∅, and m < 0, if
I− 6= ∅. The following three cases are possible

(C1) I ⊂ [m,M ]
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(C2) M < sup I+;
(C3) m < inf I−.
It is clear in view of (2.3) that Ψ = 0 in the case (C1), and the

functions F and G may be arbitrary.
In the case (C2) denote I1 := [m,M ] ∩ I, and Lx := AF,G({x} × I1),

Rx := AF,G(I1 × {x}), for every x ∈ I. Obviously, I1, Lx and Rx are
intervals. Taking into account definitions of m and M we get from (2.3)

(2.11) Ψ(z) = Ψ(x)

for every x ∈ I and z ∈ Lx ∪ Rx. We also have x = AF,G(x, 0) ∈ Lx. Let
δ > 0 be such that [M, M + δ] ⊂ I. Then in particular

(M, M + δ) ⊂
⋃

x∈(M,M+δ)

Lx.

By the definition of M , Ψ((M, M +δ)) is a nondegenerate interval. There-
fore there exists an x ∈ (M, M + δ) such that Lx = {x} for otherwise
Lx∩ (M, M +δ) would be a nondegenerate interval on which Ψ is constant
for every x ∈ (M, M + δ) (cf. (2.11)). This however would imply that
Ψ((M, M + δ)) is a countable set, and therefore Ψ | (M, M + δ) would
be constant, a contradiction. It follows from the above that we can pick
up a sequence (xn)n∈N of numbers in (M,∞) which converges to M and
satisfies

AF,G({xn} × I1) = {xn}, n ∈ N.

This means that for every n ∈ N and y ∈ I1 the equality

xnF (y) + yG(xn) = xn

holds, or

F (y) = −G(xn)
xn

y + 1,

for every n ∈ N and y ∈ I1. Letting n →∞ we obtain

(2.12) F (y) = −G(M)
M

y + 1

for every y ∈ I1 whence in particular

(2.13) F (M) = −G(M) + 1.
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Let us show now that

(2.14) G(0) = 1.

Suppose that (2.14) is not true. Let us consider three possible cases.

(a) G(0) ≤ 0. Then AF,G(0, y) = G(0)y ≤ 0 for every y ∈ I+. From
(2.13) we get AF,G(M,M) = M > 0, whence there exists a δ > 0 such that
AF,G(M, y) > 0 for every y ∈ (M,M + δ). Thus for every y ∈ (M, M + δ)
there exists a t(y) ∈ [0, M) such that AF,G(t(y), y) = 0, whence

Ψ(y) = Ψ(0)−Ψ(t(y)) = 0,

which contradicts the definition of M .

(b) 0 < G(0) < 1. Then for every y ∈ (M, M
G(0) ) ∩ I we get G(0)y ∈

(0,M) whence Ψ(y) = Ψ(G(0)y)−Ψ(0) = 0 by (2.3), which again contra-
dicts the definition of M .

(c) 1 < G(0). Then for every u ∈ (M, G(0)M)∩ I we have u = G(0)y
for some y ∈ (0, M) which in view of (2.3) implies Ψ(u) = Ψ(G(0)y) =
Ψ(0) + Ψ(y) = 0, again a contradiction.

We have dismissed other possibilities and hence (2.14) holds. We can
now repeat the argument we used before to get (2.12) but reversing the
roles of F and G. We obtain

(2.15) G(y) = −F (M)
M

y + 1

for every y ∈ I1. In view (2.12) and (2.15) we obtain for every x ∈
(M,∞) ∩ I

Lx = {x} ⇔ G(x) =
G(M)

M
x and Rx = {x} ⇔ F (x) =

F (M)
M

x.

We are going to show that actually Lx =Rx = {x} for every x ∈ (M,∞)∩I.
Let us define

W =
{

x ∈ [M,∞) ∩ I : F (x) =
F (M)

M
x and G(x) =

G(M)
M

x
}

.

W is a closed subset of [M,∞)∩I. Suppose that W ′ = [M,∞)∩I \W 6= ∅
and let (s, t) be a component of W ′. Then for every x ∈ (s, t) either Lx

or Rx is nondegenerate. It follows that for every x ∈ (s, t) there exists a
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nondegenerate interval Jx with x ∈ Jx such that Ψ | Jx is constant. In
view of continuity of Ψ this is possible only if Ψ | (s, t) is constant. Thus
Ψ is constant on each component of W ′. Let (s, t) be a fixed component of
W ′. Then s, t ∈ W . For every y ∈ [M, t

sM ]∩W we have in view of (2.13)
and the definition of W

AF,G(s, y) =
sy

M
∈ [s, t].

Hence, because Ψ|[s, t] is constant, we obtain by (2.3)

Ψ(y) = Ψ(AF,G(s, y))−Ψ(s) = Ψ
( sy

M

)
−Ψ(s) = 0.

Thus Ψ | [M, s
t M ] ∩W = 0, and since Ψ is constant on each component

of W ′ we get Ψ | [M, s
t M ] = 0, contrary to the definition of M . It follows

that W ′ = ∅. Summarizing we have

F (x) =




−1− C

M
x + 1, if x ∈ [m,M ] ∩ I

C

M
x, if x ∈ (M,∞) ∩ I,

(2.16)

and

G(x) =




− C

M
x + 1, if x ∈ [m,M ] ∩ I

1− C

M
x, if x ∈ (M,∞) ∩ I,

(2.17)

where C is a real constant.
To end the study of the case (C2) let us prove that m = inf I−.

Suppose that m > inf I−. This can only happen if I− 6= ∅ and then
m < 0. In view of (2.16) and (2.17) we get

AF,G(m,m) = m(F (m) + G(m)) = m
(
2− m

M

)
< 2m < m.

Hence there exist some s, t ∈ R such that s < m < 0 ≤ t and

AF,G([m, 0]× [m, 0]) = [s, t].

Take any z ∈ [s, 0]. Then z = AF,G(x, y) for some x, y ∈ [m, 0] which
implies by (2.3) and the definition of m that Ψ(z) = 0. Thus Ψ vanishes
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in [s, 0] which contradicts the definition of m. In other words, we have
proved that in the case (C2) function F and G are given by

F (x) =




−1− C

M
x + 1, if x ∈ (−∞,M ] ∩ I

C

M
x, if x ∈ (M,∞) ∩ I,

(2.18)

and

G(x) =




− C

M
x + 1, if x ∈ (−∞,M ] ∩ I

1− C

M
x, if x ∈ (M,∞) ∩ I,

(2.19)

where C is a real constant. Let us observe that AF,G is now given by
formulae

AF,G(x, y)(2.20)

=





M
(
1−

(
1− x

M

)(
1− y

M

))
, if x, y ∈ (−∞,M ] ∩ I,

xy

M
, if x, y ∈ (M,∞) ∩ I,

max(x, y), otherwise.

By the definition of M we know that Ψ | (−∞, M ] ∩ I = 0, and hence
it easily follows from (2.20) that Ψ | (−∞,M ] ∩ AF,G(I × I) = 0. Using
(2.20) and (2.3) we get also

Ψ
(xy

M

)
= Ψ(x) + Ψ(y)

for every x, y ∈ (M,∞) ∩ I, whence it follows that for every u ∈ (M,∞)

(2.21) Ψ(u) = d ln
u

M
,

where d 6= 0 is a constant. Using (2.20) again, we infer that (2.21) holds
for every u ∈ (M,∞) ∩ I × I.

To manage the case (C3), let us observe that a triple (Ψ, F, G) solves
(2.3) for all x, y ∈ I if and only if the triple (Ψ∗, F ∗, G∗) given by

Ψ∗(u) = Ψ(−u), F ∗(x) = F (−x), G∗(x) = G(−x)
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solves (2.3) for all x, y ∈ −I. It is also obvious that the case (C3) for the
triple (Ψ, F, G) is equivalent to the case (C2) for (Ψ∗, F ∗, G∗). Thus in
the case (C3) functions F and G are given by

F (x) =




−1− C

M
x + 1, if x ∈ [m,∞) ∩ I

C

M
x, if x ∈ (−∞,m) ∩ I,

(2.22)

and

G(x) =




− C

M
x + 1, if x ∈ [m,∞) ∩ I

1− C

M
x, if x ∈ (−∞,m) ∩ I,

(2.23)

where C is a real constant. Ψ is now given by

(2.24) Ψ(u) =

{
d ln

u

m
, if u ∈ AF,G(I × I) ∩ (−∞,m)

0, if u ∈ AF,G(I × I) ∩ [m,∞)

where d 6= 0 is a real constant.
A simple calculation shows that formulae for cases (C2) and (C3) may

be written jointly, and we get the following

Proposition 2.12. A triple (Ψ, F,G) is a continuous solution of (2.3)
satisfying (∗) and Ψ(u) = 0 for some u 6= 0 if and only if either Ψ = 0 and

F and G are arbitrary or there exist a p ∈ I \ {0} and real constants C

and d 6= 0 such that

F (x) = max
(
−1− C

p
x + 1,

C

p
x

)
,(2.25)

G(x) = max
(
−C

p
x + 1,

1− C

p
x

)
,(2.26)

and

(2.27) Ψ(u) =

{
d ln

u

p
, if u ∈ AF,G(I × I) ∩ p(1,∞)

0, if u ∈ AF,G(I × I) ∩ p(−∞, 1].

Let us summarize the results of the present section in the following
theorem which is the main result of the present paper.
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Theorem 2.13. A quadruple (ψ, f, g, ϕ) of continuous functions f, g, ϕ:
I → R, ψ : Af,g(I × I) → R, 0 ∈ I, is a solution of (2.1) if and only if

one of the following cases occurs:

I. I is arbitrary interval containing 0, ψ = const, ϕ = 1
2ψ, f and g are

arbitrary.

II. There exist real constants a 6= 0 and b such that

ψ(v) = Ψ
(v

a

)
+ b f(x) = aF (x)

g(x) = aG(x) ϕ(x) = Ψ(x) +
1
2
b

where the triple (Ψ, F, G) is defined by (2.11) and (R1), . . . , (R5) from

Proposition 2.9, or by (2.25), (2.26) and (2.27) from Proposition 2.12.

3. Final remarks

Results of the previous sections may be used now to deal with some
other functional equations that have been known in the literature but not
associated with the original equation of Abel from 1827, i.e.

(3.1) ψ(xf(y) + yf(x)) = ϕ(x) + ϕ(y).

(Of course, the above equation is a particular case (f = g) of the equation
(2.1).) One of them is the GoÃla̧b–Schinzel functional equation

(3.2) f(x + yf(x)) = f(x)f(y).

Another equation motivated by the search for one-parameter subgroups is

(3.3) f(xf(y) + yf(x)) = tf(x)f(y),

where t is a parameter.
Also some generalizations of (3.3) have been investigated (cf. e.g. [4]–

[10], [14], [20]), namely

(3.4) f(xf(y)k + yf(x)n) = tf(x)f(y),
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where k and n are nonegative integers. Recently a further generalization
of (3.4) has been considered by J. Chudziak (see [11])

(3.5) f
(
xφ[f(y)] + yψ[f(x)]

)
= f(x)f(y).

The equation (3.4) with k = n = t = 1 becomes the equation

(3.6) f(xf(y) + yf(x)) = f(x)f(y),

which is the equation defining antiderivations in the case where f is a
bounded linear operator defined in an algebra. Together with the equation

(3.7) f(xf(y) + yf(x)− xy) = f(x)f(y),

they are special cases of Baxter equation

(3.8) f(xf(y) + yf(x)− cxy) = f(x)f(y).

Let us observe that (3.2)–(3.8) are special cases of

(3.9) Φ(xF (y) + yG(x)) = Γ(x)Γ(y).

Now, the equation (3.9) is more general than our equation (2.1) in the case
where the unknown functions are defined in a real domain because usually
you cannot take a logarithm of both sides of (3.9). However, in some cases
it helps that we have solved (2.1) in local case. This means that if we
know that Γ in (3.9) admits on I positive values only, where I is a proper
subinterval of R then for this interval we can consider (2.1) instead of (3.9)
and then try to extend the solution in the class of continuous functions
using the equation. This is what we have done in [19] where the continuous
solution of a local version of GoÃla̧b–Schinzel equation (3.2) is given.
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