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A general mean value theorem

By ZSOLT PÁLES (Debrecen)

Dedicated to the 75th birthday of Professor László Losonczi

Abstract. In this note a general Cauchy-type mean value theorem for the ratio

of functional determinants is offered. It generalizes Cauchy’s and Taylor’s mean value

theorems as well as other classical mean value theorems.

1. Introduction

The aim of the present note is to offer a unified approach to most of the mean

value theorems known in elementary analysis.

Let x1, . . . , xk be arbitrary points in the real interval [a, b]. Then, one can

determine a permutation π of the set {1, . . . , k}, n ∈ N, ξ1 < · · · < ξn in [a, b] and

k1, . . . , kn in N with k1 + · · ·+ kn = k such that

(xπ(1), . . . , xπ(k)) = ( ξ1, . . . , ξ1︸ ︷︷ ︸
k1 times

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
kn times

). (1)

If w1, . . . , wm+k : [a, b] → R is a system of (k − 1) times differentiable functions
(m > 0), and u1, . . . , um+k ∈ Rm are vectors, then we define

W
( w1, . . . , wm+k

u1, . . . , um+k

)
(x1, . . . , xk)
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:=

∣∣∣∣∣∣∣∣
u1,1 . . . u1,m w1(ξ1) . . . w

(k1−1)
1 (ξ1) . . . w1(ξn) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...
...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . wm+k(ξn) . . . w

(kn−1)
m+k (ξn)

∣∣∣∣∣∣∣∣ ,

where the right hand side of this equation is an (m+ k)× (m+ k) determinant,

w(i) stands for the ith derivative of the function w, ui,j denotes the jth coordinate

of the vector ui, and ξi, ki is determined by (1).

We also allow m to take the value 0, with the following notational conven-

tions: R0 := {0} and

W
( w1, . . . , wk
u1, . . . , uk

)
(x1, . . . , xk) := W(w1, . . . , wk)(x1, . . . , xk)

:=

∣∣∣∣∣∣∣∣
w1(ξ1) . . . w

(k1−1)
1 (ξ1) . . . w1(ξn) . . . w

(kn−1)
1 (ξn)

...
...

...
...

wk(ξ1) . . . w
(k1−1)
k (ξ1) . . . wk(ξn) . . . w

(kn−1)
k (ξn)

∣∣∣∣∣∣∣∣ ,
Observe that if here x1 = · · · = xk = ξ, then the above definition reduces to

W(w1, . . . , wk)(ξ, . . . , ξ) =

∣∣∣∣∣∣∣∣
w1(ξ) · · · w

(k−1)
1 (ξ)

...
. . .

...

wk(ξ) · · · w
(k−1)
k (ξ)

∣∣∣∣∣∣∣∣ ,
which is known as the Wronski determinant of the system w1, . . . , wk.

The class of functions f : [a, b] → R that are k − 1 times continuously

differentiable on [a, b] and k times differentiable on the open interval ]a, b[ will be

denoted by Dk([a, b]).

Now we are able to formulate the main result of this paper.

Theorem 1. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ Rm such

that (if 0 < m, then) u1, . . . , um are linearly independent, i.e.,

V0 :=

∣∣∣∣∣∣∣
u1,1 · · · u1,m

...
. . .

...

um,1 · · · um,m

∣∣∣∣∣∣∣ 6= 0. (2)

In addition, let w1, . . . , wm+k ∈ Dk([a, b]) be a system of functions satisfying

Vn(ξ) := W
( w1, . . . , wm+n

u1, . . . , um+n

)
( ξ, . . . , ξ︸ ︷︷ ︸
n times

) 6= 0 (3)
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for all ξ ∈ [a, b] and n = 1, . . . , k. Then, for all nonidentical points x1, . . . , xk+1 ∈
[a, b], vectors p, q ∈ Rm and functions f, g ∈ Dk([a, b]), there exists an intermedi-

ate point ξ ∈] minxi,maxxi[ such that

W
( w1, . . . , wm+k, f

u1, . . . , um+k, p

)
(ξ, . . . , ξ)

×W
( w1, . . . , wm+k, g

u1, . . . , um+k, q

)
(x1, . . . , xk+1)

= W
( w1, . . . , wm+k, g

u1, . . . , um+k, q

)
(ξ, . . . , ξ)

×W
( w1, . . . , wm+k, f

u1, . . . , um+k, p

)
(x1, . . . , xk+1).

(4)

We note that if m = 0, then u1 = · · · = um+k = p = q = 0 by the convention

R0 = {0}. Therefore, in this case, the vectors u1, . . . , um+k, p, q do not play any

role in the formulation of the theorem.

The proof of this theorem is given in the next section. Now we list some of

its consequences.

Corollary 1 (Cauchy’s Mean Value Theorem). Let f, g ∈ D1[a, b]. Then

there exists ξ ∈]a, b[ such that

f ′(ξ)(g(a)− g(b)) = g′(ξ)(f(a)− f(b)).

Proof. Let k = 1, m = 0, w1 ≡ 1 and x1 = a, x2 = b in Theorem 1. Then

the statement follows immediately from (4). �

Corollary 2 (Taylor’s Mean Value Theorem). Let f ∈ Dk([a, b]). Then, for

all x ∈]a, b], there exists ξ ∈]a, b[ such that

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (k−1)(a)

(k − 1)!
(x− a)k−1 +

f (k)(ξ)

k!
(x− a)k.

Proof. Let m = 0,

wi(x) =
(x− a)i−1

(i− 1)!
for i = 1, . . . , k and g(x) =

(x− a)k

k!
.

Then, for all ξ ∈ [a, b],

W(w1)(ξ) = · · · = W(w1, . . . , wk)(ξ, . . . , ξ) = 1,
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therefore, (2) and (3) are satisfied. Thus, taking x1 = · · · = xk = a and xk+1 = x

in Theorem 1, we obtain that there exists ξ ∈]a, x[ satisfying

W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ) ·W(w1, . . . , wk, g)(a, . . . , a, x)

= W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ) ·W(w1, . . . , wk, f)(a, . . . , a, x).
(5)

A simple computation yields that

W(w1, . . . , wk, f)(a, . . . , a, x)

= f(x)− f(a)− f ′(a)(x− a)− · · · − f (k−1)(a)

(k − 1)!
(x− a)k−1,

W(w1, . . . , wk, g)(a, . . . , a, x) =
(x− a)k

k!
,

furthermore

W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ) = f (k)(ξ) and W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ) = 1.

Thus, Taylor’s theorem follows from (5) at once. �

Let w1(x) = 1, . . . , wk(x) = xk−1, wk+1 = xk for x ∈ [a, b] and let a ≤ x1 ≤
· · · ≤ xk+1 ≤ b with a < xk+1 and x1 < b. Then the ratio

[x1, . . . , xk+1]f :=
W(w1, . . . , wk, f)(x1, . . . , xk, xk+1)

W(w1, . . . , wk, wk+1)(x1, . . . , xk, xk+1)

is called the kth-order divided difference of f ∈ Dk([a, b]) over the points x1, . . . ,

xk+1 (c.f. [Sch81, p. 45]). Divided differences are usually defined in an inductive

way in the literature, see e.g. [AH79, Sect. 3.17] and [HA38, Sect. 2.3]. The

proof of the equivalence of the above definition to the usual one can be found in

[Sch81, Theorem 2.51, p. 47].

Concerning divided differences, the following result is well known (c.f. [AH79,

p. 274] and [Sch81, (2.93)]).

Corollary 3. Let f ∈ Dk([a, b]) and a ≤ x1 ≤ · · · ≤ xk+1 ≤ b with x1 <

xk+1. Then there exists ξ ∈]x1, xk+1[ such that

[x1, . . . , xk+1]f =
f (k)(ξ)

k!
. (6)
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Proof. Apply Theorem 1 when m = 0 with the function g(x) = wk+1(x) =

xk. Then we find that there exists ξ ∈]x1, xk+1[ such that

[x1, . . . , xk+1]f = [ ξ, . . . , ξ︸ ︷︷ ︸
k+1 times

]f =
f (k)(ξ)

k!
.

Thus (6) is proved. �

The following result, called Cauchy Mean Value Theorem, is due to Rätz

and Russel [RR87].

Corollary 4. Let f, g ∈ Dk([a, b]) such that g(k)(ξ) 6= 0 for ξ ∈]a, b[ and let

a ≤ x1 ≤ · · · ≤ xk+1 ≤ b with x1 < xk+1. Then there exists ξ ∈]x1, xk+1[ such

that
[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=
f (k)(ξ)

g(k)(ξ)
. (7)

Proof. Applying Corollary 3 for the function g first, we can observe that

[x1, . . . , xk+1]g 6= 0.

Hence the left hand side of (7) exists. Clearly,

[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=
W(w1, . . . , wk, f)(x1, . . . , xk, xk+1)

W(w1, . . . , wk, g)(x1, . . . , xk, xk+1)

Therefore, by Theorem 1, there exists ξ ∈]x1, xk+1[ such that

[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=
W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ)

W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ)
=
f (k)(ξ)

g(k)(ξ)
,

whence (7) follows. �

2. Proof of the main result

In the proof of Theorem 1, we shall need the following notion: a function

f ∈ Dk([a, b]) vanishes k + 1 times in [a, b] if there exist points x1 < · · · < xn in

[a, b] with x1 < b, a < xn and natural numbers k1, . . . , kn with k1+· · ·+kn = k+1

such that

f (j)(xi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n. (8)
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For instance, the function f(x) = x(x− 1) vanishes twice in [0, 1]. However, the

function f(x) = x2 does not vanish twice in [0, 1], but it does in [−1, 1], (that is,

all the zeroes of f should not be concentrated at the endpoints of the interval).

We recall the following lemmas from [Pal94] and, for readers convenience, we

also provide their proofs.

Lemma 1. If f, g ∈ Dk([a, b]) and f vanishes k + 1 times in [a, b], then fg

also vanishes k + 1 times in [a, b].

Proof. By the assumption, there are x1 < · · · < xn in [a, b] with x1 < b,

a < xn and k1, . . . , kn ∈ N with k1 + · · ·+ kn = k + 1 such that (8) holds. Then,

using Leibniz’s Product Rule, one can check that

(fg)(j)(xi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n.

Thus fg also vanishes k + 1 times in [a, b]. �

Lemma 2. If f ∈ Dk([a, b]) vanishes k+ 1 times in [a, b], then f ′ vanishes k

times in [a, b].

Proof. We have (8) for some x1 < · · · < xn with x1 < b, a < xn and

k1, . . . , kn ∈ N with k1 + · · ·+kn = k+1. If n = 1, then there is nothing to prove.

Otherwise, by Rolle’s Mean Value Theorem, there exist xi < ξi < xi+1 such that

f ′(ξi) = 0 for i = 1, . . . , n− 1.

These equalities combined with (8) yield that f ′ vanishes k times on [a, b]. �

The following lemma generalizes [Pal94, Lemma 3]. The result obtained

therein corresponds the case m = 0 below.

Lemma 3. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ Rm such

that (2) holds (if m > 0). Let w1, . . . , wm ∈ Dk([a, b]) be a system of functions

satisfying (3) for all ξ ∈ [a, b]. For f ∈ Dk([a, b]), define the following operators

Wn(f)(ξ) := W
( w1, . . . , wm+n, f

u1, . . . , um+n, 0

)
( ξ, . . . , ξ︸ ︷︷ ︸
n+1 times

), n = 0, . . . , k.

where ξ ∈ [a, b] if n < k, and ξ ∈]a, b[ if n = k. Then the following recursive

formula

Wn(f)(ξ) =
d

dξ

(
Wn−1(f)(ξ)

Vn(ξ)

)
·
[
Vn(ξ)

]2
Vn−1(ξ)

(9)

holds for all ξ ∈ [a, b] if 1 ≤ n < k, and for all ξ ∈]a, b[ if n = k. (Here V0 and

Vn (1 ≤ n ≤ k) are defined in (2) and in (3), respectively. In the case m = 0, we

set V0 = 0.)
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Proof. The argument described below works for m 6= 0. The case m = 0 is

completely analogous, therefore it is omitted.

The vectors u1, . . . , um are linearly independent in Rm, hence they form

a basis of Rm. Thus, we can find real numbers γ1,n, . . . , γm,n such that, for

n = 1, . . . , k,

−um+n = γ1,nu1 + · · ·+ γm,num. (10)

Then define the functions vn : [a, b]→ R by

vn := wm+n + γ1,nw1 + · · ·+ γm,nwm. (11)

Now we show that the functions v1, . . . , vn form a linearly independent system of

solutions of the equation

Wn(f)(ξ) = 0, ξ ∈]a, b[ (12)

which is an nth-order homogeneous linear differential equation for the unknown

function f .

To see this, we first compute Wn(vj) for any 1 ≤ j ≤ k and 0≤n≤k. Multi-

plying the first m rows of the determinant Wn(vj) by γ1,j , . . . , γm,j , respectively,

subtracting their sum from the last row, then using (10), we get

Wn(vj)(ξ) = W
( w1, . . . , wm+n, wm+j +

∑m
i=1 γi,jwi

u1, . . . , um+n, 0

)
(ξ, . . . , ξ)

= W
( w1, . . . , wm+n, wm+j

u1, . . . , um+n, −
∑m
i=1 γi,jui

)
(ξ, . . . , ξ)

= W
( w1, . . . , wm+n, wm+j

u1, . . . , um+n, um+j

)
(ξ, . . . , ξ) = 0

If j ≤ n, then this formula results Wn(vj) = 0. On the other hand, with j = n+1,

we have Wn(vn+1) = Vn+1.

The function v1 cannot be identically zero because W0(v1) = V1 6= 0. Hence

{v1} is a linearly independent set of solutions of W1(f) = 0. Assume now that

v1, . . . , vn form a linearly independent system of solutions of Wn(f) = 0. The

function vn+1 is not a solution of this equation, hence, it cannot be a linear com-

bination of v1, . . . , vn. Thus, v1, . . . , vn+1 is also a linearly independent system.

Temporarily, denote the operator defined by the right hand side of (9) by

W∗n(f). It is clear that W∗n(f) is also an nth-order linear differential operator

of f . We show that v1, . . . , vn also solves the equation W∗n(f) = 0. This is
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obvious if f = v1, . . . , vn−1 (since these functions are solutions of the equation

Wn−1(f) = 0). On the other hand,

W∗n(vn)(ξ) =
d

dξ

(
Wn−1(vn)(ξ)

Vn(ξ)

)
·
[
Vn(ξ)

]2
Vn−1(ξ)

=
d

dξ

(
Vn(ξ)

Vn(ξ)

)
·
[
Vn(ξ)

]2
Vn−1(ξ)

= 0.

Observe that the coefficients of f (n) in Wn(f) and W∗n(f) are equal to Vn
which does not vanish anywhere in [a, b]. Therefore, having the same solution

space, these two operators have to coincide for all 1 ≤ n ≤ k. �

Lemma 4. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ Rm such

that (2) holds (if m > 0). Let w1, . . . , wm ∈ Dk([a, b]) be a system of functions

satisfying (3) for all ξ ∈ [a, b]. Assume that the function f ∈ Dk([a, b]) vanishes

k + 1 times in [a, b]. Then, for each 0 ≤ n ≤ k, the function Wn(f) defined in

Lemma 3 vanishes k + 1− n times in [a, b].

Proof. We prove by induction. If n = 0, then W0(f) = V0f , hence, in this

case, there is nothing to prove. Let n ≥ 1 and assume that Wn−1(f) vanishes

k + 1− (n− 1) times. Then, applying Lemma 1 and Lemma 2, one sees that the

function
d

dξ

(
Wn−1(f)(ξ)

Vn(ξ)

)
·
[
Vn(ξ)

]2
Vn−1(ξ)

(ξ ∈ [a, b])

vanishes k + 1 − (n − 1) − 1 = k + 1 − n times. Therefore, due to the recursive

formula established in Lemma 3, Wn(f) vanishes k + 1− n times. �

Now we are ready to prove the main result of the paper.

Proof of Theorem 1. Let x1 ≤ · · · ≤ xk+1 be in [a, b] with minxi <

maxxi. Then there exist a permutation π of {1, . . . , xk+1}, n ∈ N, ξ1 < · · · < ξn
in [a, b] and k1, . . . , kn ∈ N with k1 + · · ·+ kn = k + 1 such that

(xπ(1), . . . , xπ(k+1)) = ( ξ1, . . . , ξ1︸ ︷︷ ︸
k1 times

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
kn times

) (13)

holds. Define the function F : [a, b]→ R by

F (x)

:=

∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn) w1(x)

...
...

...
...

...
...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . w

(kn−1)
m+k (ξn) wm+k(x)

p1 . . . pm f(ξ1) . . . f (k1−1)(ξ1) . . . f (kn−1)(ξn) f(x)

q1 . . . qm g(ξ1) . . . g(k1−1)(ξ1) . . . g(kn−1)(ξn) g(x)

∣∣∣∣∣∣∣∣∣∣∣∣
.



A general mean value theorem 169

It is obvious at once that

F (j)(ξi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n,

therefore F vanishes k+1 times in [a, b]. Thus, by Lemma 4, there exists ξ ∈]a, b[

such that

Wk(F )(ξ) = W
( w1, . . . , wm+k, F

u1, . . . , um+k, 0

)
( ξ, . . . , ξ︸ ︷︷ ︸
k+1 times

) = 0. (14)

Now determine the contstants γi,n such that they satisfy (10) and define v1, . . . , vk
by (11). Similarly, choose α1, . . . , αm and β1, . . . , βm such that

−p = α1u1 + · · ·+ αmum and − q = β1u1 + · · ·+ βmum. (15)

and define

φ = f + α1w1 + · · ·+ αmwm and ψ = g + β1w1 + · · ·+ βmwm. (16)

Using these choices of the constants, add linear combination of the first m rows

of F to the rest of the rows to obtain

F (x)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn) w1(x)

...
...

...
...

...
...

um,1 . . . um,m wm(ξ1) . . . w
(k1−1)
m (ξ1) . . . w

(kn−1)
m (ξn) wm(x)

0 . . . 0 v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn) v1(x)

...
...

...
...

...
...

0 . . . 0 vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn) vk(x)

0 . . . 0 φ(ξ1) . . . φ(k1−1)(ξ1) . . . φ(kn−1)(ξn) φ(x)

0 . . . 0 ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn) ψ(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= V0 ·

∣∣∣∣∣∣∣∣∣∣∣∣

v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn) v1(x)

...
...

...
...

vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn) vk(x)

φ(ξ1) . . . φ(k1−1)(ξ1) . . . φ(kn−1)(ξn) φ(x)

ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn) ψ(x)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Expanding by the last column, we get

F (x) =

k∑
i=1

Ci · vi(x)−Aφ(x) +Bψ(x),

where A,B,Ci are the values of the corresponding subdeterminants. Substituting

the above form of F into (14), and using that Wk(vi) = 0, we get that

A ·Wk(φ)(ξ) = B ·Wk(ψ)(ξ) (17)

In the rest of the proof we show that (17) reduces to (4).

Indeed, adding a certain linear combination to the last row of Wk, we get

Wk(φ)(ξ) = W
( w1, . . . , wm+k, f +

∑m
i=1 αiwi

u1, . . . , um+k, 0

)
(ξ, . . . , ξ)

= W
( w1, . . . , wm+k, f

u1, . . . , um+k, −
∑m
i=1 αiui

)
(ξ, . . . , ξ)

= W
( w1, . . . , wm+k, f

u1, . . . , um+k, p

)
(ξ, . . . , ξ).

For the constant A, due to its origin, we have

A = V0 ·

∣∣∣∣∣∣∣∣∣∣
v1(ξ1) . . . v

(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn)

...
...

...

vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn)

ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn)

∣∣∣∣∣∣∣∣∣∣
.

Now, using an argument similar to that applied in the computation of F , one can

get that

A=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...

um,1 . . . um,m wm(ξ1) . . . w
(k1−1)
m (ξ1) . . . w

(kn−1)
m (ξn)

0 . . . 0 v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn)

...
...

...
...

...

0 . . . 0 vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn)

0 . . . 0 ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣
u1,1 . . . u1,m w1(ξ1) . . . w

(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . w

(kn−1)
m+k (ξn)

q1 . . . qm g(ξ1) . . . g(k1−1)(ξ1) . . . g(kn−1)(ξn)

∣∣∣∣∣∣∣∣∣∣
.

=W
( w1, . . . , wm+k, g

u1, . . . , um+k, q

)
(x1, . . . , xk+1).

Thus, we have checked that the left hand side of (17) coincides with that of (4).

The equality of the right hand sides follows similarly, and therefore, the proof is

complete. �

We now derive a useful consequence of Theorem 1.

Theorem 2. Let I ⊂ R be an interval and [a, b] be a proper subinterval

of I. Let 1 ≤ k, 1 ≤ m be integers and y1, . . . , ym ∈ I \ [a, b]. Assume that

w1, . . . , wm+k : I → R are sufficently many times differentiable functions such

that

W(w1, . . . , wm+n)(y1, . . . , ym, ξ, . . . , ξ︸ ︷︷ ︸
n times

) 6= 0 (18)

for all ξ ∈ [a, b] and n = 0, . . . , k. Then, for all nonidentical points x1, . . . , xk+1 ∈
[a, b], and functions sufficiently many times differentiable f, g : I → R, there exists

an intermediate point ξ ∈] minxi,maxxi[ such that

W(w1, . . . , wm+k, f)(y1, . . . , ym, ξ, . . . , ξ︸ ︷︷ ︸
k+1 times

)

×W(w1, . . . , wm+k, g)(y1, . . . , ym, x1, . . . , xk+1)

= W(w1, . . . , wm+k, g)(y1, . . . , ym, ξ, . . . , ξ︸ ︷︷ ︸
k+1 times

)

×W(w1, . . . , wm+k, f)(y1, . . . , ym, x1, . . . , xk+1).

(19)

Proof. Let π be a permutation of the set {1, . . . ,m}, η1, . . . , ηl ∈ I, and

m1, . . . ,ml ∈ N with m1 + · · ·+ml = m such that

(yπ(1), . . . , yπ(m)) = ( η1, . . . , η1︸ ︷︷ ︸
m1 times

, . . . , ηl, . . . , ηl︸ ︷︷ ︸
ml times

).

Set, for i = 1, . . . ,m+ k,

ui := (ui1, . . . , uim)



172 Zs. Páles : A general mean value theorem

:= (wi(η1), . . . , w
(m1−1)
i (η1), . . . , wi(ηl), . . . , w

(ml−1)
i (ηl)),

and

p := (p1, . . . , pm)

:= (f(η1), . . . , f (m1−1)(η1), . . . , f(ηl), . . . , f
(ml−1)(ηl)),

q := (q1, . . . , qm)

:= (g(η1), . . . , g(m1−1)(η1), . . . , g(ηl), . . . , g
(ml−1)(ηl)).

Observe, that with this notations, the conditions of Theorem 1 are satisfied and

therefore there exists ξ such that (4) holds. It is immediate to see that (4) is

equivalent to (19). �
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