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Optimal control for a general class of stochastic initial boundary
value problems subject to distributed and boundary noise

By N. U. AHMED (Ottawa)

Abstract. In this paper we consider a class of stochastic evolution equations aris-

ing from parabolic initial boundary value problems subject to both boundary and dis-

tributed noise. We prove existence and regularity of mild solutions. Then we consider a

controlled version of the model and prove the existence of optimal controls for partially

observed problems using a class of relaxed controls containing both distributed controls

and point controls.

1. Introduction

Over the last two decades great interest has been shown in the area of sto-

chastic maximum principle for finite dimensional stochastic systems [2], [3]. See

also the extensive references given therein. In recent years necessary conditions

of optimality for infinite dimensional stochastic systems have also appeared in

several papers [4]–[6], [8]. [11]–[16], [19], [22]. For a brief survey on recent devel-

opments in systems and control theory, the reader is referred to [22]. The subject

continues to attract many researchers in the field and continues to expand. Most

of these papers develop necessary conditions of optimality in the form of maxi-

mum principle (or minimum principle) without proving the existence of optimal

controls with the exception of few papers [5], [6], [8], [19], [21]. In [6], the drift

and the diffusion operators are assumed to map within the same Hilbert space.

In [19], this is generalized admitting drift and the diffusion operators mapping a

smaller space to a larger state space. In this paper, we generalize this further.
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We consider more general drift and diffusion operators mapping a subspace of

the original Hilbert space, generated by the fractional powers of the semigroup

generator, to an extended Hilbert space obtained by completion of the original

space in the norm topology determined by the negative fractional powers of the

semigroup generator. This certainly applies to a broader class of systems with

unbounded drift and diffusion operators and described by stochastic partial differ-

ential equations subject to noise in the spatial domain as well as in its boundary.

In [21], Guatteri and Masiero also consider stochastic control problems with

distributed and boundary noise for second order spde. Our system model cov-

ers those of [21] and beyond. They use stochastic Hamiltonian system to prove

the existence of optimal control for Bolza problem. Our technique is natural

and direct, based on purely functional analysis. We consider also standard Bolza

problem as in [21] and also several nonstandard control problems giving results

on the the existence of optimal controls. It appears that the technique used by

Guaterri and Masiero will not work for the nonstandard problems considered in

this paper. The rest of the paper is organized as follows.

In Section 2, we introduce the system model subject to spatial as well as

boundary noise leading to a class of nonlinear stochastic integral equations de-

termined by the semigroup generated by the linear part of the partial differential

operator. In Section 3, after presenting the basic assumptions, we prove the ex-

istence of mild solutions and present the regularity properties thereof. In Section

4, we introduce a metric topology on the space of relaxed controls and prove con-

tinuous dependence of solutions on controls with respect to this metric topology.

In Section 5, we consider the question of existence of optimal controls proving

the existence of partially observed controls which are signed Borel measure val-

ued stochastic processes containing both point and distributed controls. Some

interesting nonstandard control problems are also considered in this section. The

paper is concluded with an example.

2. System model with distributed and boundary noise

A very Large class of dynamic systems arising in physical sciences and engi-

neering can be described by the following class of partial differential equations:

∂φ/∂t+Aφ = f(t, ξ, φ) + σ(t, ξ, φ)Vd(t, ξ), (t, ξ) ∈ I × Σ,

(Bφ)(t, ξ) = Vb(t, ξ), (t, ξ) ∈ I × ∂Σ

φ(0, ξ) = φ0(ξ), ξ ∈ Σ (1)
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subject to distributed and boundary noise {Vd, Vb} defined on the domain Σ ⊂ Rn

and its boundary ∂Σ respectively. The domain Σ is an open bounded set with

smooth boundary and I = (0, T ] is an interval. The operator A is generally given

by

(Aφ)(ξ) ≡
∑

|α|≤2m

aα(ξ)D
αφ, on Σ, (2)

with multi index α =
{
αi}ni=1, |α| ≡

∑n
i=1 αi, αi ∈ N0 ≡ {0, 1, 2, . . .

}
.

The boundary operator B is also a partial differential operator of order at

most 2m− 1, given by

Bφ = {Bj , j = 1, 2, . . . ,m} (Bjφ)(ξ) ≡
∑

|β|≤mj≤2m−1

bjβ(ξ)D
βφ, ξ ∈ ∂Σ, (3)

where β = {βi}ni=1, |β| ≡
∑
βi, βi ∈ N0, i = 1, 2, . . . , n. The nonlinear operators

{f, σ} are defined shortly. Under fairly general assumptions on the coefficients

{aα, bβ} and smoothness of the boundary ∂Σ, the system (1) can be formulated

as a first order evolution equation on the Hilbert space E ≡ L2(Σ).

For nonhomogeneous boundary conditions one needs the trace theorem which

states that under sufficient smoothness conditions on the boundary ∂Σ and the

coefficients {bβ , |β| ≤ 2m− 1}, the boundary operator B|KerA is an isomorphism

of W 2m
2 (Σ)/KerB on to Πm

j=1W
2m−mj−1/2
2 (∂Σ) called the trace space. Thus it

has a bounded inverse denoted by R ≡ (B|KerA)
−1. Then the system (1) can

formulated as an abstract differential equation given by

d/dt(z +RVb) +Az = f(t, z +RVb) + σ(t, z +RVb)Vd,

z(0) + (RVb)(0) = φ0, t ∈ I, (4)

where z is the solution of the homogeneous boundary value problem and φ =

z +RVb is the solution of the initial boundary value problem. Strictly speaking,

φ is the solution of the following equivalent stochastic integral equation on E,

φ(t) = S(t)φ0 +

∫ t

0

S(t− τ)f(τ, φ(τ))dτ +

∫ t

0

AS(t− τ)R dWb(τ)

+

∫ t

0

S(t− τ)σ(τ, φ(τ))dWd(τ), t ≥ 0, (5)

where {Vb, Vd} are the distributional derivatives of abstract Wiener processes

{Wb,Wd} defined on a complete filtered probability space (Ω,F ,Ft≥0, P ). For

detailed proof leading to the above results and more on nonhomogeneous nonlinear
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boundary value problems see [9, Chapter 3, p. 59] and [10, Example 3.2.8, p. 85].

In case {f, σ} are also dependent on control, the integral equation (5) turns into

φ(t) = S(t)φ0 +

∫ t

0

S(t− τ)f(τ, φ(τ), uτ )dτ +

∫ t

0

AS(t− τ)R dWb(τ)

+

∫ t

0

S(t− τ)σ(τ, φ(τ), uτ ) dWd(τ), t ≥ 0. (6)

We consider this system on a finite time interval I ≡ [0, T ].

3. Basic assumptions, control and system analysis

In order to study control problems involving the system (1) we must now

define the drift and the diffusion operators {f, σ} with controls in their arguments.

Let U be a compact metric space and B(U) the class of Borel subsets of U and

M(U) the space of signed Borel measures on B(U). Let Gt, t ≥ 0, denote any

family of complete non decreasing subsigma algebras of the sigma algebra Ft,

t ≥ 0. For admissible controls we choose the space La
∞(I,M(U)) which consists

of weak star measurable Gt-adapted random processes defined on I with values in

the space of signed Borel measures M(U). Let La
1(I, C(U)) denote the space of

Gt-adapted Bochner integrable random processes with values in the Banach space

C(U), the space of bounded continuous functions on U with the standard sup

norm topology. It is easy to see that the topological dual of this space is given by

La
∞(I,M(U)). In other words any continuous linear functional ℓ on La

1(I, C(U))

has the representation

ℓ(η) ≡ E

∫
I×U

η(t, ζ)µt(dζ)dt (7)

for some µ ∈ La
∞(I,M(U)). For admissible control policies we choose a suit-

able subset Uad of the space La
∞(I,M(U)). Let Mc be a norm (variation norm)

bounded weak star closed convex subset of M(U) and choose

Uad ≡ {u ∈ La
∞(I,M(U)) : ut ∈Mc for all t ∈ I}

as the set of admissible controls. There are several possible choices for U giving

several possible physically important class of control policies as discussed below

in (C1)–(C3).

(C1): Let Σc be a closed bounded, and hence a compact, subset of Σ ⊂ Rn

equipped with any standard metric topology of Rn and take U = Σc and M(U) =
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M(Σc). This gives a class of controls which are signed measures on a part of the

spatial domain Σ.

(C2): Let U ≡ {ζ1, ζ2, . . . ζm} ⊂ Σ, m ∈ N , and take

M(U) ≡ M({ζ1, ζ2, . . . ζm}). This gives a class of point controls (Dirac measures)

supported at any finite set of distinct points {ζ1, ζ2, . . . ζm} of Σ. A control u in

this class has the representation

ut(·) ≡
m∑
i=1

πi(t)δζi(·)

with πi ∈ La
∞(I), the class of essentially bounded Gt-adapted random processes

where δζi(·) is the Dirac measure concentrated at the point ζi ∈ Σ.

(C3): Let U be a closed bounded subset of the Banach space L∞(Σc) which

is the topological dual of L1(Σc). By Alaoglu’s theorem, the set U is weak star

compact and since L1(Σc) is separable, it follows from Theorem V.5.1 [[7], Dun-

ford & Schwartz, p. 426] that it is metrizable. Thus with respect to this

metric topology, U is a compact metric space. In this case, the admissible con-

trols are signed measures on B(U), the class of Borel subsets of U . In partic-

ular, through Dirac measures, we obtain (regular) controls which are functions

of time with values in U ⊂ L∞(Σc). In other words, the controls are elements

of La
∞(I, U) ⊂ La

∞(I, L∞(Σc)). For example, for any ψ ∈ La
1(I, C(U)), and any

µ ∈ La
∞(I,M(U)) we have the standard duality pairing

µ(ψ) ≡
∫
I×U

ψ(t, v)µt(dv)dt.

If µ is taken as the Dirac measure δv(t)(·) concentrated along the path v(t) ∈ U ,

the above integral reduces to µ(ψ) ≡
∫
I
ψ(t, v(t))dt.

Remark 3.1. Regular controls denoted by Ur are bounded measurable func-

tions from I × Σc to R. Note that this class of controls is a special case of the

class of admissible controls described above in (C3). Clearly, the set of control

policies Uad contain such controls and therefore our control policies are far more

general. Of crucial importance is that U is not required to be convex. In fact U

can be a set of discrete points (so non convex) admitting point controls. This is

not possible with regular controls and may even lead to chattering controls and

nonexistence of optimal controls if they are used. Further, by Krien-Milman theo-

rem Uad = clco(ext(Uad)) where the extreme points are the Dirac measures along

paths in U and Ur is dense in Uad. Thus any relaxed control can be approximated

(to any degree of accuracy) by regular controls.
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Now we are prepared to introduce the basic assumptions.

Assumptions:

(A1): −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0,

on the Hilbert space E satisfying

sup{∥S(t)∥L(E), t ∈ I} ≤M <∞.

Without loss of generality we may assume that 0 ∈ ρ(A), the resolvent set of A.

If not, one can choose a large enough positive number c such that 0 ∈ ρ(cI + A)

and compensate it by adding cφ to the drift f(t, φ).

In view of the above assumption, we can construct a family of interpolation

spaces by using the domain of the fractional powers of A giving Eα = [D(Aα)]

where [D(Aα)] is a Banach space with respect to the norm topology |x|α ≡
|Aαx|E . Clearly

[D(A)] ≡ E1 ↪→ Eα ↪→ Eβ ↪→ E0 ≡ E

for 0 ≤ β < α ≤ 1. In fact these are Hilbert spaces endowed with the natural inner

product: (x, y)Eα ≡ (Aαx,Aαy)E for α ∈ [0, 1]. For α ≥ 0, let E−α denote the

completion of the space E with respect to the norm topology |x|E−α ≡ |A−αx|E .
Clearly these are Banach spaces. Any continuous linear functional ℓ on Eα has

the representation ℓ(v) = (ζ, v)E−α,Eα for some ζ ∈ E−α. Thus E−α
∼= (Eα)

∗,

the topological dual of Eα. This leads to the following chain of Banach spaces

along with their topological duals

E1 ↪→ Eα ↪→ Eβ ↪→ E0 ≡ E ↪→ E−β ↪→ E−α ↪→ E−1.

(A2): There exists a γ ∈ [0, 1), θ ∈ [0, 1) such that f : I×Eγ×U −→ E−θ is

measurable in the first argument and continuous with respect to the second and

third. Further, there exists a constant Kθ ̸= 0 such that

|f(t, e, ξ)|2E−θ
≤ K2

θ{1 + |e|2Eγ
}, |f(t, e1, ξ)− f(t, e2, ξ)|2E−θ

≤ K2
θ{|e1 − e2|2Eγ

}

for all e, e1, e2 ∈ Eγ and (t, ξ) ∈ I × U .

(A3): The incremental covariance of the Brownian motion Wd is denoted

by Qd ∈ L+(H) (positive not necessarily nuclear). σ : I ×Eγ ×U −→ L(H,E−θ)

is Borel measurable in the first argument and continuous in the second and third

and there exists a constant Kθ,d ̸= 0 such that for all (t, e, ξ) ∈ I × Eγ × U and

e1, e2 ∈ Eγ

|σ(t, e, ξ)|2d,θ ≡ Tr((A−θσ)Qd(A
−θσ)∗) ≤ K2

d,θ{1 + |e|2Eγ
},

and |σ(t, e1, ξ)− σ(t, e2, ξ)|2d,θ ≤ K2
d,θ{|e1 − e2|2Eγ

}
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where |σ|2d,θ = Tr(A−θσQd(A
−θσ)∗).

(A4): The numbers γ ∈ [0, 1), θ ∈ [0, 1) are such that 0 ≤ γ + θ < 1/2.

Before we can proceed with the analysis of the integral equation (8) we

must find an appropriate function space Y (∂Σ) for the Brownian motion Wb

representing the boundary noise. Towards this goal, we construct a family of

interpolation spaces involving the Dirichlet map (boundary operator) B/Ker(A)

and the (quotient) Sobolev spaces W 2m
2 (Σ)/Ker(B) and the corresponding trace

spaces Y (∂Σ) ≡ Πm
j=1W

2m−mj−1/2
2 (∂Σ). We have already noted that the operator

B/Ker(A) ∈ iso
(
W 2m

2 (Σ)/Ker(B), Y (∂Σ)
)
.

For α ∈ (0, 1], let us introduce the extrapolation (interpolation) spaces

Xα ≡W 2αm
2 (Σ)/Ker(B) and Yα ≡ Πm

j=1W
2αm−mj−1/2
2 (∂Σ).

Clearly, for each α ∈ (0, 1], the operator B/Ker(A) ∈ iso(Xα, Yα). Hence we have

(B/Ker(A))−1 ≡ R ∈ L(Yα, Xα). The state space for the Brownian motion Wb

can then be chosen as any of the interpolation spaces Yα with α ∈ (0, 1] in the

sense that, for any t ≥ 0 and y∗ ∈ Y ∗
α (the dual of Yα), we have

P{|(Wb(t), y
∗)Yα,Y ∗

α
| <∞} = 1

and (Wb(t), y
∗)Yα,Y ∗

α
is an Ft-adapted real valued Gaussian random process with

mean zero and variance t(Qby
∗, y∗) with Qb being a positive nuclear operator

from Y ∗
α to Yα.

To prove the existence, uniqueness and regularity properties of solutions of

integral equations like (6) we must introduce the appropriate spaces where they

may reside. Let Ba
∞(I, Eγ) denote the vector space of Eγ valued Ft-adapted

random processes having square integrable norms (with respect to the measure P )

which are bounded on I. Furnished with the norm topology,

∥x∥Ba
∞(I,Eγ) ≡ (sup{E|x(t)|2Eγ

, t ∈ I})1/2,

Ba
∞(I, Eγ) is a closed subspace of the Banach space La

∞(I, L2(Ω, Eγ)) and hence

a Banach space.

For convenience of presentation, throughout the rest of the paper we use the

notation

f(t, x, u) ≡
∫
U

f(t, x, ξ)u(dξ), σ(t, x, u) ≡
∫
U

σ(t, x, ξ)u(dξ) (8)

for any u ∈ M(U). Now we can prove the following existence result.
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Theorem 3.2. Consider the evolution equation (1)modeled as the controlled

integral equation (6) rewritten as

x(t) = S(t)x0 +

∫ t

0

S(t− τ)f(τ, x(τ), uτ )dτ +

∫ t

0

AS(t− τ)R dWb(τ)

+

∫ t

0

S(t− τ)σ(τ, x(τ), uτ ) dWd(τ), t ≥ 0, (9)

with {x0,Wd,Wb} being mutually statistically independent. Suppose the assump-

tions (A1)–(A4) hold and that the state space for the Brownian motion Wd is H

with incremental covariance operator Qd ∈ L+
s (H), and that for Wb is the space

Yα for any α ∈ (γ+1/2, 1] with incremental covariance operator Qb ∈ L+
s (Y

∗
α , Yα).

Then, for every F0-measurable Eγ valued random variable x0 ∈ L2(Ω, Eγ), and

control u ∈ Uad, the integral equation has a unique solution x ∈ Ba
∞(I, Eγ).

Further the solution has a continuous modification.

Proof. Consider the operator F ,

(Fx)(t) ≡ S(t)x0 +

∫ t

0

S(t− τ)f(τ, x(τ), uτ )dτ +

∫ t

0

AS(t− τ)R dWb(τ)

+

∫ t

0

S(t− τ)σ(τ, x(τ), uτ ) dWd(τ), (10)

on B∞(I, Eγ) for any fixed u ∈ Uad and any Eγ-valued F0-measurable initial

state x0 having finite second moment. Since bothWd andWb are Ft-adapted and

x(t), t ∈ I, is Ft -adapted and ut is Gt(⊂ Ft)-adapted, we conclude that (Fx)(t)

is Ft-adapted. We prove that F : Ba
∞(I, Eγ) −→ Ba

∞(I, Eγ). Let x ∈ Ba
∞(I, Eγ)

with x(0) = x0. Since −A is the generator of an analytic semigroup, the fractional

powers {Aα}, α ∈ [0, 1], are well defined and [D(Aα)] = Eα. Also recall [7,

Ahmed, Theorem 3.3.16, p. 101] that for each α ∈ [0, 1] there exists a positive

constant Cα such that

∥AαS(t)∥L(E) ≤ Cα/t
α, ∀ t > 0.

We use the generic constant Cα, α ∈ [0, 1]. For simplicity of presentation, let

{z1, z2, z3, z4} denote the first, second, third and the fourth term on the right

hand side of the expression (10). Considering first {z1, z2, z4}, it follows from

straightforward computation using assumptions (A1)–(A4) that

E|z1(t)|2Eγ
≡ |Aγz1(t)|= |AγS(t)x0|E= |S(t)Aγx0|E ≤M2E|x0|2Eγ

∀ t∈I, (11)
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E|z2(t)|2Eγ
≤ t1−2(γ+θ)

(1− 2(γ + θ))
(Cγ+θK)2

∫ t

0

(
1 +E|x(s)|2Eγ

)
ds

≤ t2(1−(γ+θ))

(1− 2(γ + θ))
(Cγ+θK)2

(
1 + sup

0≤s≤t
E|x(s)|2Eγ

)
∀ t ∈ I, (12)

and

E|z4(t)|2Eγ

= E

∫ t

0

tr
(
Aγ+θS(t−s)A−θσ(s, x(s), us)

)
Qd

(
Aγ+θS(t−s)A−θσ(s, x(s), us)

)∗
ds

≤
∫ t

0

∥Aγ+θS(t− s)∥2L(E)K
2
d,θ(1 +E|x(s)|2γ)ds

≤ t1−2(γ+θ)

(1− 2(γ + θ))
(Cγ+θKd,θ)

2
(
1 + sup

0≤s≤t
E|x(s)|2Eγ

)
. (13)

By assumption (A4) all the terms on righthand side of (12) and (13) are positive

and finite for all t ∈ I ≡ [0, T ]. For the third term z3 given by the stochastic

integral related to the boundary noise,

z3(t) ≡
∫ t

0

AS(t− τ)R dWb(τ), t ≥ 0,

we use the interpolation space Yα and the fractional powers of the operator A.

Since the Dirichlet map R ∈ L(Yα, Xα) for any α ∈ (0, 1] and Aα : Xα −→ E

we have AαR ∈ L(Yα, E). It follows from the property of analytic semigroups as

mentioned above that A1−αS(t) ∈ L(E) for t > 0. Thus we can rewrite the above

expression as

z3(t) =

∫ t

0

A1−αS(t− τ)AαR dWb(τ), t ≥ 0.

The state space for Wb is Yα for any α ∈ (γ + 1/2, 1], and by our assumption

its incremental covariance operator Qb ∈ L+
1 (Y

∗
α , Yα) (positive nuclear). Using

the properties of the fractional powers of the operator A as indicated above,

and computing the expected value of the square of the norm and recalling that

α ∈ (γ + 1/2, 1], we have

E|Aγz3(t)|2E =

∫ t

0

tr{(A1+γ−αS(t− s)AαR)Qb(A
1+γ−αS(t− s)AαR)∗} ds

=

∫ t

0

|A1+γ−αS(t− s)AαR|2Qb
ds

≤ Tr(AαRQb(A
αR)∗)

∫ t

0

∥A1+γ−αS(t− s)∥2L(E)ds
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= |AαR|2Qb

∫ t

0

∥A1+γ−αS(t− s)∥2L(E)ds

≤ |AαR|2Qb

∫ t

0

C2
1+γ−α/(t− s)2(1+γ−α)ds

≤ C2
1+γ−α|AαR|2Qb

t2(α−γ)−1/(2(α− γ)− 1) <∞ ∀ t ∈ I. (14)

Thus it follows from the inequalities (11)–(14) that

∥Fx∥2Ba
∞(I,Eγ)

≤
{
M2E|x0|2E + (Cγ+θK)2

T 2(1−(γ+θ))

1− 2(γ + θ)
(1 + sup

t∈I
{E|x(t)|2Eγ

})

+
T 1−2(γ+θ)

(1− 2(γ + θ))
(Cγ+θKd,θ)

2(1 + sup
t∈I

{E|x(t)|2Eγ
})

+ (C2
1+γ−α/(2(α− γ)− 1))T (2(α−γ)−1)|AαR|2Qb

}
<∞. (15)

It follows from the above inequality that the operator F maps Ba
∞(I, Eγ) to

Ba
∞(I, Eγ). We prove that it has a fixed point in Ba

∞(I, Eγ). Using the expression

(10), with any pair {x, y} ∈ Ba
∞(I, Eγ) satisfying x(0) = y(0) = x0, and the basic

assumptions (A1)–(A4) it is easy to verify that

sup
0≤s≤t

E|F (x)(s)− F (y)(s)|2Eγ
≤ η(t) sup

0≤s≤t
E|x(s)− y(s)|2Eγ

(16)

where the function η is given by

η(t) ≡ 2
t1−2(γ+θ)

1− 2(γ + θ)

{
t(Cγ+θK)2 + (Cγ+θKd,θ)

2
}
, t ∈ I. (17)

Clearly, it follows from the assumptions (A2)–(A4) that η is a continuous mono-

tone increasing function of its argument and bounded on bounded intervals such

as I ≡ [0, T ] with η(0) = 0. If η(t) < 1 for all t ∈ I, take T1 = T . If not, then

there exists a T1 > 0 such that η(T1) < 1. Using the expression (16) for the

interval IT1 ≡ [0, T1] one can easily deduce that

∥Fx− Fy∥Ba
∞(IT1

,Eγ) ≤
√
η(T1)∥x− y∥Ba

∞(IT1
,Eγ). (18)

Thus the operator F is a contraction in the Banach space Ba
∞(IT1 , Eγ) and hence

it has a unique fixed point in Ba
∞(IT1 , Eγ). Since I ≡ [0, T ] is a compact interval it

can be covered by a finite number of intervals of length T1. Thus the solution can

be extended to cover the entire interval I in a finite number of steps. Therefore,

we conclude that the operator F has a unique fixed point in Ba
∞(I, Eγ). Hence the

integral equation (9) has a unique solution in x ∈ Ba
∞(I, Eγ). Further, it follows

from the well known factorization technique due to Da Prato and Zabczyk [1]

that x has continuous modification. This completes the proof. �
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Corollary 3.3. Consider the system (9) and suppose the assumptions of

Theorem 3.2 hold and the set of admissible controls Uad is given by the topological

space La
∞(I,Mc) ⊂ La

∞(I,M(U)). Then the solution set Ξ ≡ {x(u), u ∈ Uad} is

a bounded subset of Ba
∞(I, Eγ).

Proof. For any u ∈ Uad, let x(u) ∈ Ba
∞(I, Eγ) denote the unique solution of

equation (9). Then using the integral equation (9) and following similar procedure

as in the proof of theorem 3.2, one obtains the following inequality

∥x(u)∥2Ba
∞(IT ,Eγ)

≤ c1(x0, T ) + c2(T )∥x(u)∥2Ba
∞(IT ,Eγ)

. (19)

where

c1(x0, T ) ≡ 23
{
M2E|x0|2Eγ

+
T 2(1−(γ+θ))

1− 2(γ + θ)
(Cγ+θK)2 +

T (1−2(γ+θ))

1− 2(γ + θ)
(Cγ+θKd,θ)

2

+
T 2(α−γ)−1

2(α− γ)− 1
C2

1+γ−α|AαR|2Qb

}
,

and

c2(T ) ≡ 23
{
T 2(1−(γ+θ))

1− 2(γ + θ)
(Cγ+θK)2 +

T (1−2(γ+θ))

1− 2(γ + θ)
(Cγ+θKd,θ)

2

}
.

Since α ∈ (γ + 1/2, 1], and by assumption (A4), γ + θ < 1/2, both c1(x0, T ) and

c2(T ) are finite for every T <∞. Note that c2(T ) is also a continuous monotone

increasing function of T ∈ [0,∞) and c2(0) = 0. Hence there exists a finite

τ1 ∈ [0,∞) such that c2(τ1) < 1. Thus for T ≡ τ1, it follows from (19) that

∥x(u)∥2Ba
∞(Iτ1 ,Eγ)

≤ c1(τ1)

(1− c2(τ1))
<∞. (20)

Hence the set {x(u), u ∈ Uad} is a bounded subset of Ba
∞(Iτ1 , Eγ). Clearly this

implies that the attainable set A(τ1, x0) ≡ {x(τ1, u), u ∈ Uad} is a bounded sub-

set of L2(Ω, Eγ) and that they are Fτ1 adapted. Now considering the interval

[τ1, T ] with the initial state x(τ1) ∈ A(τ1, x0) the reader can easily verify that the

inequality (19) takes the form

∥x(u)∥2Ba
∞(I[τ1,T ],Eγ)

≤ c1(x(τ1), T − τ1) + c2(T − τ1)∥x(u)∥2Ba
∞(I[τ1,T ],Eγ)

. (21)

Choosing T ≡ τ2 so that c2(τ2 − τ1) < 1, it follows from (21) that

∥x(u)∥2Ba
∞(I[τ1,τ2],Eγ)

≤ c1(x(τ1), τ2 − τ1)

(1− c2(τ2 − τ1))
. (22)
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Since x(τ1) ∈ A(τ1, x0) and it is a bounded subset of L2(Ω, Eγ) it follows from

(22) that ∥x(u)∥2Ba
∞(I[τ1,τ2],Eγ)

<∞. Continuing this process we conclude that

sup{∥x(u)∥Ba
∞(I,Eγ), u ∈ Uad} <∞.

This completes the proof. �

Remark 3.4. Note that we have assumed that γ, θ ∈ [0, 1) and that γ + θ <

(1/2). We do not know if the above results can be proved for the critical value 1/2.

4. Continuous dependence of solutions on control

In the study of optimal control we need the continuity of the map u −→ x,

that is, control to solution map. This is crucial in the proof of existence of opti-

mal controls. Since continuity is critically dependent on the topology, we must

mention the topologies used for the control space and the solution space. For the

solution space we have already the norm topology on Ba
∞(I, Eγ) as seen in the

previous section. So we must consider the control space.

The natural topology for admissible controls is the weak star topology in

La
∞(I,Mc) ⊂ La

∞(I,M(U)). This topology is too weak. We need to consider a

slightly stronger topology, for example, a metric topology as follows. Consider

the measure space (I×Ω,B(I)×F , λ(dt)×P (dω)) where λ denotes the Lebesgue

measure. Let P denote the sigma algebra of predictable subsets of the set I × Ω

with respect to the filtration Gt≥0 ⊆ Ft≥0. Let µ = µ(dt × dω) denote the

restriction of the product measure λ(dt)×P (dω) to the predictable sigma field P.

Recall that La
∞(I,M(U)) denotes the space of random processes adapted to the

filtration Gt≥0 in the weak star sense and taking values in the space of signed

Borel measures. Consider now the predictable measure space (I × Ω,P, µ) and

introduce the following topological space Λ ≡ Λ((I×Ω,P, µ),Mc) of P measurable

Mc(⊂ M(U)) valued random processes. We can introduce a suitable metric

topology on this space and turn this into a complete metric space as follows.

First note that U is a compact metric space and therefore the Banach space

C(U), furnished with usual norm topology, is separable. Let {φn} denote any

countable set dense in the closed unit ball of the B-space C(U) and µ the measure

introduced above which is defined on the predictable sigma algebra P. Define the

function ρ : Λ× Λ −→ [0,∞] by

ρ(u, v) ≡
∞∑

n=1

(1/2n)

(∫
I×Ω

|ut,ω(φn)− vt,ω(φn)|2dµ
)1/2

1 +
(∫

I×Ω
|ut,ω(φn)− vt,ω(φn)|2dµ

)1/2 ,
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where

ut,ω(φ) ≡
∫
U

φ(η)ut,ω(dη)

for φ ∈ C(U). This defines a metric on the topological space Λ and that comple-

tion of this with respect to this metric topology turns this into a complete metric

space. Convergence in this metric is equivalent to w∗-convergence in Mc for µ-a.e

(t, ω) ∈ I × Ω. We denote this metric topology by τµw∗ and choose any compact

subset Uad ⊂ (Λ, τµw∗) as the class of admissible controls. Now we present a result

on continuity of the control to solution map.

Theorem 4.1. Consider the system (9) driven by the control u ∈ Uad and

suppose the assumptions of Theorem 3.2 hold. Then the control to solution map

u −→ x is continuous with respect to the relative τµw∗ topology on Uad and the

strong (norm) topology on Ba
∞(I, Eγ).

Proof. Consider the net uα ∈ Uad, α ∈ D (a countably accessible directed

set), and suppose uα
τµw∗
−→ uo. Let {xα, xo} ∈ Ba

∞(I, Eγ) denote the solutions

of the integral equation (9) corresponding to the controls {uα, uo} respectively.

We show that xα
s−→ xo in Ba

∞(I, Eγ). Clearly it follows from equation (9)

corresponding to the controls {uo, uα} that

xo(t)− xα(t) =

∫ t

0

S(t− s)
(
f(s, xo(s), uos)− f(s, xα, uαs )

)
ds

+

∫ t

0

S(t− s)
(
σ(s, xo(s), uos)− σ(s, xα, uαs )

)
dWd(s), t ∈ I. (23)

The reader can easily verify that this identity is equivalent to the following one

xo(t)− xα(t) =

∫ t

0

S(t− s)
(
f(s, xo(s), uαs )− f(s, xα(s), uαs )

)
ds

+

∫ t

0

S(t− s)
(
σ(s, xo(s), uαs )− σ(s, xα(s), uαs )

)
dWd(s)

+ eα1 (t) + eα2 (t), t ∈ I, (24)

where {eα1 , eα2 } are given by

eα1 (t) ≡
∫ t

0

S(t− s)
(
f(s, xo(s), uos)− f(s, xo(s), uαs )

)
ds, t ∈ I, (25)

eα2 (t) ≡
∫ t

0

S(t− s)
(
σ(s, xo(s), uos)− σ(s, xo(s), uαs )

)
dWd(s), t ∈ I. (26)
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Taking expected value of the norm square and using the assumptions (A1)–(A4)

and carrying out some computations, it follows from (24) that for all t ∈ I, we

have

sup
0≤s≤t

E|xo(s)− xα(s)|2Eγ
≤ 23

{
η(t) sup

0≤s≤t
E|xo(s)− xα(s)|2Eγ

+ sup
0≤s≤t

(
E|eα1 (s)|2Eγ

+E|eα2 (s)|2Eγ

)}
. (27)

Since we can choose t1 > 0 such that 23η(t1) < 1, it follows from the above

inequality that

sup
0≤s≤t1

E|xo(s)− xα(s)|2Eγ
≤ 1

(1−23η(t1))
sup

0≤s≤t1

(
E|eα1 (s)|2Eγ

+E|eα2 (s)|2Eγ

)
. (28)

For any compact interval like I, this process can be continued till the entire

interval is covered. So it suffices to verify that the righthand member of (28)

converges to zero. Starting with (25) we note that

E|eα1 (t)|2Eγ
≤E

(∫ t

0

∥Aγ+θS(t−s)∥L(E)|A−θ[f(s, xo(s), uos)−f(s, xo(s), uαs )]|Eds
)2

≤
∫ t

0

∥Aγ+θS(t− s)∥2L(E)ds E

∫ t

0

|f(s, xo(s), uos)− f(s, xo(s), uαs )|2E−θ
ds. (29)

By assumption (A4) it follows from (29) that

E|eα1 (t)|2Eγ
≤C2

γ+θ

t1−2(γ+θ)

1−2(γ + θ)
E

∫ t

0

|f(s, xo(s), uos)−f(s, xo(s), uαs )|2E−θ
ds. (30)

By assumption (A2) we have |f(s, xo(s), uos) − f(s, xo(s), uαs )|2E−θ
≤ 4K2

θ (1 +

|xo(s)|2Eγ
) and therefore by Theorem 3.2 the integrand in (30) is dominated by

the integrable function as displayed above. Further the integrand converges to

zero µ-a.e as uα
τµw∗
−→ uo. Since D is a countably accessible directed set, Lebesgue

dominated convergence theorem applies [20]. Thus it follows from Lebesgue domi-

nated convergence theorem applied to (30) that limα E|eα1 (t)|2Eγ
= 0 as uα

τµw∗
−→ uo

for each t ∈ I (and even uniformly on I). Considering (26) we note that

E|eα2 (t)|2Eγ
= E

∫ t

0

tr

(
Aγ+θS(t− s)A−θ

[
σ(s, xo(s), uos)− σ(s, xo(s), uαs )

]
Qd

×
(
Aγ+θS(t− s)A−θ

[
σ(s, xo(s), uos)− σ(s, xo(s), uαs )

])∗)
ds.
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Using the basic properties of trace operation in Hilbert spaces it follows from the

above expression that

E|eα2 (t)|2Eγ
≤ E

∫ t

0

∥Aγ+θS(t− s)∥2L(E)∥A
−θ(σ(s, xo(s), uos)

− σ(s, xo(s), uαs ))∥2Qd
ds. (31)

Since uα
τµw∗−→ uo, the integrand in the expression (31) converges to zero µ-a.e. On

the other hand, by assumption (A3) we have

∥A−θ
(
σ(s, xo(s), uos)− σ(s, xo(s), uαs )

)
∥2Qd

≤ 4K2
d,θ(1 + |xo(s)|2Eγ

)

and by Theorem 3.2, xo ∈ Ba
∞(I, Eγ). Thus it is clear that the integrand on

the right hand side of the inequality (31) is dominated by an integrable random

process. Hence, again by Lebesgue dominated convergence theorem, we conclude

that for each t ∈ I, limα E|eα2 (t)|2Eγ
= 0 as uα

τµw∗
−→ uo. Further, it follows from

(31) and the above inequality that

E|eα2 (t)|2Eγ
≤ 4

(
Kd,θCγ+θ

)2
(1 + b2)

t1−2(γ+θ)

1− 2(γ + θ)
(32)

where b2 ≡ ∥xo∥2Ba
∞(I,Eγ)

. Thus the convergence limα E|eα2 (t)|2Eγ
= 0 is also

uniform in t ∈ I. This shows that the expression on the righthand side of the

inequality (28) converges to zero. As stated above this process can be continued

exhausting the interval I. This proves the continuity as stated. �

Remark 4.2. As pointed out by a reviewer of this paper, in general Lebesgue

dominated convergence (LDC) theorem does not apply to net convergence. How-

ever, if the directed set is countably accessible [20], LDC does hold.

Remark 4.3. Given the topology on Ba
∞(I, Eγ), it does not seem possible to

relax the topology τµw∗ further.

5. Existence of optimal controls

5.1. Standard control problem. We consider the following control problem.

The cost functional is given by

J(u) = E
{∫

I

ℓ(t, x(t), ut)dt+Φ(x(T ))
}

(33)
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where x ∈ Ba
∞(I, Eγ) is the solution of the integral equation (9) (mild solution of

the controlled version of system (1)) corresponding to the control u ∈ Uad. This

is a Bolza problem. The objective is to find a control uo ∈ Uad that minimizes

the functional J . The first problem we consider is the question of existence of

such controls.

Theorem 5.1. Consider the system (9) with the cost functional given by

(33). Suppose the assumptions of Theorem 4.1 hold, the function ℓ : I × Eγ ×
Mc −→ R is measurable in t ∈ I, lower semicontinuous in (x, u) ∈ Eγ ×Mc; Φ is

lower semi continuous on Eγ , and further there exists a finite positive number κ

such that

|ℓ(t, x, u)| ≤ κ{1 + |x|2Eγ
}, |Φ(x)| ≤ κ(1 + |x|2Eγ

) ∀ (t, x, u) ∈ I × Eγ ×Mc.

Then there exists an optimal control for the problem (33).

Proof. Since the set of admissible controls Uad is compact in the τµw∗ topol-

ogy, it suffices to prove that u −→ J(u) is lower semicontinuous in this topology.

Let uα, α ∈ D (a countably accessible directed set), be a net that converges in

the τµw∗ to uo ∈ Uad. Let {xα, xo} denote the solutions of the integral equation

(9) corresponding to the controls {uα, uo} respectively. The by Theorem 4.1,

xα
s−→ xo in Ba

∞(I, Eγ). Hence, along a subnet if necessary, xα(t)
s−→ xo(t) in

Eγ almost surely for all t ∈ I. Thus for almost all t ∈ I, it follows from our

assumption on lower semicontinuity of ℓ that

ℓ(t, xo(t), uot ) ≤ lim ℓ(t, xα(t), uαt ), µ a.e. (34)

By our assumption on ℓ we have |ℓ(t, xα(t), uαt )| ≤ κ{1 + |xα(t)|2E} µ a.e, and by

Corollary 3.2, the solution set is bounded and therefore there exists an Ft-adapted

nonnegative integrable process Z(t), t ∈ I, so that

sup
α∈D

{|ℓ(t, xα(t), uαt )|, |ℓ(t, xo(t), uot )|} ≤ Z(t).

Hence Fatou’s Lemma applies and from this lemma we may conclude that

E

∫
I

ℓ(t, xo(t), uot ) dt ≤ limE

∫
I

ℓ(t, xα(t), uαt ) dt. (35)

Since Φ is also lower semicontinuous on Eγ , and by Theorem 4.1, xα(T )
s−→ xo(T )

in Eγ P -a.s, it follows from the growth property of Φ that Fatou’s lemma holds

and we have

EΦ(xo(T )) ≤ limEΦ(xα(T ).
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Thus we have demonstrated that each component of the functional J(u) given

by (33) is lower semicontinuous. It is well known that the sum of liminf is equal

or less than the liminf of the sum. Hence we conclude that u −→ J(u) is lower

semicontinuous in the τµw∗ topology. Since Uad is compact in this topology, J

attains its minimum on Uad. Hence an optimal control does exist. This completes

the proof. �

Remark 5.2. Note that the lower semicontinuity assumption of ℓ on E ×Mc

is trivially satisfied if x −→ ℓ(t, x, ξ) is continuous on E for almost all t ∈ I

uniformly with respect to ξ ∈ U .

Remark 5.3. If, for almost all t ∈ I, the optimal relaxed control uot (·) is

absolutely continuous with respect to Lebesgue measure then the optimal control

is an element of the class of regular controls (measurable functions) Ur.

For existence of optimal regular controls it is necessary to impose stronger

assumptions on the drift and the diffusion {f, σ} and the cost integrands including

the control space U .

Theorem 5.4. Suppose A generates a compact analytic semigroup S(t),

t> 0, and both {f, σ} are linear in control, and the control domain U ⊂Lp(Σc, R
d),

p ∈ [2,∞), is weakly compact and convex with admissible controls Ur ≡ La
∞(I, U).

Suppose the cost integrands ℓ and Φ satisfy the assumptions of Theorem 5.1 and

further, ℓ is convex in the control variable and once continuously Gateaux differ-

entiable. Then there exists an optimal control in the class Ur.

Proof. Under the given assumptions, u −→ J(u) is weak star lower semi-

continuous on Ur and Ur is weak star compact. Thus J attains its minimum

on Ur. �

5.2. Some nonstandard control problems. Consider the control system (9)

and let µ0 denote the measure induced by the initial state x0 and S(µ0) its

support. Let K ⊂ Eγ be a closed set(target set) and suppose S(µ0) ∩ K = ∅.
The objective is to maximize the probability of hitting K at a given time say T .

Clearly, the objective functional to be maximized is given by

J1(u) = P{xu(T ) ∈ K} = µu
T (K), (36)

where xu ∈ Ba
∞(I, Eγ) is the solution of the integral equation (9) corresponding

to the control u ∈ Uad and µu ≡ {µu
t , t ∈ I}, is the associated probability measure

valued function. Similarly, one may like to maximize the functional

J2(u) ≡
∫
I

P{xu(t) ∈ K} dt =
∫
I

µu
t (K)dt (37)
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which is an indicator of the time spent by the trajectory xu in the set K. If

J2(u) = 0, it indicates that xu(t) never hits the set K. On the other hand if it

equals ℓ(I), the length of the interval I, xu(t) ∈ K for all t ∈ I and consequently

µu
t (K) = 1 for all t ∈ I. Many such problems can be formulated in terms of the

measure valued functions {{µu
t , t ∈ I}, u ∈ Uad} induced by the solutions of the

control system (9). For this we must study the properties of these measures. For

any given initial measure µ0, define the reachable (or attainable) set of measures

at any time t ∈ I by

R(t) ≡ {µu
t , u ∈ Uad}.

In the following theorem we prove the weak compactness of the attainable set.

Theorem 5.5. LetMo(Eγ) denote the space of regular probability measures

on B(Eγ), the Borel subsets of Eγ . Suppose the assumptions of Theorem 4.1 hold.

Then, for each t ∈ I, the attainable set of measures R(t) induced by the control

system (9) is a weakly compact subset of the space Mo(Eγ).

Proof. The proof is similar to that of [ 6, Theorem 5.2]. �

In fact the probability measures induced by the solutions of the system (9)

are much more regular than those of Mo(Eγ). Let

M2(Eγ) ≡
{
µ ∈ Mo(Eγ) :

∫
Eγ

|x|2Eγ
µ(dx) <∞

}
denote the space of regular probability measures having finite second moments. It

is interesting to mention that the reachable set is not only a weakly compact subset

of Mo(Eγ), it is also a weakly compact subset of the space M2(Eγ) ⊂ M0(Eγ).

This is stated in the following theorem.

Theorem 5.6. Under the assumptions of Theorem 5.5, for each t ∈ I, the

reachable set of measures R(t) induced by the control system (9) is a weakly

compact subset of M2(Eγ).

Proof. The proof is identical to that of [6, Theorem 5.4]. �

Using the above results we can prove the existence of optimal controls for

the above mentioned problems.

Corollary 5.7. Consider the control system (9) with the admissible controls

Uad endowed with the τµw∗ topology and let K be a closed subset of Eγ giving the

objective functionals J1(u) of (36) and J2(u) of (37) respectively. Suppose the

assumptions of Theorem 4.1 hold. Then, there exist optimal controls maximizing

the functionals J1(u) and J2(u) respectively.
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Proof. The proof follows from [6, Corollary 5.5, 5.6]. �

Another problem of significant interest is: given a probability measure valued

function ν over the interval I, can we find one induced by the control system (9)

that is closest to it?. This can be formulated by use of the Prokhorov metric dP
on M0(Eγ). The objective functional is taken as

J(u) =

∫
I

dp(µ
u
t , νt) dt. (38)

The problem is to find a control that minimizes this functional.

Corollary 5.8. Consider the control system (9) with the admissible controls

Uad endowed with the τµw∗ topology and the cost functional (38). Suppose the as-

sumptions of Theorem 4.1 hold. Then, there exists an optimal control minimizing

the functional (38).

Proof. Since Uad is compact in the τµw∗ topology, it suffices to prove that

u −→ J(u) is lower semi-continuous with respect to this topology. First, we note

that since E is separable, Eγ , γ ∈ [0, 1) is separable. Thus the topology induced by

the Prokhorov metric on Mo(Eγ) is equivalent to the topology induced by weak

convergence in Mo(Eγ). Let {uα} ∈ Uad be any net converging to uo ∈ Uad in

the τµw∗ topology and let {xα, xo} denote the corresponding solutions of equation

(9) and {µα, µo} denote the associated measure valued functions. Then it follows

from Theorem 4.1 that xα −→ xo in Ba
∞(I, Eγ) as uα

τµw∗
−→ u0. Thus there

exists a subnet, relabeled as the original net, such that for each t ∈ I, xα(t)
s−→

xo(t) in Eγ P -a.s. Hence for any φ ∈ Cb(Eγ), the space of bounded continuous

functions on Eγ , φ(x
α(t)) −→ φ(xo(t)) for each t ∈ I P -a.s. This means that∫

Eγ
φ(ξ)µα

t (dξ) −→
∫
Eγ
φ(ξ)µo

t (dξ) for each φ ∈ Cb(Eγ). Clearly, then µ
α
t

w−→ µo
t

for each t ∈ I and therefore by virtue of the equivalence mentioned above we

conclude that dP (µ
α
t , νt) −→ dP (µ

o
t , νt) for each t ∈ I. Since dP (µ1, µ2) ≤ 2 for

all µ1, µ2 ∈ M0(Eγ) it follows from Lebesgue bounded convergence theorem that

lim
α

∫
I

dP (µ
α
t , νt)dt =

∫
I

dP (µ
o
t , νt)dt.

This shows that the functional (38) is actually continuous with respect to τµw∗

topology on Uad. Thus there exists a control u∗ ∈ Uad at which this functional

attains its minimum. This proves the existence of an optimal control. �

Remark 5.9. In fact the previous Corollary can be easily generalized giving

J(u) ≡
∫ T

0

dP (µ
u
t , νt)λ(dt), (39)
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where λ is any positive measure on the sigma field of Borel subsets of the set

I ≡ [0, T ] having bounded total variation.

Remark 5.10. In case of evasion problems, one must maximize the Prokhorov

distance or the functional (38). Since u −→ J(u) is continuous, as seen above, it

attains both its minimum and maximum. Thus there exists an optimal control

that maximizes the functional (38).

Many such interesting control problems such as target following problem,

first hitting time problem, etc are considered in [6, Corollary 5.8, Corollary 5.9,

Corollary 5.10]. Using the same technique one can consider similar problems for

the system (9).

6. An example

Kuramoto-Sivashinsky Like Equation: Here we wish to consider control

problems for the well known Kuramoto–Sivashinsky like equation in one dimen-

sion subject to both distributed and boundary noise. A generalized version of the

KSE system is given

∂tv + a∆2v + b∆v = Df1(v,Dv) + F2u+ g0(ξ)n0(t), ξ ∈ Σ ≡ (0, 1), (40)

Bv = g1(ξ)n1(t) for ξ ∈ ∂Σ = {0, 1} (41)

where the boundary operator B is given by

(B1v)(ξ) ≡ β0v(ξ), (B2v)(ξ) ≡ β1v(ξ) + β2Dνv(ξ) for ξ ∈ ∂Σ (42)

with β0, β1, β3 ̸= 0. Here we have usedDk to denote the spatial derivative of order

k and Dν the directional derivative at any point ξ ∈ ∂Σ along the normal pointing

outward of the boundary. The coefficients {a, b} are real positive and those of

the boundary operator B are assumed to be nonzero. The function f1 : R2 −→ R

is continuous with respect to its arguments, g0 ∈ L2(Σ) and n0 is the standard

white noise. The function g1 ∈ L2(∂Σ, R
2×2) where R2×2 denotes the class of

2 × 2 square matrices (with entries real) and n1 is an R2 valued standard white

noise.

Note that for a > 0 the operator a∆2 is dissipative under homogeneous

Dirichlet boundary condition while for b > 0 the operator b∆ is accretive or anti-

dissipative. Define the differential operator A by Aφ = a∆2φ+b∆φ. Then define

the operator A by setting D(A) = {φ ∈ E : Aφ ∈ E & φ|∂Σ = Dφ|∂Σ = 0} =
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H4 ∩H2
0 . We show that under these assumptions the operator −A generates an

analytic semigroup on the Hilbert space E ≡ L2(Σ). Indeed, by simple integration

by parts one can easily verify that

(Aφ,φ) + (b/2ε)|φ|2E ≥ (a− bε/2)|∆φ|2E (43)

for all ε > 0 and all φ ∈ D(A). Choosing ε = a/b we obtain

(Aφ,φ) + (b2/2a)|φ|2E ≥ (a/2)|∆φ|2E . (44)

For every φ ∈ D(A) it follows form elementary computation (or Poincaré inequal-

ity) that there exists a positive constant c such that |φ|E ≤ c|∆φ|E . From the

above inequalities we obtain the following resolvent inequality

|(λI +A)−1|L(E) ≤
1

λ+ r0
∀ λ > −r0 (45)

where r0 = (a2 − b2c2)/2ac2. Note that the destabilizing influence of the anti-

dissipative term is very well reflected in the resolvent inequality. From now on

we use the same symbol A to denote its closed extension in E as an unbounded

operator. One can easily verify that the operator A is self adjoint on the Hilbert

space E but not positive. It is clear from the inequality (44) or (45) that for

β > ((b2c2 − a2)/2ac2), the operator Aβ ≡ (βI + A) is an unbounded positive

self adjoint operator in E. Then it follows from (45) that the resolvent of the

operator Aβ satisfies the inequality |(λI + Aβ)
−1|L(E) ≤ 1/λ, for λ > 0. Since

Aβ is closed and densely defined it follows from Hille–Yosida theorem that −Aβ

generates a C0-semigroup Sβ(t), t ≥ 0, of contractions on E. Using the operator

Aβ , we can rewrite the system (40), with homogeneous boundary condition, as

an ordinary differential equation on the Hilbert space E in the abstract form

(d/dt)v +Aβv = F1(v) + F2u+ Ẇ0 (46)

where F1(v) = βv + Df1(v,Dv) and Ẇ0 ≡ g0n0 is the space time white noise.

Let C denote the field of complex numbers. Then, for λ ∈ C given by λ = ν + iτ

with ν > 0, one can easily verify that

|(λI +Aβ)φ,φ)| ≥ |τ | |φ|2E

and hence |(λI + Aβ)φ| ≥ |τ | |φ|E for all φ ∈ D(A) = D(Aβ). From this we

obtain

|(λI +Aβ)
−1|L(E) ≤ 1/|τ |
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for all ν = Reλ > 0 and τ ̸= 0. Thus it follows from Hille’s characterization of

analytic semigroups [10, Theorem 3.2.7, p. 82] see also [Pazy, 17, Theorem 5.2,

p. 61] that −Aβ generates an analytic semigroup Sβ(t), t ≥ 0 in E. As a result,

−A generates an analytic semigroup S(t) = Sβ(t)e
βt. Then the mild solution

of equation (46) with homogeneous boundary condition Bv = 0 is given by the

solution of the integral equation

v(t) = Sβ(t)v0 +

∫ t

0

Sβ(t− s)F1(v(s))ds

+

∫ t

0

Sβ(t− s)F2usds+

∫ t

0

Sβ(t− s)dW0 (47)

in the Hilbert space Eγ ≡ D(Aγ) for a suitable γ ∈ [0, 1] that admits F1 of the

form given by the expression following equation (46). For the nonhomogeneous

boundary data this equation takes the form

v(t) = Sβ(t)v0 +

∫ t

0

Sβ(t− s)F1(v(s))ds+

∫ t

0

Sβ(t− s)F2usds

+

∫ t

0

Sβ(t− s)dW0 +

∫ t

0

AβSβ(t− s)R dW1(s) (48)

whereR is the Dirichlet map given byR = (B|ker(A))
−1, andW1 is the L2(∂Σ, R

2)

-valued Brownian motion with distributional derivative Ẇ1(t) = g1(·)n1(t), t ≥ 0.

This represents the boundary noise. System (48) is a special case of our system

given by the stochastic integral equation (9) and therefore all the results on control

of Section 5 hold for this case.
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