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Abstract. In the present paper we deal with the following generalization of the

sine-cosine equation

ż

rf1px` y ´ tq ` f2px´ y ` tqs dµptq “ gpxqhpyq

for complex valued functions f1, f2, g and h defined on a commutative topological group

G, where µ is a complex measure defined on G.

1. Introduction

Let G be an arbitrary group. One of the most famous trigonometric func-

tional equations is d’Alembert’s functional equation:

fpx` yq ` fpx´ yq “ 2fpxqfpyq, x, y P G. (1)

Equation (1), also called the cosine equation, as f “ cos satisfies (1) in the real-

to-real case, has been investigated by many authors. Pl. Kannappan [4, Kan-

nappan] considered d’Alembert functional equation if the unknown function is

defined on an arbitrary commutative group and takes values in the field of complex

numbers under certain commutative-type conditionx
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One of the possible generalizations of d’Alembert’s functional equation is

Wilson’s functional equation

gpx` yq ` gpx´ yq “ 2gpxqfpyq, x, y P G. (2)

This is called also the sine-cosine functional equation as g “ sin and f “ cos is a

solution in the real-to-complex case. It is worth underlining that the main diffi-

culty in solving Wilson’s-type equations is to give a description of the function g.

This is not obvious even in the real-to-real case. One possible method is to use

spectral synthesis. This was discussed in details in [7, Székelyhidi]. For further

discussion of generalizations of cosine and sine equations for unknown mappings

defined on non-commutative groups see [6, Stetkær] and references therein.

Observe that (1) can be written as the convolution of the unknown function

f with a measure:

f ˚

ˆ

1

2
δy

˙

pxq ` f ˚

ˆ

1

2
δ´y

˙

pxq “ fpxqfpyq, x, y P G,

where δy denotes the Dirac measure concentrated at y. Our aim is to generalize

this equation by substituting the Dirac measure by a – more or less – arbitrary

measure.

In the same manner as for d’Alembert equation we can rewrite equation (2)

as convolution of the unknown function with the Dirac measure, however, this

time we have two unknown functions, namely

g ˚

ˆ

1

2
δy

˙

pxq ` g ˚

ˆ

1

2
δ´y

˙

pxq “ gpxqfpyq, x, y P G.

Hence our generalization works in two directions: we have more unknown func-

tions and an “almost” arbitrary measure.

Motivation for this investigation is the following equation:

pf ˚ µyqpxq ` pf ˚ µ̌yqpxq “ fpxqfpyq, x, y P G, (3)

which was introduced and solved by Z. Gajda in [3, Gajda] for essentially

bounded measurable functions defined on a locally compact abelian group. Here

µy, resp. µ̌ denotes the translate, resp. the inversion of the measure µ. The main

tool used by Gajda was the Wiener Tauberian theorem, and he expressed the solu-

tion as a linear combination of characters of the group with coefficients depending

on the measure µ.
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The next attempt was the investigation of the Gajda-type generalization of

Wilson’s functional equation, namely

pg ˚ µyqpxq ` pg ˚ µ̌yqpxq “ gpxqfpyq, x, y P G, (4)

which has been discussed in [1, Fechner]. In [2, Fechner] the following equation

pf ˚ µyqpxq ` pf ˚ µ̌yqpxq “ gpxqfpyq, x, y P G, (5)

has been investigated as a counterpart of (4).

In this paper we shall consider the integral-functional equation

ż

rf1px` y ´ tq ` f2px´ y ` tqsdµptq “ gpxqhpyq, x, y P G, (6)

where f1, f2, g, h : G Ñ C are unknown functions and µ is a complex measure

on G, or equivalently, we use the convolution form

pf1 ˚ µqpx` yq ` pf̌2 ˚ µqpx´ yq “ gpxqhpyq, x, y P G, (7)

where f̌pxq “ fp´xq for every x in G, and we have interchanged the roles of g

and h. This equation is a common generalization of (3), (4) and (5).

In the forthcoming paragraphs we shall use the results in [7, Székelyhidi] to

give a complete description of the solutions of (7). The idea is that, by introducing

the functions F1 “ f1 ˚ µ and F2 “ f̌2 ˚ µ, we have the functional equation

F1px` yq ` F2px´ yq “ gpxqhpyq, x, y P G, (8)

where F1, F2 have similar regularity properties like f1 and f2. Having the gen-

eral solution of equation (8) we have to solve the inhomogeneous convolution

equations, which define F1 and F2.

We may impose different conditions on the topology of G, on the functions

and on the measure so that the integrals exist. If G is locally compact, then

we suppose that µ is a compactly supported Borel measure and the unknown

functions are continuous. In particular, if G is a discrete group, then µ is finitely

supported and no conditions on the unknown functions are assumed. If G is an

arbitrary topological group, then µ is a Borel measure and the unknown functions

are µ-integrable.
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Notation and terminology

For a given function f : GÑ C, as above, we use the notation

f̌pxq “ fp´xq, x P G

and

fepxq “
1

2

`

fpxq ` f̌pxq
˘

, fopxq “
1

2

`

fpxq ´ f̌pxq
˘

for each x in G, and we call these functions the even part, and the odd part of f ,

respectively. We have, obviously, f “ fe ` fo.

Let G be a topological group. We call a nonzero function m : G Ñ C an

exponential, if it satisfies

mpx` yq “ mpxqmpyq

for each x, y in G. It is easy to see that an exponential never vanishes. A function

a : GÑ C is called additive, if it satisfies

apx` yq “ apxq ` apyq

for each x, y in G. For more about exponentials and additive functions see [7,

Székelyhidi]. In particular, we shall use the result, which says that a represen-

tation of a function in the form x ÞÑ papxq ` bqmpxq is unique, whenever m is

an exponential, a is additive and b is a complex number (see [7, Székelyhidi],

Lemma 4.3, p. 41). It follows that functions of this form are linearly dependent

if and only if they have the same exponential, and the corresponding apxq ` b

factors are linearly dependent.

We shall deal with functions T : GÑ C, which are constant on the cosets of

the subgroup 2G. Such functions we will call 2G-periodic. Obviously, 2G-periodic

functions are even. In particular, an exponential is 2G-periodic if and only if it is

even. If G is 2-divisible, that is G “ 2G, then 2G-periodic functions are constant,

2G-periodic additive functions are identically zero, and 2G-periodic exponentials

are identically 1.

If µ is a measure on G with the property that the exponential m is integrable

with respect to µ, then we use the notation

pµpmq “

ż

m̌dµ.

This is the standard notation used for the Fourier–Stieltjes transform, which is the

restriction of pµ to the dual of G (see e.g. [5, Rudin]). We note that convolution

is defined in the usual manner

pf ˚ µqpxq “

ż

fpx´ tq dµptq,

whenever it exists.
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2. Solution of equation (8)

In this section we describe the solutions of the functional equation (8) using

the results of [7, Székelyhidi, Section 11].

Theorem 1. Let G be an abelian group and let F1, F2, g, h : G Ñ C be

functions satisfying the functional equation (8) for each x, y in G. Then the

functions F “ F1 ` F2 and H “ F1 ´ F2 satisfy the functional equations

F px` yq ` F px´ yq “ 2gpxqhepyq, (9)

and

Hpx` yq ´Hpx´ yq “ 2gpxqhopyq (10)

for each x, y in G.

Proof. Substituting y by ´y in (8), and then adding, resp. subtracting the

new equation to, resp. from (8) we obtain (9), resp. (10). �

First we describe the solutions of (9).

Theorem 2. Let G be an abelian group and let F, g, h : GÑ C be functions

satisfying the functional equation

F px` yq ` F px´ yq “ 2gpxqhepyq (11)

for each x, y in G. Then we have the following possibilities:

i) F pxq “ γpαmpxq ` βmp´xqq

gpxq “ αmpxq ` βmp´xq

hepxq “
γ

2
pmpxq `mp´xqq,

ii) F pxq “ papxq ` αβqm0pxq

gpxq “

„

1

α
apxq ` β



m0pxq

hepxq “ αm0pxq, α ‰ 0

iii) F pxq “ 0, gpxq “ 0, h “ arbitrary function

iv) F pxq “ 0, g “ arbitrary function, h “ arbitrary odd function
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for each x in G, where α, β, γ are complex numbers, γ ‰ 0, a : G Ñ C is an

additive function and m,m0 : GÑ C are exponentials with m ‰ m̌ and m0 “ m̌0.

Conversely, any functions with the given properties satisfy the functional equation

(11). If, in addition, G is a topological group, F ‰ 0, and g ‰ 0 is continuous,

then F , a, m are continuous, too. If G is a locally compact abelian group, F ‰ 0

and g ‰ 0 is measurable, then a, m, F , g, he are continuous.

Proof. The last two cases are obvious, so we suppose that F ‰ 0. By The-

orem 11.1, p. 97 in [7, Székelyhidi], it follows that F has one of the following

forms:

i) F pxq “ αmpxq ` βmp´xq,

ii) F pxq “ papxq ` bqm0pxq

for each x in G, where α, β, b are complex numbers, a : G Ñ C is an additive

function, m,m0 : GÑ C are exponentials, further m ‰ m̌ and m0 “ m̌0. As F

is nonzero, hence hep0q ‰ 0, which implies that g has the same form with some

different constants, and as g is nonzero, hence the same holds for he. Substitution

of the given expressions for F , g, he into (11) and renaming the constants we

obtain our statement.

The regularity statements follow immediately from Lemma 5.5 and Theo-

rem 5.10 in [7, Székelyhidi]. �

Now we describe the solutions of (10).

Theorem 3. Let G be an abelian group and let H, g, h : GÑ C be functions

satisfying the functional equation

Hpx` yq ´Hpx´ yq “ 2gpxqhopyq (12)

for each x, y in G. Then we have the following possibilities:

i) Hpxq “ αγmpxq ´ βγmp´xq ` T pxq

gpxq “ αmpxq ` βmp´xq, hopxq “
γ

2
pmpxq ´mp´xqq,

ii) Hpxq “ papxq ` bqm0pxq ` T pxq

gpxq “
1

α
m0pxq, hopxq “ αapxqm0pxq,

iii) Hpxq “ T pxq, gpxq “ 0, h “ arbitrary function,

iv) Hpxq “ T pxq

g “ arbitrary function, h “ arbitrary even function
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for each x in G, where α, β, γ are complex numbers, α ‰ 0, a : G Ñ C is a

nonzero additive function, m,m0 : G Ñ C are exponentials, m ‰ m̌, m0 “ m̌0,

further T : G Ñ C is a 2G-periodic function. Conversely, the functions given

with these properties satisfy the functional equation (11). If, in addition, G is a

topological group and g, ho ‰ 0 are continuous, then a, m, m0 are continuous,

too. If G is a locally compact abelian group and g, ho ‰ 0 are measurable, then

a, m, m0, g, ho are continuous.

Proof. Similarly, like in the proof of the previous theorem, the last two

cases are obvious, so we suppose that H, g, ho ‰ 0. Then, by Theorem 11.2 in [7,

Székelyhidi], we have that H has one of the following forms:

i) Hpxq “ αmpxq ` βmp´xq ` T pxq,

ii) Hpxq “ papxq ` bqm0pxq ` T pxq

for each x in G, where α, β, b are complex numbers, a : G Ñ C is an additive

function, m,m0 : GÑ C are exponentials, further m ‰ m̌ and m0 “ m̌0, and

finally T : G Ñ C is a 2G-periodic function. As g and ho are nonzero, hence

they have the same form with some different constants. Substitution of the given

expressions for H, g, ho into (11) and renaming the constants yields the statement.

The regularity statements follow immediately from Lemma 5.5 and Theo-

rem 5.10 in [7, Székelyhidi]. �

Now we are in the position to describe all solutions of the functional equa-

tion (8).

Theorem 4. Let G be an abelian group and let F1, F2, g, h : G Ñ C be

functions satisfying the functional equation (8) for each x, y in G. Then we have

the following possibilities:

i) F1pxq “ αγmpxq ` βδmp´xq ` T pxq

F2pxq “ αδmpxq ` βγmp´xq ´ T pxq

gpxq “ αmpxq ` βmp´xq, hpxq “ γmpxq ` δmp´xq

ii)
F1pxq “

1

2
papxq ` αβ ` γqm0pxq ` T pxq

F2pxq “
1

2
p´apxq ` αβ ´ γqm0pxq ´ T pxq

gpxq “ αm0pxq, hpxq “

„

1

α
apxq ` β



m0pxq

iii)
F1pxq “

1

2
papxq ` αβ ` γqm0pxq ` T pxq
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F2pxq “
1

2
papxq ` αβ ´ γqm0pxq ´ T pxq

gpxq “

„

1

α
apxq ` β



m0pxq, hpxq “ αm0pxq

iv) F1pxq “ T pxq, F2pxq “ ´T pxq, gpxq “ 0

h “ arbitrary function

v) F1pxq “ T pxq, F2pxq “ ´T pxq

g “ arbitrary function, hpxq “ 0

for each x in G, where α, β, γ, δ are complex numbers, (α ‰ 0 in (ii) and (iii)),

a : G Ñ C is a nonzero additive function, m,m0 : G Ñ C are exponentials, with

m0 is even, m ‰ m̌, and T : G Ñ C is a 2G-periodic function. Conversely, the

functions given with these properties satisfy the functional equation (8). If, in

addition, G is a topological group and g, h ‰ 0 are continuous, then a, m, m0

are continuous, too. If G is a locally compact group and g, h ‰ 0 are measurable,

then a, m, m0, g, h are continuous. If G is 2-divisible, then T is constant and the

given regularity properties hold for F1, F2, too.

Proof. By Theorem 2 and Theorem 3, we know the possible forms of F “

F1 ` F2 and H “ F1 ´ F2, further

F1 “
1

2
pF `Hq, F2 “

1

2
pF ´Hq.

The point is that in the formulas given for F and H in Theorem 2 and Theorem 3

the function g is the same. We have to pair the cases given in Theorems 2 and 3 in

such a way that g has the same form given in the two cases. In the following part

of the proof we go through all possible pairings of the cases in the two theorems

above.

In the first case we consider Case (i) in Theorem 2 and Case (i) Theorem 3,

so that we have

gpxq “ αmpxq ` βmp´xq “ α1m1pxq ` β1m1p´xq

for each x in G, where α, β, α1, β1 are constants, m, m1 are exponentials and

m ‰ m̌, m1 ‰ m̌1. By the linear independence of different exponentials we have

that in this case m “ m1, or m̌ “ m1. By symmetry, we may suppose that

m “ m1, hence α “ α1 and β “ β1. It follows that in the formulas for F and H

we have the same m, that is

F1pxq “ αγmpxq ` βδmp´xq ` T pxq



A generalization of Gajda’s equation on commutative topological groups 171

F2pxq “ αδmpxq ` βγmp´xq ´ T pxq

gpxq “ αmpxq ` βmp´xq

hpxq “ γmpxq ` δmp´xq

for each x in G. Here α, β, γ, δ are arbitrary complex numbers, m is an ex-

ponential and T : G Ñ C is a 2G-periodic function. This is Case (i) in our

statement.

Now we pair Case (i) in Theorem 2 with Case (ii) in Theorem 3. In this case

we must have β “ 0 and m “ m̌ “ m0, by the linear independence of different

exponentials. However, m ‰ m̌ in Case (i) of Theorem 2, hence this pairing is

impossible.

Pairing Case (i) in Theorem 2 with Case (iii) in Theorem 3 gives g “ 0,

hence α “ β “ 0, that is F1 ` F2 “ 0, which gives immediately our Case (iv)

above. Finally, pairing of Case (i) in Theorem 2 with Case (iv) in Theorem 3

yields Case (i) in our statement with δ “ γ “ 1
2γ
1, where γ1 denotes the constant

from Theorem 2 case (i).

Pairing Case (ii) in Theorem 2 with Case (i) is impossible: by independence

of exponentials we have m “ m̌ “ m0 but m ‰ m̌ in Case (i) of Theorem 2.

Pairing Case (ii) in Theorem 2 with Case (ii) in Theorem 3 gives Case (ii) above.

Pairing Case (ii) in Theorem 2 with Case (iii) Theorem 3 gives Case (iii) in our

present theorem. Finally, pairing Case (ii) in Theorem 2 with Case (iv) Theorem 3

gives Case (iii) above with γ “ 0.

Pairing Case (iii) in Theorem 2 with Case (i), with Case (iii), or with Case

(iv) in Theorem 3 results in Case (iv) above, and pairing Case (iii) in Theorem 2

with Case (ii) in Theorem 3 is impossible.

Pairing Case (iv) in Theorem 2 with Case (i), resp. with Case (ii) in Theo-

rem 3 gives Case (i), resp. Case (ii) above. Finally, pairing Case (iv) in Theorem 2

with Case (iii) in Theorem 3 gives Case (iv) above, and pairing Case (iv) in The-

orem 2 with Case (iv) in Theorem 3 gives Case (v) above.

Paring Case (v) in Theorem 3 with any of cases in Theorem 2 we obtain case

(iv) above with T “ 0.

Paring Case (vi) in Theorem 3 with case (i), resp. (ii) in Theorem 2 we

obtain case (i), resp. (ii) above. Paring Case (vi) in Theorem 3 with case (iii),

resp. (iv) in Theorem 2 we obtain case (iv), resp. (v) above with T “ 0.

It is a simple calculation to check the in all cases listed above the given

functions are solutions of the functional equation (8). Finally, the regularity

statements are consequences of the previous theorems. �
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3. Solution of Gajda-type equations

In this section we apply our results to the functional equation

ż

rfpx` y ´ tq ` fpx´ y ` tqsdµptq “ fpxqkpyq, (13)

which is a special case of (6) with the choice f “ f1 “ f2 “ g and k “ h. For the

existence of the integral in (13) we can use different assumptions on the group G,

the measure µ and the unknown functions f , k. Equation (13) was studied in

[1, Fechner] on locally compact abelian groups with the assumption that f , h

are essentially bounded Haar measurable functions and µ is a regular bounded

complex Borel measure. For the moment we assume that G is an abelian group,

further the measure µ on G and the functions f, k are such that the above integral

exists for each x, y in G. For instance, this is the case if G is a topological abelian

group, µ is a compactly supported Radon measure on G, and f , k are continuous

functions.

Our idea is to apply Theorem 4. Using the notation of Theorem 4 we have

F1 “ f ˚ µ, F2 “ f̌ ˚ µ, g “ f, h “ k.

Obviously, we may suppose that f ‰ 0. In addition we suppose that k ‰ 0, too.

Then we have three possibilities given by Theorem 4.

In the first case

fpxq “ γmpxq ` δmp´xq, kpxq “ αmpxq ` βmp´xq, (14)

and, by the form of F1 and F2, we have

αγmpxq ` βδmp´xq ` T pxq “ γpµpm̌qmpxq ` δpµpmqmp´xq,

further

αδmpxq ` βγmp´xq ´ T pxq “ γpµpmqmp´xq ` δpµpm̌qmpxq.

Here α, β, γ, δ are complex numbers, where at least one of γ and δ is nonzero,

m is a non-even exponential, and T is 2G-periodic. Using the fact that m and m̌

are linearly independent, substitution into (13) gives the following necessary and

sufficient condition for f , k is a solution:

γpµpmq “ αγ, γpµpm̌q “ βγ

δpµpmq “ αδ, δpµpm̌q “ βδ.
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By the condition on γ, δ, we infer α “ pµpmq and β “ pµpm̌q. In this case we have

T “ 0, which is 2G-periodic and f , k is a solution of (13). We note that f , k of

the form obtained in this way is a solution also in the case, when m is an even

exponential, as it is easy to see.

In the second case of Theorem 4 we have

fpxq “ αm0pxq, kpxq “

„

1

α
apxq ` β



m0pxq, (15)

and, by the form of F1 and F2, we have
„

1

2
apxq `

1

2
pαβ ` γq



m0pxq ` T pxq “ αm0pxqpµpm0q,

further
„

1

2
apxq `

1

2
pαβ ´ γq



m0pxq ´ T pxq “ αm0pxqpµpm0q.

Here α, β, γ are complex numbers, where α is nonzero, m0 is an even exponential,

and T is 2G-periodic. Substitution into (13) gives that a “ 0 and β “ 2pµpm0q.

In this case T is 2G-periodic, hence we have a solution. However, this solution is

included in the first case with m0 “ m “ m̌, and α “ γ ` δ.

Finally, in the third case of Theorem 4 we have

fpxq “

„

1

α
apxq ` β



m0pxq, kpxq “ αm0pxq, (16)

and, by the form of F1 and F2, we conclude
„

1

2
apxq `

1

2
pαβ ` γq



m0pxq ` T pxq

“
1

α
apxqm0pxqpµpm0q ` βm0pxqpµpm0q ´

1

α
m0pxq

ż

apyqm0pyqdµpyq,

further
„

´
1

2
apxq `

1

2
pαβ ´ γq



m0pxq ´ T pxq

“ ´
1

α
apxqm0pxqpµpm0q ` βm0pxqpµpm0q `

1

α
m0pxq

ż

apyqm0pyqdµpyq.

Here α, β, γ are complex numbers, where α is nonzero, m0 is an even exponential,

and T is 2G-periodic. Substitution into (13) gives the following necessary and

sufficient condition for f , k is a solution: α “ 2pµpm0q. In this case the two

equations for T hold true and T is 2G-periodic. It follows that in this case we

have a solution if and only if pµpm0q is nonzero for some even exponential m0.

We can summarize our results on the equation (13) in the following result.
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Theorem 5. Let G be an abelian group, µ a measure on G, and let f, k :

G Ñ C be nonzero functions such that the integral in (13) exists for each x, y

in G, further (13) holds. Then we have the following possibilities

iq fpxq “ γmpxq ` δmp´xq, kpxq “ pµpmqmpxq ` pµpm̌qmp´xq

for each x in G, where m is an exponential, and γ, δ are complex numbers.

fpxq “

„

1

2pµpm0q
apxq ` β



m0pxq, kpxq “ 2pµpm0qm0pxq

for each x in G, where m0 is an even exponential with pµpm0q ‰ 0, a is an additive

function, and β is a complex number.

i) fpxq “ γmpxq ` δmp´xq, kpxq “ pµpmqmpxq ` pµpm̌qmp´xq

for each x in G, where m is an exponential, and γ, δ are complex numbers.

ii) fpxq “

„

1

2pµpm0q
apxq ` β



m0pxq, kpxq “ 2pµpm0qm0pxq

for each x in G, where m0 is an even exponential with pµpm0q ‰ 0, a is an

additive function, and β is a complex number.

Conversely, the functions f, k given above are solutions of (13), whenever the

given conditions are satisfied. If G is a topological group, and f or k is continuous,

then a, m and m0 are continuous, too. If G is locally compact, and f or k is Haar

measurable, then f , k, a, m, m0 are continuous. If f or k is essentially bounded

and Haar measurable, then a “ 0, f , k, m, m0 are continuous, moreover m, m0

are characters of G.

We note that the regularity statements follow from the above results, or

directly from Lemma 5.5 (p. 48) and Theorem 5.10 (p. 51) in [7, Székelyhidi].

In a similar way we can obtain the more general solutions of equation (5),

that is
ż

rfpx` y ´ tq ` fpx´ y ` tqsdµptq “ kpxqfpyq, x, y P G, (17)

Our preliminary assumption for the computations below is again that G is an

abelian group, further the measure µ on G and the functions f , k are such that

the above integral exists for each x, y in G. Interchanging x and y and using the

notation

F1 “ f ˚ µ, F2 “ f̌ ˚ µ, g “ k, h “ f

we apply Theorem 4 again to get the following result exactly in the same way as

above.
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Theorem 6. Let G be an abelian group, µ a measure on G, and let f, k :

GÑ C be nonzero functions such that the integral in (17) exists for each x, y in

G, further (17) holds. Then we have the following possibilities

i) fpxq “ αpµpm̌qmpxq ` αpµpmqmp´xq, kpxq “ pµpm̌qmpxq ` pµpmqmp´xq,

for each x in G, where m is a non-even exponential, and α is a non-zero

complex constant.

ii) fpxq “ 2αpµpm0qm0pxq, kpxq “ 2pµpm0qm0pxq

for each x in G, where m0 is an even exponential with pµpm0q ‰ 0, and α is

a non-zero complex constant.

Conversely, the functions f , k given above are solutions of (17), whenever the

given conditions are satisfied. If G is a topological group, and f or k is continuous,

then m and m0 are continuous, too. If G is locally compact, and f or k is Haar

measurable, then f , k, m, m0 are continuous. If f or k is essentially bounded

and Haar measurable, then f , k, m, m0 are continuous, moreover m, m0 are

characters of G.

Observe that in case of equation (17) no additive function appears in the final

form of the solution. The reason is that the function g and h being the solution

of (8) described in Theorem 4 cannot have simultaneously the same additive

component.

The above results cover also the previous research mentioned in the intro-

duction. In the case of Gajda’s equation (3) we have f “ k and the solution has

the form

fpxq “ pµpmqmpxq ` pµpm̌qmp´xq

for each x in G, where m is an arbitrary exponential.

In the case of d’Alembert’s equation (1) the formula reduces to

fpxq “
1

2

`

mpxq `mp´xq
˘

,

as in this case µ “ 1
2δ0, hence

pµpmq “
1

2

ż

mp´yqdδ0pyq “
1

2
mp0q “

1

2
,

and similarly pµpm̌q “ 1
2 .
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