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On groups with small verbal conjugacy classes

By PAVEL SHUMYATSKY (Brasilia) and AGENOR FREITAS DE ANDRADE (Luziânia)

Abstract. Given a group G and a word w, we denote by Gw the set of all w-values

in G and by w(G) the corresponding verbal subgroup. The main result of the paper is

the following theorem. Let n be a positive integer and let w be either the lower central

word γn or the derived word δn. Let G be a group in which for any element g ∈ G there

exist finitely many Chernikov subgroups whose union contains gGw . Then 〈gw(G)〉 is

Chernikov for all g ∈ G.

1. Introduction

Let w be a word in n variables, and let G be a group. The verbal subgroup

w(G) of G determined by w is the subgroup generated by the set Gw consisting

of all values w(g1, . . . , gn), where g1, . . . , gn are elements of G. A word w is said

to be concise if whenever Gw is finite for a group G, it always follows that w(G)

is finite. P. Hall asked whether every word is concise, but it was later proved

that this problem has a negative solution in its general form (see [5, p. 439]). On

the other hand, many important words are known to be concise. For instance,

Turner-Smith [9] showed that the lower central words γn and the derived words

δn are concise; here the words γn and δn are defined by the formulae γ1 = δ0 = x,

γn = [γn−1, γ1] and δn = [δn−1, δn−1]. The corresponding verbal subgroups for

these words are the familiar nth term of the lower central series of G denoted by

γn(G) and the nth derived group of G denoted by G(n).
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There are several natural ways to look at Hall’s question from a different

angle. The circle of problems arising in this context can be characterized as

follows.

Given a word w and a group G, assume that certain restrictions are imposed

on the set Gw. How does this influence the properties of the verbal subgroup

w(G)?

If X and Y are non-empty subsets of a group G, we will write XY to denote

the set {y−1xy | x ∈ X, y ∈ Y }. In [2] groups G with the property that xGw

is finite for all x ∈ G were called FC(w)-groups. Recall that FC-groups are

precisely groups with finite conjugacy classes. The main result of [2] tells us that

if w is a concise word, then a group G is an FC(w)-group if and only if xw(G) is

finite for all x ∈ G. In particular, it follows that if w is a concise word and G is

an FC(w)-group, then the verbal subgroup w(G) is FC. Later it was shown in

[1] that there exists a function f = f(m,w) such that if, under the hypothesis of

the above theorem, xGw has at most m elements for all x ∈ G, then xw(G) has at

most f elements for all x ∈ G. In relation with the above results, the following

question was considered in [4].

Given a concise word w and a group G, assume that for all x ∈ G the

subgroup 〈xGw〉 satisfies a certain finiteness condition. Is it true that a similar

condition is also satisfied by 〈xw(G)〉 for all x ∈ G?

Here and throughout the paper 〈M〉 denotes the subgroup generated by the

set M . The following theorem is the main result of [4].

Theorem 1.1. Let n be a positive integer and let w be either the word γn or

the word δn. Suppose that G is a group in which 〈gGw〉 is Chernikov for all g ∈ G.

Then 〈gw(G)〉 is Chernikov for all g ∈ G as well.

Recall that a group G is Chernikov if it has a subgroup of finite index that is

a direct product of finitely many groups of type Cp∞ for various primes p (qua-

sicyclic p-groups, or Prüfer p-groups). By a deep result obtained independently

by Shunkov [8], and Kegel and Wehrfritz [3] Chernikov groups are precisely

the locally finite groups satisfying the minimal condition on subgroups, that is,

any non-empty set of subgroups possesses a minimal subgroup.

The purpose of the present paper is to strengthen Theorem 1.1 in the follow-

ing way.

Theorem 1.2. Let n be a positive integer and let w be either the word γn
or the word δn. Let G be a group in which for any element g ∈ G there exist

finitely many Chernikov subgroups whose union contains gGw . Then 〈gw(G)〉 is

Chernikov for all g ∈ G.
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A proof of Theorem 1.2 in the case where w = γn can be obtained from

the case w = δn by simply replacing everywhere in the proof the term “δn-

commutators” by “γn-commutators”. That is why we do not provide an explicit

proof for the case w = γk concentrating instead on proving Theorem 1.2 in the

case w = δn.

The hypothesis in Theorem 1.2 is reminiscent of the situation considered in [7]

where it was proved that if the set of δn-commutators in a group G is contained

in a union of finitely many Chernikov subgroups, then G(n) is Chernikov. As a

by-product of the proof of Theorem 1.2 we obtain a considerably stronger result

– Corollary 2.11 in the next section says that for any word w if the set of w-values

in a group G is contained in a union of finitely many Chernikov subgroups, then

w(G) is Chernikov.

2. Preliminaries

Let G be a group acted on by a group A. As usual, [G,A] denotes the

subgroup generated by all elements of the form x−1xa, where x ∈ G, a ∈ A. It is

well-known that [G,A] is a normal subgroup of G. If B is a normal subset of A

such that A = 〈B〉, then [G,A] = 〈[G, b]; b ∈ B〉. In particular, if A is cyclic, then

[G,A] = [G, a], where a is a generator of A.

The minimal subgroup of finite index of a Chernikov group T is called the

radicable part of T . Throughout the article we denote this subgroup by T 0. In

general a group T is called radicable if the equation xn = a has a solution in T

for every positive integer n and every a ∈ T . It is well-known that a periodic

abelian radicable group is a direct product of quasicyclic p-subgroups. Suppose

the radicable part of a Chernikov group T has index i and is a direct product of

precisely j groups of type Cp∞ (for various primes p). The ordered pair (j, i) is

called the size of T . The set of all pairs (j, i) is endowed with the lexicographic

order. It is easy to check that if H is a proper subgroup of T , the size of H is

necessarily strictly less than that of T . Also, if N is an infinite normal subgroup

of T , the size of T/N is necessarily strictly less than that of T .

The following lemma is well-known (see for example [6, Part 1, Lemma 3.13]).

Lemma 2.1. Suppose that R is a radicable abelian normal subgroup of the

group G and suppose that H is a subgroup of G such that [R,H, . . . ,H︸ ︷︷ ︸
r

] = 1 for

some natural number r. If H/H ′ is periodic, then [R,H] = 1.
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The next few lemmas can be easily deduced from the above. The interested

reader can find their proofs for example in [4].

Lemma 2.2. In a periodic nilpotent group G every radicable abelian sub-

group Q is central.

Lemma 2.3. Let A be a periodic group acting on a periodic radicable abelian

group G. Then [G,A,A] = [G,A].

Lemma 2.4. Let A be a finite group acting on a periodic radicable abelian

group G. Then [G,A] is radicable.

Lemma 2.5. Let A be a radicable group acting on a Chernikov group B.

Then [B,A,A] = 1.

Lemma 2.6. Let G be a Chernikov group for which there exists a positive

integer m such that G can be generated by elements of order dividing m. If

G0 ≤ Z(G), then G is finite.

Proof. Essentially, this is Lemma 2.7 in [4]. �

Lemma 2.7. Let G be a group, y an element of G, and x is a δn-commutator

for some n ≥ 0. Then [y, x, x] is a δn+1-commutator.

Proof. This follows from the fact that [y, x, x] can be written as [x−y, x]x.

�

Lemma 2.8. Let G be a group generated by an element g and an abelian

radicable subgroup S. Suppose that G has finitely many Chernikov subgroups

whose union contains gS . Then the subgroup 〈gS〉 is Chernikov.

Proof. Suppose that the lemma is false and the subgroup 〈gS〉 is not

Chernikov. Let C1, . . . , Ck be finitely many Chernikov subgroups such that

gS ⊆ ∪Ci. Without loss of generality we assume that the subgroups C1, . . . , Ck

are chosen in such a way that the sum of the sizes of C1, . . . , Ck is as small as pos-

sible. In that case, of course, each subgroup Ci is generated by Ci ∩ gS . Remark

that 〈gG〉 = 〈gS〉 and therefore the subgroup 〈gS〉 is normal. If all subgroups

C1, . . . , Ck are finite, then so is the set gS . In that case the index [S : CS(g)]

is finite. Being radicable, S does not have proper subgroups of finite index and

so we deduce that gS = g and 〈gS〉 = 〈g〉. Since g is contained in a Chernikov

subgroup, g must be of finite order and so 〈g〉 is finite. Therefore, at least one of

the subgroups C1, . . . , Ck is infinite. Without loss of generality assume that C1

is infinite. Among all infinite subgroups of C1 that can be generated by elements
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of gS we choose a minimal one, say K. Let Y = K ∩ gS and so K = 〈Y 〉. If x is

an arbitrary element in S, the set Y x has infinite intersection with at least one

of the subgroups Ci. Suppose that Cj ∩ Y x is infinite and set L = 〈Cj ∩ Y x〉.
It is clear that Lx−1

is an infinite subgroup of K generated by a subset of Y .

Because of minimality of K we conclude that L = Kx. Thus, for any x ∈ S there

exists j such that Kx ≤ Cj . Choose a ∈ K0. It follows that for any x ∈ S there

exists j such that ax ≤ Cj
0. Since a radicable Chernikov group has only finitely

many elements of any given order, we deduce that the class aS is finite. Taking

into account that S has no proper subgroups of finite index and that a was taken

in K0 arbitrarily we now deduce that [K0, S] = 1. Since Y normalizes K0 and

since G = 〈S, Y 〉, it follows that K0 is normal in G. The size of the image of C1

in G/K0 is strictly less than that of C1 and therefore, by induction, 〈gS〉/K0 is

Chernikov. Since also K0 is Chernikov, so is 〈gS〉. The proof is complete. �

An idea from the proof of Lemma 2.8 can be used to significantly improve

the result that if the set of δn-commutators in a group G is contained in a union

of finitely many Chernikov subgroups, then G(n) is Chernikov [7]. We will now

show that for any word w if the set of w-values in a group G is contained in a

union of finitely many Chernikov subgroups, then w(G) is Chernikov. In fact we

have the following rather general proposition.

Proposition 2.9. Let X be a normal subset of a group G and suppose that

G has Chernikov subgroups C1, . . . , Ck whose union contains X. Then 〈X〉 is

Chernikov.

Recall that a group having an ascending central series is called hypercentral.

For the proof of Proposition 2.9 we will require the following well-known lemma

whose proof can be easily deduced for example from [6, Part 2, Theorem 9.23 and

Corollary 2, page 125].

Lemma 2.10. Let G be a hypercentral group generated by its quasicyclic

subgroups. Then G is abelian.

Proof of Proposition 2.9. Without loss of generality we assume that all

subgroups Ci are generated by elements of X. Let C be the normal closure of

the subgroups C0
1 , . . . , C

0
k . It is clear that C has no subgroups of finite index. If

C = 1, then the set X is finite. Since the elements of X are contained in Chernikov

subgroups, it follows that all elements of X have finite order. In that case 〈X〉
is finite by Dietzmann’s Lemma on elements of finite order having finitely many

conjugates (see [6, Part 1, p. 45]). So we assume that C 6= 1. In particular, we

assume that C0
1 6= 1. Let K be a minimal infinite subgroup of C1 generated by
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elements of X. Because of minimality, for every x ∈ G there exists i such that

Kx ≤ Ci. Let a be an element of K0. It follows that every conjugate ax belong

to C0
i for some i. Since each subgroup C0

i has only finitely many elements of

any given order, we conclude that the conjugacy class aG is finite. Since C has

no subgroups of finite index, a ∈ Z(C). Thus, we have shown that K0 ≤ Z(C).

Next, we can repeat the argument with G replaced by G/Z(C) and conclude

that if C 6= Z(C), then Z2(C) 6= Z(C). Thus, we see that C is hypercentral.

Since C is generated by quasicyclic subgroups, Lemma 2.10 tells us that C is

abelian. Recall that every conjugate (K0)x belongs to C0
i for some i. Hence, the

normal closure 〈(K0)G〉 is Chernikov. Note that the sum of sizes of the images of

C1, . . . , Ck in the quotient G/〈(K0)G〉 is strictly smaller than that of C1, . . . , Ck.

Thus, by induction, the image of 〈X〉 in G/〈(K0)G〉 is Chernikov. Therefore 〈X〉
is Chernikov, as desired. �

The following corollary is now straightforward.

Corollary 2.11. Let w be a group-word and G a group in which the set

of w-values is contained in a union of finitely many Chernikov subgroups. Then

w(G) is Chernikov.

3. Proof of Theorem 1.2

We will now assume the hypothesis of Theorem 1.2 with w = δn. Thus, n is

a positive integer and G is a group in which for any element g ∈ G there exist

finitely many Chernikov subgroups whose union contains gGw . We denote by X

the set of all δn-commutators in G and by H the nth derived group of G. In other

words, H = 〈X〉. Our goal is to prove that 〈gH〉 is Chernikov for all g ∈ G.

Let B be the subgroup of G generated by all subgroups of the form [T, x],

where T is an abelian radicable subgroup, x ∈ X and x normalizes T .

Lemma 3.1. The subgroup B is abelian.

Proof. Let S = [T, x], where T is an abelian radicable subgroup, x ∈ X and

x normalizes T . By Lemma 2.4 S is radicable. Lemma 2.3 shows that S = [T, x, x].

In view of Lemma 2.7 every element in [T, x, x] is a δn-commutator. Thus, S is an

abelian radicable subgroup contained in X. Choose an arbitrary element g ∈ G.

By Lemma 2.8 〈gS〉 is Chernikov. It follows from Lemma 2.5 that [〈gS〉, S, S] = 1.

In particular [g, S, S] = 1 and so S commutes with Sg. This happens for every

g ∈ G and therefore the normal subgroup 〈SG〉 is abelian. Lemma 2.2 shows that
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in any group a product of normal abelian radicable periodic subgroups is abelian.

Being a product of such subgroups, B is abelian. �

Lemma 3.2. The quotient H/B is an FC-group.

Proof. Since every element of H is a product of finitely many elements

from X, it is sufficient to show that under the additional hypothesis that B = 1

the index [H : CH(x)] is finite for every x ∈ X. Thus, we assume that B = 1.

Suppose that the lemma is false and choose x ∈ X such that [H : CH(x)] is

infinite. Set Y = xX . Let C1, . . . , Ck be finitely many Chernikov subgroups

such that Y ⊆ ∪Ci. Without loss of generality we assume that the subgroups

C1, . . . , Ck are chosen in such a way that the sum of the sizes of C1, . . . , Ck is as

small as possible. In that case, of course, each subgroup Ci is generated by Ci∩Y .

If the subgroups C1, . . . , Ck were all finite, then in view of the main result of [2]

[H : CH(x)] would be finite. Thus, at least one of the subgroups C1, . . . , Ck is

infinite. Assume that C1 is infinite and let Y1 = Y ∩C1. For any y ∈ Y1 we have

[C0
1 , y] ≤ B. Since B = 1 and C1 = 〈Y1〉, it follows that C0

1 ≤ Z(C1) whence, by

Lemma 2.6, C1 is finite, a contradiction. �

Lemma 3.3. For each g ∈ G the image of 〈gH〉 in G/B is Chernikov.

Proof. It follows from Lemma 3.2 that G is locally finite. Let us assume

that B = 1. Then H is an FC-group and, since radicable groups have no proper

subgroups of finite index, all radicable subgroups of H are contained in the center.

Choose g ∈ G and let C1, . . . , Ck be finitely many Chernikov subgroups such that

gX ⊆ ∪Ci. The subgroup J = 〈C0
1 , . . . , C

0
k〉 is Chernikov since it is generated

by finitely many commuting Chernikov subgroups. Since g has finite order, it is

clear that J1 =
∏

i J
gi

is Chernikov, too. Set M = H〈g〉. We remark that J1
is normal in M . The subgroups C1, . . . , Ck all have finite images in M/J1 and

therefore the image of the verbal conjugacy class gX is finite. By [4, Lemma 2.9]

the image of the conjugacy class gH is finite as well. Since g is of finite order, by

Dietzmann’s lemma the image of 〈gH〉 in M/J1 is finite. Since J1 is Chernikov,

the result follows. �

Lemma 3.4. The subgroup [B, h] is Chernikov for every h ∈ H.

Proof. Suppose first that h ∈ X. Then, as we have remarked earlier,

[B, h] ⊆ X. Let C1, . . . , Ck be finitely many Chernikov subgroups such that

h[B,h] ⊆ ∪Ci. Then [B, h] = [B, h, h] ⊆ ∪(Ci ∩ [B, h]). In view of Lemma 3.1, the

subgroups Ci∩ [B, h] commute. Thus, [B, h] is contained in a union of commuting

Chernikov subgroups and hence is Chernikov itself.
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We now drop the assumption that h ∈ X. Since h ∈ H, we can write h as a

product of several elements from X. Suppose that h = x1 · · ·xs, where xi ∈ X.

Then it is clear that [B, h] ≤
∏

i[B, xi]. Since each [B, xi] is Chernikov and all

[B, xi] commute, the result follows. �

Lemma 3.5. Let A be a subgroup of H whose image in G/B is abelian and

radicable. Then [B,A] = 1.

Proof. Let a ∈ A. Then, since B is abelian, A/B naturally acts on [B, a]

and of course [B, a,A/B] = [B, a,A]. By Lemma 3.4 the subgroup [B, a] is

Chernikov. According to Lemma 2.5 [B, a,A,A] = 1. In particular [B, a, a, a] = 1

and so Lemma 2.3 shows that [B, a] = 1. This happens for every a ∈ A and

therefore [B,A] = 1. �

Lemma 3.6. For every g ∈ G the subgroup [B, g] is Chernikov.

Proof. It was mentioned in the proof of Lemma 3.1 that if T is an abelian

radicable subgroup, x ∈ X and x normalizes T , then [T, x] is an abelian radicable

subgroup contained in X. Therefore B is the product of its subgroups S1, S2, . . .

each of which is contained in X. Given g ∈ G, let C1, . . . , Ck be finitely many

Chernikov subgroups such that gX ⊆ ∪Ci andBi = Ci∩B for i = 1, . . . , k. Denote

by D the product of all subgroups of the form (Bi)
gj

for i ≤ k and j = 0, 1, . . . .

Since g has finite order, D is a product of finitely many commuting Chernikov

subgroups and so is Chernikov itself. It is clear that D is normal in B〈g〉.
Since each Sl is contained in X, it follows that gSl ⊆ ∪Ci for every l =

1, 2, . . . . We look at the image of the class gSl in the quotient B〈g〉/D and

conclude the image is finite since B has finite index in B〈g〉. It follows that

modulo D the element g centralizes a subgroup of finite index in Sl. Taking

into account that Sl has no proper subgroups of finite index we conclude that

[Sl, g] ≤ D. This happens for every l = 1, 2, . . . . Because [B, g] is the product of

subgroups of the form [Sl, g], we have [B, g] ≤ D. �

Lemma 3.7. For every g ∈ G the subgroup [B, 〈gH〉] is Chernikov.

Proof. Choose g ∈ G and set K = 〈gH〉 and C = CK(B). Then K/C

naturally acts on B and [B,K] = [B,K/C]. By Lemma 3.3 the image of K in

G/B is Chernikov. Let A be the subgroup of K ∩ H whose image in G/B is

the radicable part of the image of K ∩ H. By Lemma 3.5 the subgroup A is

contained in C. Obviously, K ∩H has finite index in K and therefore the index

of A in K is finite. Thus, K/C is finite and so [B,K] is a product of finitely many

subgroups of the form [B, u] for suitable elements u ∈ K. By Lemma 3.6 each of

the subgroups [B, u] is Chernikov and the result follows. �
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We are now ready to complete the proof of Theorem 1.2. Choose g ∈ G and

set K = 〈gH〉. By Lemma 3.7 the subgroup [B,K] is Chernikov. We remark that

[B,K] is normal in HK and pass to the quotient V̄ = HK/[B,K]. The image of

a subgroup T of HK in V̄ will be denoted by T̄ .

We have [B̄, K̄] = 1. It follows from Lemma 3.3 that K̄/Z(K̄) is Chernikov.

A theorem of Polovickii [6, Part 1, p. 129] now tells us that K̄ ′, the derived group

of K̄, is Chernikov.

Therefore K ′ is Chernikov as well. The subgroup 〈gX〉 is generated by finitely

many Chernikov subgroups and has Chernikov derived group 〈gX〉′. We conclude

that 〈gX〉 is Chernikov for all g ∈ G. The main theorem of [4] now tells us that

〈gH〉 is Chernikov for all g ∈ G. The proof is now complete.
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