Publ. Math. Debrecen 46 / 1-2 (1995), 1–23

Zur Kugelgeometrie des einfach isotropen Raumes

Von F. MÉSZÁROS (Leoben) und H. SACHS (Leoben)

§0 Einleitung

In [4] lösten M. HUSTY und H. SACHS die Aufgabe, alle Kugeln des dreidimensionalen euklidischen Raumes zu bestimmen, die 4 vorgegebene Geraden g_1, \ldots, g_4 berühren; diese Aufgabe spielt eine wichtige Rolle in der Robotik. Die vorliegende Abhandlung ist der analogen Fragestellung im *einfach isotropen Raum* gewidmet.

Ein einfach isotroper Raum $I_3^{(1)}$ is hierbei ein dreidimensionaler affiner Raum A_3 , der über eine Absolutfigur { ω, f_1, f_2, F } metrisiert wird, wobei ω die Fernebene von A_3, f_1, f_2 ein konjugiert-komplexes Geradenpaar in ω und F den Schnittpunkt dieser Geraden bezeichnet. Die Geometrie dieses Raumes — die sogenannte einfach isotrope Geometrie — wurde ausführlich in der Monographie [10] dargestellt, in der alle i.f. benötigten Begriffe nachgelesen werden können. Insbesondere legen wir allen Betrachtungen als Fundamentalgruppe die sechsparametrige isotrope Bewegungsgruppe $B_6^{(1)}$

(0.1)
$$\begin{aligned} \bar{x} = c_1 + x \cos \varphi - y \sin \varphi \\ \bar{y} = c_2 + x \sin \varphi + y \cos \varphi \\ \bar{z} = c_3 + c_4 x + c_5 y + x \end{aligned}$$

zugrunde (vgl. [10, 7]). Die absoluten Geraden f_1, f_2 werden hierbei in der Gestalt

$$(0.2) x_0 = x_1^2 + x_2^2 = 0$$

angesetzt, wobei $(x_0 : x_1 : x_2 : x_3)$ projektive Koordinaten bezeichnen. Geraden durch den *absoluten Punkt* F(0:0:0:1) werden als *vollisotrope Geraden* bezeichnet. Die Sphären (Kugeln) des einfach isotropen Raumes wurden in [6], [9] und [11] studiert; man vergleiche auch [10, 66f.]. Demnach zerfallen die Sphären in zwei Klassen, nämlich in *parabolische Sphären* mit der Darstellung

(0.3)
$$z - c = R[(x - u)^{2} + (y - v)^{2}]$$

und in zylindrische Sphären mit der Gleichung

(0.4)
$$x^2 + y^2 + \alpha x + \beta y + \gamma = 0.$$

Die Flächen (0.4) sind *Drehzylinder* mit vollisotropen Erzeugenden und sollen i.f. nicht betrachtet werden. Die Flächen (0.3) sind — euklidisch betrachtet — *Drehparaboloide* mit der vollisotropen Drehachse x = u, y = v. Eine konstruktive Behandlung dieser Flächen findet sich in [5]. Die Größe R ist eine $B_6^{(1)}$ -Invariante und wird als *Radius* der parabolischen Sphäre bezeichnet (vgl. [10, 68]). Bezüglich weiterer Resultate zur Geometrie der Sphären sei auf [9] verwiesen.

§1 Ein Berührproblem für Sphären des $I_3^{(1)}$

In Analogie zu [4] untersuchen wir im einfach isotropen Raum $I_3^{(1)}$ die Frage, ob zu vorgegebenen Geraden g_1, \ldots, g_4 parabolische Sphären σ existieren, dir g_1, \ldots, g_4 berühren. Da eine parapolische Sphäre σ keine vollisotropen Tangenten besitzt, sind g_1, \ldots, g_4 als *nichtisotrope Geraden* vorauszusetzen. Wir legen eine Gerade g in der vektoriellen Darstellung

(1.1)
$$\vec{x} = \vec{a} + \lambda \vec{e}$$

fest, wobe
i $\vec{e}=(e_1,e_2,e_3)$ einen nichtisotropen Einheitsvektor bezeichnet, d.h.

(1.2)
$$e_1^2 + e_2^2 = 1, \quad e_3 \neq 0$$

gilt und *im isotropen Sinn* \vec{a} auf \vec{e} normal steht, d.h.

$$(1.3) a_1 e_1 + a_2 e_2 = 0$$

gilt, wenn \vec{a} die Komponenten $\vec{a} = (a_1, a_2, a_3)$ besitzt. Werden die Komponeten von (1.1) in (0.3) eingesetzt, so ergibt sich nach kurzer Rechnung für λ die quadratische Gleichung

(1.4)
$$\lambda^2 - 2\lambda \left(ue_1 + ve_2 + \frac{e_3}{2R} \right) + \left[(a_1 - u)^2 + (a_2 - v)^2 + \frac{c - a_3}{R} \right] = 0.$$

deren Nullstellen die *Schnittpunkte* von g mit σ festlegen. Das Verschwinden der Diskriminante von (1.4) liefert als *Berührbedingung* von g mit σ

(1.5)
$$\left(ue_1 + ve_2 + \frac{e_3}{2R}\right)^2 = (a_1 - u)^2 + (a_2 - v)^2 + \frac{1}{R}(c - a_3).$$

Wir setzen i.f. voraus, daß 2 windschiefe, nichtisotrope Geraden g_1 , g_2 gegeben seien. Die beiden Geraden bestimmen dann eine eindeutige vollisotrope Gemeinnormale n, die g_1 in A_1 und g_2 in A_2 schneiden möge. Legt man die z-Achse des zugrunde gelegten Koordinatensystems in die Gerade n und den Koordinatenursprung U in den Mittelpunkt der Strecke $\overline{A_1A_2}$, so gilt (vgl. Abbildung 1)

Abbildung 1.

(1.6)
$$A_1\left(0,0,\frac{1}{2}d\right), \quad A_2\left(0,0,-\frac{1}{2}d\right)$$

und man kann durch eine isotrope Bewegung (0.1) erreichen, daß die Einheitsvektoren von g_1 und g_2 die Komponenten

(1.7a,b)
$$\vec{e}_1 = (\cos \varphi/2, -\sin \varphi/2, 0)$$
$$\vec{e}_2 = (\cos \varphi/2, \sin \varphi/2, 0)$$

besitzen.

Die entsprechenden Berührbedingungen (1.5) vereinfachen sich dann zu

(1.8a,b)
$$\frac{\frac{1}{R}\left(\frac{1}{2}d-c\right)}{-\frac{1}{R}\left(\frac{1}{2}d+c\right)} = (u\sin\varphi/2 + v\cos\varphi/2)^2 \text{ bzw.}$$
$$-\frac{1}{R}\left(\frac{1}{2}d+c\right) = (u\sin\varphi/2 - v\cos\varphi/2)^2.$$

Werden die Gleichungen (1.8a,b) einmal addiert und einmal subtrahiert, so entstehen die wichtigen Beziehungen

(1.9a,b)
$$-\frac{c}{R} = u^{2} \sin^{2} \varphi/2 + v^{2} \cos^{2} \varphi/2$$
$$\frac{d}{R} = 2uv \sin \varphi.$$

Betrachtet man alle parabolischen Sphären σ von festem Radius R_0 , die g_1 und g_2 berühren, so erkennt man, daß die Achsen dieser Sphären auf dem gleichseitigen hyperbolischen Zylinder ζ

(1.10)
$$xy = \frac{d}{2R_0 \sin \varphi} =: k_0$$

liegen, wobei wir x = u, y = v gesetzt haben. Die asymptotischen Ebenen von ζ zind die Ebenen x = 0 und y = 0, d.h. die isotropen Ebenen durch die *isotropen Bisektoren* (vgl. [1, 51]) von g_1 und g_2 . Diese isotropen Bisektoren s_1 , s_2 von g_1 und g_2 können als isotrope Winkelsymmetralen der Geraden \bar{g}_1 , \bar{g}_2 definiert werden, die man erhält, wenn g_1 und g_2 parallel durch U verschoben werden.

Die Drehachse *a* einer Sphäre σ ist, bezüglich der Ebenenstellung $z = 0, B_6^{(1)}$ -invariant und ebenso der Schnittpunkt *S* von a mit σ , den wir als *Scheitelpunkt* der Sphäre bezeichnen. Nach (0.3) wird *S* durch

$$(1.11) S(u,v,c)$$

festgelegt. Die Menge der Scheitelpunkte obiger einparametriger Kugelschar ist somit wegen (1.9a,b) durch

(1.12)
$$x = u, \qquad y = \frac{k_0}{u}$$
$$z = -R_0 (u^2 \sin^2 \varphi/2 + \frac{k_0^2}{u^2} \cos^2 \varphi/2)$$

gegeben. Dies ist eine Raumkurve 4. Ordnung, die sich als Schnitt des hyperbolischen Zylinders (1.10) mit dem elliptischen Paraboloid

(1.13)
$$z = -R_0(x^2 \sin^2 \varphi/2 + y^2 \cos^2 \varphi/2)$$

einstellt. Für $\sin^2 \varphi/2 = \cos^2 \varphi/2 = \frac{1}{2}$, d.h. $\varphi = \frac{\pi}{2}$ ist (1.13) die parabolische Sphäre $z = -\frac{R_0}{2}(x^2 + y^2)$. Wir fassen zusammen im

Satz 1. Sind g_1 , g_2 zwei windschiefe Geraden mit dem Abstand dund dem Kreuzungswinkel φ , dann existiert eine einparametrige Schar von Sphären σ von festem Radius R_0 , die g_1 und g_2 berühren. Die Achsen dieser Sphären liegen auf dem gleichseitigen hyperbolischen Zylinder ζ (1.10), dessen Achse mit der Gemeinnormale n von g_1 und g_2 zusammenfällt und dessen asymptotische Ebenen die isotropen Ebenen durch die isotropen Bisektoren von g_1 und g_2 sind. Die Scheitelpunkte der Sphären σ liegen auf einer Raumkurve 4. Ordnung, die sich als Schnitt von ζ mit einem elliptischen Paraboloid (1.13) ergibt. Kreuzen sich g_1 und g_2 orthogonal, dann ist (1.13) eine Sphäre mit der Achse n vom Radius $-\frac{1}{2}$ R_0 .

Weiters folgert man leicht den

Satz 2. Sind g_1 , g_2 , g_3 drei paarweise windschiefe Geraden allgemeiner Lage, dann existieren zu vorgegebenem Radius R_0 im algebraischen Sinn genau 4 parabolische Sphären, die g_1 , g_2 und g_3 berühren.

BEWEIS. Wir legen die Gerade g_3 durch den normierten Richtungsvektor $\vec{e}_3 = (e_{31}, e_{32}, e_{33})$ mit $(e_{31}, e_{32}) \neq (0, 0)$ und den Punkt $A_3(a_{31}, a_{32}, a_{33})$ fest. Dann ist nebst (1.9a,b) die Bedingung

(1.14)
$$\left(ue_{31} + ve_{32} + \frac{e_{33}}{2R_0}\right)^2 = (a_{31} - u)^2 + (a_{32} - v)^2 + \frac{1}{R_0}(c - a_{33})$$

bei festem R_0 zu erfüllen. Wird (1.9a) in (1.14) eingesetzt, so entsteht die quadratische Gleichung

(1.15)
$$u^{2}(e_{31}^{2} - \cos^{2}\varphi/2) + v^{2}(e_{32}^{2} - \sin^{2}\varphi/2) + 2uve_{31}e_{32} + 2u\left(\frac{e_{31}e_{33}}{2R_{0}} + a_{31}\right) + 2v\left(\frac{e_{32}e_{33}}{2R_{0}} + a_{32}\right) + \frac{e_{33}^{2}}{4R_{0}^{2}} + \frac{a_{33}}{R_{0}} - a_{31}^{2} - a_{32}^{2} = 0$$

in u und v, die einen Kegelschnitt k_1 in der [uv]-Ebene festlegt. k_1 schneidet den Kegelschnitt (1.9b) im algebraischen Sinn in 4 Punkten, die durch die gemeinsamen Nullstellen (u_i, v_i) (i = 1, ..., 4) von (1.9b) und (1.15) festgelegt werden. Durch Einsetzen dieser Werte in (1.9a) können die noch fehlenden Werte c_i der gesuchten Berührsphären bestimmt werden. Damit liegen nach (0.3) die Berührsphären $\sigma_1, \ldots, \sigma_4$ eindeutig fest. \Box

Der Satz 2 weicht vom euklidischen Analogon ab, wo bekanntlich 8 Berührkugeln existieren (vgl. [4]). Allerdings existieren bei vorgegebenen Geraden g_1, g_2, g_3 in $I_3^{(1)}$ noch 4 zylindrische Berührsphären, deren Radius durch die Lage von g_1, g_2, g_3 aber schon mitbestimmt ist.

Gegeben seien nun 4 paarweise windschiefe, nichtisotrope Geraden g_1, g_2, g_3, g_4 . Wir legen g_1 und g_2 in der Normaldarstellung fest, wie sie schon im Satz 1 verwendet wurde und beschreiben g_3 und g_4 durch ihre normierten Richtungsvektoren $\vec{e}_i(e_{i1}, e_{i2}, e_{i3})$ (i = 3, 4) und ihre Aufpunkte $A_i(a_{i1}, a_{i2}, a_{i3})$. Dabei setzen wir voraus, daß

$$(1.16) a_{i1}e_{i1} + a_{i2}e_{i2} = 0 (i = 3, 4)$$

gilt. Um alle Sphären σ zu bestimmen, die g_1, \ldots, g_4 berühren, sind dann nach (1.5) und (1.9a,b) aus den 4 Gleichungen

(1.17a-d)
$$\begin{aligned} (ue_{31} + ve_{32} + e_{33}\rho)^2 &= (a_{31} - u)^2 + (a_{32} - v)^2 + 2\rho(c - a_{33}) \\ (ue_{41} + ve_{42} + e_{43}\rho)^2 &= (a_{41} - u)^2 + (a_{42} - v)^2 + 2\rho(c - a_{43}) \\ u^2 \sin^2 \varphi/2 + v^2 \cos^2 \varphi/2 &= -2c\rho \\ uv \sin \varphi &= d\rho \end{aligned}$$

die 4 Unbekannten u, v, c und ρ zu bestimmen, wobei $\frac{1}{2R} =: \rho$ gesetzt wurde. Setzt man die aus (1.17c,d) fließenden Gleichungen

(1.18a,b)

$$\rho = \frac{\sin \varphi}{d} uv$$

$$c = -\frac{d}{2\sin \varphi} \left(\frac{u}{v} \sin^2 \varphi/2 + \frac{u}{v} \cos^2 \varphi/2\right)$$

in (1.17a,b) ein, so entstehen die Gleichungen — wenn abkürzend $q:=\frac{\sin\varphi}{d}$ gesetzt wird —

$$(ue_{31} + ve_{32} + e_{33}quv)^2 = u^2 \cos^2 \varphi/2 + v^2 \sin^2 \varphi/2 - -2a_{33}quv - 2a_{31}u - 2a_{32}v + a_{31}^2 + a_{32}^2$$
(1.19a,b)

$$(ue_{41} + ve_{42} + e_{43}quv)^2 = u^2 \cos^2 \varphi/2 + v^2 \sin^2 \varphi/2 - -2a_{43}quv - 2a_{41}u - 2a_{42}v + a_{41}^2 + a_{42}^2.$$

Für $e_{33} \neq 0$, $e_{34} \neq 0$ sind dies zwei algebraische Kurven 4. Ordnung, während für $e_{33} = e_{43} = 0$ zwei Kegelschnitte vorliegen. Im zweiten Fall sind die Geraden g_3 , g_4 zu der von g_1 und g_2 bestimmten Ebenenstellung parallel. Die beiden Kegelschnitte (1.19a,b) haben im algebraischen Sinn 4 Punkte $P(u_i, v_i)$ gemeinsam. Aus den gefundenen gemeinsamen Nullstellen (u_i, v_i) (i = 1, ..., 4) kann man gemäß (1.18a,b) die noch ausstehenden Werte ρ_i und c_i berechnen, womit die 4 Berührkugeln $\sigma_1, ..., \sigma_4$ eindeutig festliegen.

Im ersten Fall definieren (1.19a,b) zwei pseudoeuklidisch bizirkuläre Kurven 4. Ordnung, wenn man die [uv]-Ebene mit einer pseudoeuklidischen Metrik versieht, deren absolute Punkte die Punkte $I_1(0:1:0)$ und $I_2(0:0:1)$ sind (vgl. [8, 160f]). Um die gemeinsamen Lösungen (u, v) von (1.19a,b) zu bestimmen, schreiben wir diese Gleichungen in der Gestalt

$$u^{2}[e_{33}^{2}q^{2}v^{2} + 2e_{31}e_{33}qv + e_{31}^{2} - \cos^{2}\varphi/2] + +u[2qe_{32}e_{33}v^{2} + 2v(e_{31}e_{32} + qa_{33}) + 2a_{31}] + +[v^{2}(e_{32}^{2} - \sin^{2}\varphi/2) + 2a_{32}v - a_{31}^{2} - a_{32}^{2}] = 0$$

(1.20a,b)
$$u^{2}[e_{43}^{2}q^{2}v^{2} + 2e_{41}e_{43}qv + e_{41}^{2} - \cos^{2}\varphi/2] + +u[2qe_{42}e_{43}v^{2} + 2v(e_{41}e_{42} + qa_{43}) + 2a_{41}] + +[v^{2}(e_{42}^{2} - \sin^{2}\varphi/2) + 2a_{42}v - a_{41}^{2} - a_{42}^{2}] = 0.$$

Unter Verwendung der Abkürzungen

$$(1.21.a-f) \qquad p_{2}(v) = e_{33}^{2}q^{2}v^{2} + 2e_{31}e_{33}qv + e_{31}^{2} - \cos^{2}\varphi/2$$

$$q_{2}(v) = 2qe_{32}e_{33}v^{2} + 2v(e_{31}e_{32} + qa_{33}) + 2a_{31}$$

$$r_{2}(v) = v^{2}(e_{32}^{2} - \sin^{2}\varphi/2) + 2a_{32}v - a_{31}^{2} - a_{32}^{2}$$

$$\tilde{p}_{2}(v) = e_{43}^{2}q^{2}v^{2} + 2e_{41}e_{43}qv + e_{41}^{2} - \cos^{2}\varphi/2$$

$$\tilde{q}_{2}(v) = 2qe_{42}e_{43}v^{2} + 2v(e_{41}e_{42} + qa_{43}) + 2a_{41}$$

$$\tilde{r}_{2}(v) = v^{2}(e_{42}^{2} - \sin^{2}\varphi/2) + 2a_{42}v - a_{41}^{2} - a_{42}^{2}$$

verbleibt somit die *Resultante* der Polynome (1.20a,b), d.h.

(1.22)
$$\begin{vmatrix} p_2 & q_2 & r_2 & 0\\ 0 & p_2 & q_2 & r_2\\ \tilde{p}_2 & \tilde{q}_2 & \tilde{r}_2 & 0\\ 0 & \tilde{p}_2 & \tilde{q}_2 & \tilde{r}_2 \end{vmatrix} = 0$$

zu berechnen. Dies liefert ein Polynom vom Grad 8 in v. Bildet man aus (1.20a,b) noch die *lineare Gleichung*

(1.23)
$$u(q_2\tilde{p}_2 - \tilde{q}_2p_2) + (r_2\tilde{p}_2 - \tilde{r}_2p_2) = 0,$$

so kann man hieraus die zugehörigen *u*-Werte eindeutig bestimmen. Zu den 8 Lösungen (u_i, v_i) (i = 1, ..., 8) im algebraischen Sinn kann man schließlich nach (1.18a,b) die fehlenden Werte ρ_i und c_i eindeutig bestimmen, womit die Berührsphären $\sigma_1, ..., \sigma_8$ festliegen. Damit haben wir den

Satz 3. Zu 4 paarweise windschiefen, nichtisotropen Geraden g_1, \ldots, g_4 allgemeiner Lage des einfach isotropen Raumes existieren im algebraischen Sinn 8 parabolische Sphären, die g_1, \ldots, g_4 berühren. Sind die Geraden g_1, \ldots, g_4 alle zu einer Ebene ε parallel, dann existieren im algebraischen Sinn 4 parabolische Berührsphären $\sigma_1, \ldots, \sigma_4$. Im ersten Fall gewinnt man die Achsen der Sphären $\sigma_1, \ldots, \sigma_8$ indem man die Nullstellen v_i $(i = 1, \ldots, 8)$ des Polynoms 8. Grades (1.22) bestimmt und die zugehören u-Werte gemäß (1.23) berechnet. Im zweiten Fall ($e_{33} = e_{43} = 0$) sind die 4 Achsen die vollisotropen Geraden durch die Schnittpunkte der beiden Kegelschnitte (1.19a,b).

Wir betrachten nun die zweiparametrige Menge Σ von Sphären, die zwei windschiefe Geraden g_1 , g_2 berühren und bestimmen die Hüllfläche dieser Sphärenschar. Hierzu ist aus (0.3) unter Verwendung von (1.9a,b) die Gleichung

(1.24)
$$F \equiv z + R(u^2 \sin^2 \varphi/2 + v^2 \cos^2 \varphi/2) - R(x-u)^2 - R(y-v)^2 = 0$$

mit

(1.25)
$$R = \frac{d}{2uv\sin\varphi}$$

zu bilden; hier und i.f. wird stets $u \neq 0, v \neq 0$ vorausgesetzt. Die Gleichung (1.24) kann auch in der Gestalt

(1.26)
$$F \equiv z - R(u^2 \cos^2 \varphi/2 + v^2 \sin^2 \varphi/2 + x^2 + y^2 - 2ux - 2vy) = 0$$

geschrieben werden. Weiter berechnen wir aus (1.25) unmittelbar

(1.27a,b)
$$\frac{\partial R}{\partial u} = -\frac{R}{u}, \quad \frac{\partial R}{\partial v} = -\frac{R}{v}.$$

Zur Bestimmung der Hüllfläche berechnen wir unter Beachtung von (1.27a,b) aus (1.24)

(1.28a,b)
$$\begin{aligned} \frac{\partial F}{\partial u} &\equiv u^2 \sin^2 \varphi/2 - v^2 \cos^2 \varphi/2 + (x-u)^2 + \\ &+ (y-v)^2 + 2u(x-u) = 0 \\ \frac{\partial F}{\partial v} &\equiv v^2 \cos^2 \varphi/2 - u^2 \sin^2 \varphi/2 + (x-v)^2 + \\ &+ (y-u)^2 + 2v(y-v) = 0. \end{aligned}$$

Werden die Gleichungen (1.28a,b) einmal addiert und einmal subtrahiert, so entstehen die wichtigen *Hilfsformeln*

(1.29a,b)
$$ux + vy = x^{2} + y^{2}$$
$$ux - vy = u^{2}\cos^{2}\varphi/2 - v^{2}\sin^{2}\varphi/2$$

Wird (1.29b) in (1.29a) eingesetzt, so entsteht, für $u\neq 0$ nachdem mit $u^2+v^2\neq 0$ gekürzt wurde, die quadratische Gleichung

(1.30)
$$y^2 - 2vy\sin^2\varphi/2 + (v^2\sin^2\varphi/2 - u^2\cos^2\varphi/2)\sin^2\varphi/2 = 0$$

mit den beiden Lösungen

(1.31a,b)
$$y_{1,2} = v \sin^2 \varphi/2 \pm u \sin \varphi/2 \cos \varphi/2.$$

Aus (1.31a,b) folgt sofort

(1.32a,b)
$$x_{1,2} = u \cos^2 \varphi / 2 \pm v \sin \varphi / 2 \cos \varphi / 2.$$

Werden die Gleichungen (1.31a) und (1.32a) in (1.26) eingesetzt, so erhält man wegen $z = R(u^2 \cos^2 \varphi/2 + v^2 \sin^2 \varphi/2 - ux - vy)$ die Gleichung $z = -\frac{d}{2}$. Analog liefert (1.31b) bzw. (1.32b) die Gleichung $z = \frac{d}{2}$. Somit besteht die *Hüllfläche* aus den beiden Geraden

(1.33a)
$$g_1 \dots \begin{cases} x = \cos \varphi/2 (u \cos \varphi/2 - v \sin \varphi/2) \\ y = -\sin \varphi/2 (u \cos \varphi/2 - v \sin \varphi/2) \\ z = \frac{d}{2} \end{cases}$$

und

(1.33b)
$$g_2 \dots \begin{cases} x = \cos \varphi / 2(u \cos \varphi / 2 + v \sin \varphi / 2) \\ y = \sin \varphi / 2(u \cos \varphi / 2 + v \sin \varphi / 2) \\ z = -\frac{d}{2} , \end{cases}$$

aus denen die Punkte $A_1(0, 0, d/2)$ und $A_2(0, 0, -d/2)$ herausgeschnitten sind. Für festes u und v wird gemäß (1.9a,b) eine eindeutig bestimmte Berührsphäre von g_1 und g_2 festgelegt, wobei die Koordinaten in (1.33a,b) die Berührpunkte $B_1 \in g_1$ und $B_2 \in g_2$ festlegen. Führt man auf g_1 und g_2 die isotropen Abstände $\lambda := \overline{A_1B_1}$ und $\mu := \overline{A_2B_2}$ ein, so folgt aus (1.33a,b)

(1.34a,b)
$$\begin{aligned} \lambda &= u \cos \varphi / 2 - v \sin \varphi / 2 \\ \mu &= u \cos \varphi / 2 + v \sin \varphi / 2 \end{aligned}$$

und die entsprechenden Berührpunkte werden nun durch

(1.35a,b)
$$B_1\left(\lambda\cos\varphi/2, -\lambda\sin\varphi/2, \frac{1}{2}d\right) \\ B_2\left(\mu\cos\varphi/2, \mu\sin\varphi/2, -\frac{1}{2}d\right)$$

mit $(\lambda, \mu) \neq (0, 0)$ festgelegt. Umgekehrt tritt jede Gerade des von g_1 und g_2 aufgespannten hyperbolischen Strahlnetzes — ausgenommen n — als Berührsehne $B_1B_2 = e$ genau einer parabolischen Sphäre der Schar Σ auf. Die Mittelpunkte $M(\xi, \eta, 0)$ dieser Berührsehnen sind durch

(1.36)
$$\xi = \frac{1}{2}(\mu + \lambda)\cos\varphi/2, \quad \eta = \frac{1}{2}(\mu - \lambda)\sin\varphi/2, \quad \zeta = 0$$

bzw.

(1.37)
$$\xi = u \cos^2 \varphi/2, \quad \eta = v \sin^2 \varphi/2, \quad \zeta = 0$$

gegeben, wobei die aus (1.34a,b) fließenden Formeln

(1.38a,b)
$$u = \frac{1}{2\cos\varphi/2}(\mu + \lambda), \quad v = \frac{1}{2\sin\varphi/2}(\mu - \lambda)$$

benützt wurden. Wird eine einparametrige Kugelschar aus Σ gewählt, dann legen die Formeln (1.36) bzw. (1.37) die Sehnenmittenkurve dieser Schar fest. Wir vermerken den

Satz 4. Die zweiparametrige Schar Σ aller parabolischen Sphären, die zwei windschiefe nichtisotrope Geraden g_1 , g_2 berühren, besitzt als Hüllfläche genau die Geraden g_1 , g_2 , wobei in der Normaldarstellung die Berührpunkte $B_1 \in g_1$ und $B_2 \in g_2$ durch die Formeln (1.33a,b) bzw. (1.35a,b) beschrieben werden. Jede Gerade des von g_1 und g_2 erzeugten hyperbolischen Strahlnetzes — ausgenommen die vollisotrope Treffgerade von g_1 , g_2 — tritt als Berührsehne genau einer Sphäre der Schar Σ auf; der Sehnenmittelpunkt wird durch (1.36) bzw. (1.37) fesgelegt.

Wir betrachten nun die Menge aller Sphären $\sigma \in \Sigma$, die g_1 in einem festen Punkt B_1 berühren. Wegen $\lambda = \lambda_0 = \text{konst. sind gemäß}$ (1.38a,b) und (1.9a) die Scheitelpunkte S(x, y, z) dieser Sphären gegeben durch

(1.39)
$$x = \frac{1}{2\cos\varphi/2}(\mu + \lambda_0)$$
$$y = \frac{1}{2\sin\varphi/2}(\mu - \lambda_0)$$
$$z = -\frac{d}{4} \left[\frac{\mu + \lambda_0}{\mu - \lambda_0} \operatorname{tg}^2 \varphi/2 + \frac{\mu - \lambda_0}{\mu + \lambda_0} \operatorname{ctg}^2 \varphi/2\right].$$

Alle Punkte S liegen ersichtlich in der *isotropen Ebene*

(1.40)
$$\eta \dots x \cos \varphi/2 - y \sin \varphi/2 = \lambda_0,$$

die zu g_1 orthogonal ist. Weiter folgt aus (1.39), daß diese Kurve auf der Fläche 3. Ordnung

(1.41)
$$xyz + \frac{d}{4}(x^2 \operatorname{tg} \varphi/2 + y^2 \operatorname{ctg} \varphi/2) = 0$$

liegt, die ersichtlich mit g_1 und g_2 isotrop-invariant verknüpft ist. Die Fläche (1.41) ist ein gerades Konoid 3. Ordnung (vgl. [3,276]) mit der vollisotropen Gemeinnormalen von g_1 und g_2 als Konoidachse. Die Kurve (1.39) ist somit eine ebene algebraische Kurve 3. Ordnung. Sie schneidet g_1 bzw. g_2 in dem Punkt B_1 bzw. in dem Punkt R_1 , den man als Schnittpunkt von η mit g_2 erhält. B_1 gehört zum Parameter $\mu = \lambda_0 \cos \varphi$, während R_1 zum Parameter $\mu = \frac{\lambda_0}{\cos \varphi}$ gehört; R_1 existiert nur für $\varphi \neq \pi/2$ (vgl. Abbildung 2, die einen Grundriß der geometrischen Situation zeigt). Die Kurve (1.39) schneidet die Fernebene ω im doppelt zu zählenden absoluten Punkt F und im Punkt (0 : $\sin \varphi/2 : \cos \varphi/2 : 0$).

Nach (1.9b) gilt

(1.42)
$$R = \frac{d}{\mu^2 - \lambda_0^2} ,$$

sodaß bei festem R_0 genau 2 Berührsphären σ_1 , σ_2 der Schar Σ zum Linienelement (B_1, g_1) gehören. Da aus (1.42) sofort

(1.43)
$$\mu_{1,2} = \pm \sqrt{\lambda_0^2 + \frac{d}{R_0}}$$

folgt, liegen die Berührungspunkte $B_2^{(1)}$ und $B_2^{(2)}$ dieser Sphären auf g_2 symmetrisch zu $A_2 = g_2 n$. Bei vorgegebener Achse $a_1 \subset \eta$ erhält man wie in Abbildung 2 gezeichnet sofort jene *Parallelkreise* c_1 und \bar{c}_1 der parabolischen Sphäre σ_1 , die g_1 bzw. g_2 berühren. Mittels $B_2^{(2)}$ findet man die Achse a_2 der entsprechenden Sphäre σ_2 , die ebenfalls den Radius F. Mészáros und H. Sachs

Abbildung 2.

 R_0 besitzt. Hiermit gewinnt man die Parallelkreise c_2 und \bar{c}_2 von σ_2 , die g_1 bzw. g_2 berühren. Durch die Achse und zwei Parallelkreise ist aber eine parabolische Sphäre *eindeutig* bestimmt.

Wir schneiden nun die Gerade (1.40) mit einer der gleichseitigen Hyperbeln h (1.10). Die Schnittpunkte S_1 , S_2 werden dann durch die quadratische Gleichung

(1.44)
$$y^{2} + \frac{\lambda_{0}}{\sin \varphi/2}y - \frac{d}{4R \sin^{2} \varphi/2} = 0$$

festgelegt. Für die Nullstellen y_1 , y_2 von (1.44) gilt bekanntlich nach VI-ETA $y_1 + y_2 = -\frac{\lambda_0}{\sin \varphi/2}$ und aus (1.40) folgt entsprechend $x_1 + x_2 = \frac{\lambda_0}{\cos \varphi/2}$. Der Mittelpunkt H der Strecke $\overline{S_1S_2}$ besitzt demnach die von R unabhängigen Koordinaten

(1.45)
$$x_h = \frac{\lambda_0}{2\cos\varphi/2}, \quad y_h = -\frac{\lambda_0}{2\sin\varphi/2}$$

Wie aus (1.39) ersichtlich, gehört H zum Parameterwert u = 0, sodaß sich für den zu H gehörigen Sphärenradius R_h gemäß (1.42)

(1.46)
$$R_h = -\frac{d}{\lambda_0^2}$$

einstellt. Wir bezeichnen die zu $\lambda = 0$ gehörige Sphäre σ_H als 1. Hauptsphäre. Bezeichnen wir die Achsen von σ_1 und σ_2 mit a_1 und a_2 , so berechnet man aus (1.38a,b) unter Beachtung von (1.43) unmittelbar

$$a_1 \left[\frac{1}{2\cos\varphi/2} (\mu + \lambda_0), \frac{1}{2\sin\varphi/2} (\mu - \lambda_0) \right],$$
$$a_2 \left[\frac{1}{2\cos\varphi/2} (-\mu + \lambda_0), -\frac{1}{2\sin\varphi/2} (\mu + \lambda_0) \right]$$

und findet daraus

$$\overrightarrow{a_1H} = \left(-\frac{\mu}{2\cos\varphi/2}, -\frac{\mu}{2\sin\varphi/2}\right) = \overrightarrow{Ha_2}, \text{ sowie } |\overrightarrow{a_1H}| = |\overrightarrow{Ha_2}| = \left|\frac{\mu}{\sin\varphi}\right|.$$

Die Achsen a_1 , a_2 der Sphären σ_1 , σ_2 liegen daher symmetrisch zur Achse a_H der 1. Hauptsphäre (vgl. Abbildung 2).

Legt man durch B_1 eine beliebige Gerade g in η mit der Darstellung

(1.47)
$$\vec{x} = \left(\lambda_0 \cos \varphi/2, -\lambda_0 \sin \varphi/2, \frac{1}{2}d\right) + t(\sin \varphi/2, \cos \varphi/2, v_3),$$
$$(v_3 \neq 0)$$

so schneidet g die Kurve 3. Ordnung (1.39) nebst B_1 in zwei weiteren Punkten M_1 , M_2 , die als Scheitelpunkte von 2 Sphären $\sigma_1, \sigma_2 \in \Sigma$ auftreten. Wir bezeichnen σ_1 und σ_2 als assoziierte Sphären. Die Bestimmung der Schnittpunkte von (1.47) mit (1.39) liefert nebst t = 0 die quadratische Gleichung

(1.48)
$$t^{2} + \left(2\lambda_{0}\operatorname{ctg}\varphi + \frac{d}{v_{3}\sin^{2}\varphi}\right)t - \lambda_{0}^{2} = 0$$

aus der nach VIETA für das Produkt Nullstellen

$$(1.49) t_1 t_2 = -\lambda_0^2$$

folgt. Somit gilt für die Abstände $\overline{B_1M_1}$ und $\overline{B_1M_2}$ wegen (1.46) die wichtige Beziehung

(1.50)
$$|\overline{B_1 M_1}| \cdot |\overline{B_1 M_2}| = \left|\frac{d}{R_h}\right|.$$

Zu den Punkten $B_1 \in g_1$ und für $\varphi \neq \pi/2$ zu $R_1 \in g_2$ gehören zwei ausgezeichnete Sphären σ_{2H} , σ_{3H} , die wir als 2. und 3. Hauptsphäre bezeichnen. Sie besitzen die Eigenschaft, daß die Parallelebene zur [xy]-Ebene durch B_1 bzw. R_1 jeweils Tangentialebene von σ_{2H} bzw. σ_{3H} ist. Nach (1.42) berechnet man ihre Radien R_2 bzw. R_3 zu

(1.51a,b)
$$R_2 = -\frac{d}{\lambda_0^2 \sin^2 \varphi} , \quad R_3 = \frac{d}{\lambda_0^2} \operatorname{ctg}^2 \varphi$$

und folgert daraus die interessanten Beziehungen

(1.52a,b)
$$\frac{R_2}{R_3} = -\frac{1}{\cos^2 \varphi}, \quad R_2 + R_3 = -\frac{d}{\lambda_0^2} = R_h.$$

Die Beziehung (1.52a) ist unabhängig von λ_0 ; sie zeigt, daß die Radien der 2. und 3. Hauptsphäre stets entgegengesetztes Vorzeichen besitzen. Wir vermerken einige Ergebnisse im

Satz 5. Die Scheitelpunkte aller Sphären, die eine Gerade g_1 in einem Punkt B_1 und eine zu g_1 windschiefe Gerade g_2 berühren, liegen auf einer ebenen algebraischen Kurve 3. Ordnung k_3 (1.39) in der isotropen Normalebene η auf g_1 durch B_1 . Die Achse a_H der 1. Hauptsphäre σ_H liegt symmetrisch zu den Erzeugenden, die η aus allen hyperbolischen Zylindern ζ (1.10) herausschneidet. Je 2 Sphären aus Σ zum Linienelement (B_1, g_1) von gleichem Radius besitzen Achsen a_1 , a_2 , die von a_H entgegengesetzt gleiche Abstände besitzen. Die Kurve k_3 schneidet g_1 und g_2 in den Scheitelpunkten der 2. und 3. Hauptsphäre σ_{2H} , bzw. σ_{3H} , falls $\varphi \neq \pi/2$ gilt. Für alle Paare von assoziierten Sphären aus Σ zum Linienelement (B_1, g_1) ist das Produkt der Abstände der entsprechenden Sphärenscheitel vom Punkt B_1 konstant.

§2 Geometrische Ergänzungen

Betrachtet man im dreidimensionalen euklidischen Raum die Mittelpunkte aller Kugeln, die zwei windschiefe Geraden g_1, g_2 berühren, dann liegen diese Punkte auf einem orthogonalen hyperbolischen Paraboloid Φ_{12} (vgl. [4]). Zu einem vorgegebenen hyperbolischen Paraboloid Φ_{12} ist jedoch g_1, g_2 nicht eindeutig bestimmt, es gibt vielmehr eine einparametrige Schar von Geradenpaaren (g_1, g_2) , die Φ_{12} als Abstandsfläche erzeugen.

Die entsprechende Fragestellung wollen wir jetzt im einfach isotropen Raum behandeln, wobei an die Stelle von Φ_{12} die Fläche der Scheitel aller Berührsphären von g_1 und g_2 tritt. Diese Fläche, die i.f. als *Scheitelfläche* Ψ_{12} bezeichnet wird, gewinnt man aus (1.9a,b) mittels x = u, y = v in der Form

(2.1)
$$F \equiv xyz + \frac{d}{4}(x^2 \operatorname{tg} \varphi/2 + y^2 \operatorname{ctg} \varphi/2) = 0.$$

Es handelt sich um das schon in (1.41) betrachtete gerade Konoid 3. Ordnung mit der Geraden n als *doppelter Leitgeraden*. Bildet man aus (2.1) die partiellen Ableitungen

(2.2)

$$F_{x} \equiv yz + \frac{d}{2}x \operatorname{tg} \varphi/2 = 0$$

$$F_{y} \equiv xz + \frac{d}{2}y \operatorname{ctg} \varphi/2 = 0$$

$$F_{z} \equiv xy = 0,$$

so erkennt man, daß der Koordinatenursprung U(0,0,0) der einzige singuläre Punkt von Ψ_{12} ist, d.h. geometrische Bedeutung besitzt. Wird Ψ_{12} mit einer Ebene y = kx geschnitten, so stellt sich für $k \neq 0$ nebst der doppelt zu zählenden Leitgeraden n die Flächenerzeugende

(2.3)
$$y = kx, \quad z = -\frac{d}{4k} (\operatorname{tg} \varphi/2 + k^2 \operatorname{ctg} \varphi/2)$$

ein, während die Ebene y = 0 die Fläche Ψ_{12} nur nach der doppelten Leitgeraden n und der Ferngeraden $x_0 = x_2 = 0$ schneidet. Analoges gilt für die Ebenen x = ky, wobei die Ebene x = 0 die Fläche nur nach der doppelten Leitgeraden n und der Ferngeraden $x_0 = x_1 = 0$ schneidet. Demnach besitzen die Ebenen x = 0 und y = 0 geometrische Bedeutung. Falls also ein anderes Geradenpaar (g_3, g_4) ebenfalls die Scheitelfläche Ψ_{12} erzeugt, dann müssen die Geraden g_3 und g_4 die doppelte Leitgerade n von Ψ_{12} in zu U symmetrisch gelegenen Punkten schneiden und zur Richtebene z = 0 von Ψ_{12} parallel sein. Weiters müssen g_3 und g_4 mit der Ebene y = 0 entgegengesetzt gleiche Winkel einschließen. Werden diese Winkel mit $\pm \frac{1}{2}\psi$ bezeichnet und die Abstände der Geraden g_3, g_4 von U mit $\pm \frac{1}{2}h$ angenommen, dann erhält man analog zu (1.9a,b) zwei Gleichungen, die als Scheitelfläche die algebraische Fläche

(2.4)
$$xyz + \frac{h}{4}(x^2 \operatorname{tg} \psi/2 + y^2 \operatorname{ctg} \psi/2) = 0$$

liefern. Sollen (2.1) und (2.4) für alle $(x, y) \in \mathbb{R} \times \mathbb{R}$ übereinstimmen, so liefert dies die beiden Bedingungen

(2.5a,b)
$$d \operatorname{tg} \varphi/2 = h \operatorname{tg} \psi/2, \quad d \operatorname{ctg} \varphi/2 = h \operatorname{ctg} \psi/2,$$

aus denen wegen d > 0, h > 0 sofort d = h und $\varphi = \psi$ folgt. Damit gilt $g_1 \equiv g_3, g_2 \equiv g_4$. Wir vermerken den

Satz 6. Zwei windschiefe nichtisotrope Geraden g_1 , g_2 des einfach isotropen Raumes und die Scheitelfläche Ψ_{12} aller parabolischen Berührsphären von g_1 und g_2 bestimmen sich gegenseitig eindeutig.

Wir betrachten nochmals alle parabolischen Sphären von festem Radius R_0 , die zwei windschiefe, nichtisotrope Geraden berühren. Mittels (1.9b) erhält man aus (1.37) für die Sehnenmittenkurve die Darstellung

(2.6)
$$\xi = u \cos^2 \varphi/2, \quad \eta = \frac{d}{4uR_0} \operatorname{tg} \varphi/2, \quad \zeta = 0.$$

Dies ist eine gleichseitige Hyperbel mit der Gleichung

(2.7)
$$\xi \eta = \frac{d}{8R_0} \sin \varphi$$

und den isotropen Bisektoren als Asymptoten. Bezeichnen B_1 und B_2 die entsprechenden Berührungspunkte mit g_1 bzw. g_2 , dann erzeugen die Verbindungsgeraden $e = B_1 B_2$ eine Regelfläche Λ , die sich durch die Beziehung

(2.8)
$$\mu^2 - \lambda^2 = \frac{d}{R_0}$$

charakterisieren läßt. Die Gleichung (2.8) beschreibt eine (2–2)-Koorrespondenz zwischen g_1 und g_2 , sodaß die Regelfläche Λ nach dem CHASLESCHEN Korrespondenzprinzip (vgl. [7, 48]) eine *Regelfläche 4. Ordnung* ist. Sie besitzt die Geraden g_1 und g_2 als doppelte Leitgeraden und die Hyperbel (2.7) als Leithyperbel. Nach [7, 261] ist Λ somit eine Regelfläche 4. Ordnung von 7. STURMSCHER Art; die Ferngerade $x_0 = x_3 = 0$ ist Doppelerzeugende der Fläche. Unter Benützung der Leitgeraden g_1 und des Richtungsvektors $\overrightarrow{B_1B_2}$ auf den Erzeugenden e von Λ kann man die Regelfläche in der Gestalt

(2.9)
$$x = \lambda \cos \varphi / 2 + t(\mu - \lambda) \cos \varphi / 2$$
$$y = -\lambda \sin \varphi / 2 + t(\mu + \lambda) \sin \varphi / 2$$
$$z = \frac{1}{2}d - td$$

parametrisieren, wobei λ und t die Flächenparameter sind und die Nebenbedingung (2.8) gilt. Durch Elimination von λ, μ und t aus (2.9) und (2.8) erhält man nach einiger Rechnung die *Flächengleichung*

(2.10)
$$\frac{1}{8R_0d}(d^2 - 4z^2)^2 \sin^2 \varphi =$$
$$= 4dz(x^2 \sin^2 \varphi/2 + y^2 \cos^2 \varphi/2) + xy(d^2 + 4z^2) \sin \varphi$$

Wie aus (2.10) ersichtlich, schneidet Λ die Fernebene ω nach der Doppelgeraden $x_0 = x_3 = 0$ und dem Fernkegelschnitt $x_0 = x_3^2 \sin \varphi - 2x_1x_2R_0d=0$. Die 4 Torsallinien von Λ werden durch $\left\{\lambda=0, \mu=\pm\sqrt{\frac{d}{R_0}}\right\}$ und $\left\{\lambda=\pm\sqrt{\frac{d}{R_0}}, \mu=0\right\}$ festgelegt. Wir vermerken den

Satz 7. Die Verbindungsgeraden der Berührpunkte aller Sphären von festem Radius R_0 mit zwei nichtisotropen windschiefen Geraden g_1 , g_2 erzeugen eine Regelfläche 4. Ordnung Λ , 7. Sturmscher Art mit den Geraden g_1 und g_2 als doppelten Leitgeraden und der Ferngeraden der durch g_1 und g_2 bestimmten Ebenenstellung als Doppelerzeugender. Die Regelfläche Λ kann als Menge der Treffgeraden von g_1 , g_2 und der Sehnenmittenhyperbel (2.7) erzeugt werden.

Wir betrachten nochmals alle parabolischen Sphären σ , die 3 paarweise windschiefe, nichtisotrope Geraden g_1, g_2, g_3 berühren. Als Sehnenmittenkurve dieser Sphärenschar erhält man aus (1.19a) mittels (1.37) in der Ebene $\zeta = 0$ die Kurve

Die Gleichung (2.11) stellt für $e_{33} \neq 0$ eine *pseudoeuklidisch bizirkuläre* Kurve 4. Ordnung dar. Für $e_{33} = 0$ ist (2.11) ein Kegelschnitt mit der Gleichung

(2.12)
$$\begin{aligned} \xi^{2}(\sin^{2}\varphi/2 - e_{31}^{2} \operatorname{tg}^{2}\varphi/2) - 2\xi\eta(a_{33}q + e_{31}e_{32}) + \\ +\eta^{2}(\cos^{2}\varphi/2 - e_{32}^{2}\operatorname{ctg}^{2}\varphi/2) - 2a_{31}\xi\sin^{2}\varphi/2 - \\ -2a_{32}\eta\cos^{2}\varphi/2 + \frac{1}{4}\left(a_{31}^{2} + a_{32}^{2}\right)\sin^{2}\varphi = 0. \end{aligned}$$

Um den Typus von (2.12) zu bestimmen, berechnen wir die Diskriminante Δ jener quadratischen Gleichung, die die Fernpunkte von (2.12) festlegt. Man findet zunächst $\Delta = (a_{33}q + e_{31}e_{32})^2 - (\sin^2 \varphi/2 - e_{31}^2 \operatorname{tg}^2 \varphi/2) \cdot (\cos^2 \varphi/2 - e_{32}^2 \operatorname{ctg}^2 \varphi/2)$ und diese Gleichung läßt sich unter Beachtung von $e_{31}^2 + e_{32}^2 = 1$ umformen zu

(2.13)
$$\Delta = (a_{33}q + e_{31}e_{32})^2 + (e_{31}^2 - \cos^2\varphi/2)^2.$$

Diese Gleichung zeigt, daß $\Delta > 0$ gilt, falls nicht $e_{31} = \pm \cos \varphi/2$, $e_{32} = \pm \sin \varphi/2$ und entsprechend $a_{33} = \pm \frac{1}{2}d$ gilt. Dann fällt aber g_3 mit g_1 bzw.

 g_2 zusammen, was nicht zulässig ist. Somit ist (2.12) stets eine Hyperbel; diese ist nur für $\varphi = \pi/2$ gleichseitig.

Bestimmen wir noch jene Regelfläche Λ , die von den Verbindungsgeraden $e := B_1 B_2$ der Berührungspunkte $B_1 \in g_1$ und $B_2 \in g_2$ obiger Sphärenschar erzeugt wird! Werden die Gleichungen (1.38a,b) in (1.19a) eingesetzt, so entsteht nach einiger Rechnung die Bedingung

$$\frac{1}{2\sin\varphi} \Big[2\lambda(e_{31}\sin\varphi/2 - e_{32}\cos\varphi/2) + + 2\mu(e_{31}\sin\varphi/2 + e_{32}\cos\varphi/2) + qe_{33}(\mu^2 - \lambda^2) \Big]^2 = = \mu^2(\sin\varphi - 2qa_{33}) + \lambda^2(\sin\varphi + 2qa_{33}) - - 4\mu(a_{31}\sin\varphi/2 + a_{32}\cos\varphi/2) - 4\lambda(a_{31}\sin\varphi/2 - a_{32}\cos\varphi/2) + + 2(a_{31}^2 + a_{32}^2)\sin\varphi = 0.$$

Die Gleichung (2.14) ist für $e_{33} \neq 0$ eine (4-4)-Korrespondenz zwischen den Trägergeraden g_1 und g_2 , sodaß die erzeugte Regelfläche A nach dem CHASLESCHEN Korrespondenzprinzip die Ordnung 8 besitzt. Für $e_{33} = 0$ liefert (2.14) nur eine (2-2)-Korrespondenz und A besitzt die Ordnung 4. A kann in diesem Fall als Menge aller Geraden erzeugt werden, die g_1 , g_2 und die Hyperbel (2.12) schneiden. Somit ist A eine Regelfläche 4. Grades von 7. STURMSCHER Art (vgl. [7, 261]) mit den Geraden g_1 und g_2 als doppelten Leitgeraden und der Ferngeraden der durch g_1 und g_2 festgelegten Ebenenstellung als Doppelerzeugender. Wir vermerken

Satz 8. Sind g_1 , g_2 , g_3 drei paarweise windschiefe, nichtisotrope Geraden allgemeiner Lage, dann bilden die Verbindungsgeraden der Berührungspunkte der einbeschriebenen Sphären 3 Regelflächen 8. Grades. Die zu je 2 Geraden gehörige Sehnenmittenkurve ist eine pseudoeuklidisch bizirkuläre Kurve in jener Ebene, die durch die entsprechenden Bisektoren aufgespannt wird.

Satz 9. Sind g_1, g_2, g_3 drei paarweise windschiefe, nichtisotrope Geraden, die zu einer Ebene parallel sind, dann bilden die Verbindungsgeraden der Berührungspunkte der einbeschriebenen Sphären 3 Regelflächen 4. Grades, 7. STURMSCHER Art. Die zu je 2 Geraden gehörige Schnenmittenkurve ist eine Hyperbel in jener Ebene, die durch die entsprechenden Bisektoren aufgespannt wird. Die erzeugte Regelfläche kann als Menge der Treffgeraden der Geraden $g_i, g_j \ (i \neq j)$ und der zugehörigen Schnenmittenhyperbel erzeugt werden.

Der folgende Satz zeigt, wie man zu mehr als 4 paarweise windschiefen Geraden in einem Sonderfall 2 reelle parabolische Berührsphären finden kann. **Satz 10.** Sind $\{f_1, f_2, ...\}$ paarweise windschiefe Erzeugenden auf einem einschaligen Drehhyperboloid Ψ mit vollisotroper Drehachse a und ist g eine beliebige Gerade mit folgenden Eigenschaften:

- (a) g ist zu keiner Erzeugenden des Asymptotenkegels von Ψ parallel.
- (b) g ist nicht zu a parallel.
- (c) Ist der wahre Umriß von Ψ für die Blickrichtung g eine Hyperbel u^n , so liegt die projizierende Gerade g^n im Inneren von u^n , aber nicht auf den Scheiteltangenten von u^n .
- (d) Ist der wahre Umriß von Ψ für die Blickrichtung g eine Ellipse u^n , so liegt die projizierende Gerade g^n im Äußeren von u^n , aber nicht auf einer Scheiteltangente von u^n .

Dann existieren genau 2 reelle parabolische Berührsphären σ_1 , σ_2 von $\{f_1, f_2, \ldots, g\}$.

BEWEIS. Jede Ψ einbeschriebene parabolische Sphäre σ berührt $\{f_1, f_2, \ldots, \}$. Es bleibt daher noch zu zeigen, daß 2 reelle Sphären σ_1 , σ_2 dieser Art existieren, die zusätzlich g berühren. Durch Einführung von (eventuell) zwei Seitenrissen kann g projizierend gemacht werden, wobei wegen (a) der Normalumriß von Ψ gemäß [2, 228f] eine Hyperbel u^n oder eine Ellipse u^n ist. Wegen (b) ist u^n nicht kreisförmig. Ist u^n eine Hyperbel, dann ist gemäß (c) die projizierende Gerade g^n ein Innenpunkt der Hyperbel u^n , d.h. liegt in dem Bereich, wo der Hyperbelmittelpunkt liegt. Da der Umriß σ^n der Ψ einbeschriebenen Sphäre eine Parabel ist, deren Achse mit der Nebenachse von u^n zusammenfällt und die u^n doppelt berührt, bleibt zu zeigen, daß es durch jeden Innenpunkt g^n von u^n genau 2 Parabeln dieser Art gibt. Zum Beweis kann u^n in der Gestalt

(2.15)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

und σ^n in der Form

$$(2.16) y = Rx^2 + d$$

vorgegeben werden. Als Berührbedingung von u^n und σ^n erhält man dann nach kurzer Rechnung

(2.17)
$$a^2 R + d = \frac{b^2}{4a^2},$$

während die *y*-Koordinate der symmetrisch zur *y*-Achse gelegenen Berührungspunkte F. Mészáros und H. Sachs

Abbildung 3.

 B_1, B_2 durch

$$(2.18) y = \frac{b^2}{2a^2R}$$

festgelegt werden (vgl. Abbildung 3). Soll σ^n einen vorgegebenen Punkt $P(x_0, y_0)$ enthalten, dann gilt nach (2.16) $y_0 = Rx_0^2 + d$ und hiermit folgt aus (2.17) die quadratische Gleichung

(2.19)
$$2a^2(a^2 - x_0^2)R^2 + 2a^2y_0R - \frac{1}{2}b^2 = 0$$

in R, die für $x_0 \neq \pm a$ die beiden Lösungen

(2.20)
$$R_{1,2} = \frac{-ay_0 \pm \sqrt{a^2 y_0^2 - b^2 x_0^2 + a^2 b^2}}{2a(a^2 - x_0^2)}$$

besitzt; nach Voraussetzung (c) gilt ja $x_0 \neq \pm a$. Ersichtlich gilt für die Diskriminante Δ dieser quadratischen Gleichung $\Delta = a^2 y_0^2 - b^2 x_0^2 + a^2 b^2 > 0$ genau dann, wenn P im Innenbereich der Hyperbel u^n liegt, denn für den Hyperbelmittelpunkt M(0,0)gilt nämlich $\Delta > 0$. Somit existieren 2 reelle Parabeln durch P, da aus den beiden Werten R_1 , R_2 in (2.20) gemäß (2.17) die ausstehenden Werte d_1 , d_2 eindeutig bestimmt werden können. Mittels VIETA findet man für die Radien R_1 , R_2 aus (2.19) unmittelbar

(2.21)
$$R_1 + R_2 = \frac{y_0}{x_0^2 - a^2}, \quad R_1 R_2 = \frac{b^2}{4a^2(x_0^2 - a^2)}$$

und berechnet hiermit aus (2.18) für die entsprechenden *y*-Werte y_1, y_2

(2.22a,b)
$$y_1 + y_2 = 2y_0, \quad y_1y_2 = \frac{b^2}{a^2}(x_0^2 - a^2).$$

Hiermit stellt sich schließlich

(2.23a,b)
$$y_1 = y_0 + \frac{1}{a}\sqrt{a^2y_0^2 - b^2x_0^2 + a^2b^2}$$
$$y_2 = y_0 - \frac{1}{a}\sqrt{a^2y_0^2 - b^2x_0^2 + a^2b^2}$$

ein, wobei auf die Angabe der symmetrischen Lösung verzichtet wurde. Ist u^n eine *Ellipse*, die man o. B. d. A. in der Gestalt

(2.24)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

ansetzen kann, dann gewinnt man aus (2.24) und (2.16) in Analogie zu den Formeln (2.17), (2.18), (2.19) und (2.20)

(2.25)
$$a^2 R + d = -\frac{b^2}{4a^2 R} ,$$

(2.26)
$$y = -\frac{b^2}{2a^2R}$$
,

(2.27)
$$2a^2(a^2 - x_0^2)R^2 + 2a^2y_0R + \frac{1}{2}b^2 = 0,$$

(2.28)
$$R_{1,2} = \frac{-ay_0 \pm \sqrt{a^2 y_0^2 + b^2 x_0^2 - a^2 b^2}}{2a(a^2 - x_0^2)}$$

•

Nach Voraussetzung (d) gilt $x_0 \neq \pm a$ und für die Diskriminante $\Delta = a^2 y_0^2 + b^2 x_0^2 - a^2 b^2$ gilt $\Delta > 0$, wenn $P(x_0, y_0)$ im Außenbereich der Ellipse (2.24) liegt; für den Ellipsenmittelpunkt M(0,0) gilt nämlich $\Delta < 0$. Somit besitzt (2.28) 2 reelle Lösungen R_1, R_2 , die über (2.25) zwei reelle doppelt berührende Parabeln σ_1^n, σ_2^n der Umrißellipse u^n bestimmen. Die zu (2.23a,b) analogen Formeln lauten schließlich

(2.29a,b)
$$y_1 = y_0 + \frac{1}{a}\sqrt{a^2y_0^2 + b^2x^2 - a^2b^2}$$
$$y_2 = y_0 - \frac{1}{a}\sqrt{a^2y_0^2 + b^2x^2 - a^2b^2}.$$

Die Abbildung 3 zeigt für die Annahme a = 3, b = 4 im Fall einer Hyperbel u^n die beiden Parabeln σ_1^n und σ_2^n durch den Punkt P(2,5;2). \Box

Literaturverzeichnis

- O. BOTTEMA and B. ROTH, Theoretical Kinematics, North-Holland Publ. Comp., Amsterdam, New York, Oxford, 1979.
- [2] H. BRAUNER, Lehrbuch der Konstruktiven Geometrie, Springer-Verlag, Wien-New York, 1985.
- [3] K. FLADT und A. BAUR, Analytische Geometrie spezieller Flächen und Raumkurven, Vieweg-Verlag, Braunschweig, 1975.
- [4] M. HUSTY und H. SACHS, Abstadsprobleme zu windschiefen Geraden I, Sitz.-Ber. der Österr. Akad. Wiss., Wien (1994, im Druck).
- [5] W. KICKINGER, Konstruktive Behandlung des Drehparaboloids, Informationsblätter für Darstellende Geometrie, Univ. Innsbruck 2 (1983), 9–16.
- [6] J. LANG, Zu den linearen Sphärenmannigfaltigkeiten im einfach isotropen Raum, Berichte der Math.-Stat. Sektion, Forschungszentrum Graz, Ber 218 (1984), 1–30.
- [7] E. MÜLLER und J. KRAMES, Vorlesungen über Darstellende Geometrie, Bd. 3: Kon-

struktive Behandlung der Regelflächen, F. Deuticke, *Leipzig und Wien*, 1931.

- [8] P. K. RASCHEWSKI, Riemannsche Geometrie und Tensoranalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959.
- [9] H. SACHS, Zur Geometrie der Sphären im einfach isotropen Raum, Sitz.-Ber. Akad. Wiss. Wien 186 (1977), 241–261.
- [10] H. SACHS, Isotrope Geometrie des Raumes, Vieweg-Verlag, Braunschweig/Wiesbaden, 1990.
- [11] H. WÜNSCH, Die kugeltreuen Transformationen des isotropen Raumes, Dissertation, *TU Karlsruhe*, 1936, pp. 1–216.

F. MÉSZÁROS MONTANUNIVERSITÄT LEOBEN INSTITUT FÜR MATHEMATIK A-8700 LEOBEN AUSTRIA

H. SACHS MONTANUNIVERSITÄT LEOBEN INSTITUT FÜR MATHEMATIK A–8700 LEOBEN AUSTRIA

(Eingegangen am 21. Dezember 1993.)