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Abstract. Let (G,+) be a commutative semigroup, τ be an endomorphism of G

and involution, D be a nonempty subset of G, and P be a quadratically closed field

with charP 6= 2. We show that if the set D \ g−1({0}) is ‘sufficiently large’, then each

function g : D → P , satisfying the condition: g(x + y) + g(x + τ(y)) = 2g(x)g(y) for

x, y ∈ D with x + y, x + τ(y) ∈ D, can be extended to a unique solution f : G → P of

the functional equation f(x+ y) + f(x+ τ(y)) = 2f(x)f(y) for x, y ∈ G.

Let P be a field that is quadratically closed (i.e., for each x ∈ P there

is y ∈ P with y2 = x), charP 6= 2, (G,+) be a commutative semigroup, and

D be a nonempty subset of G, unless explicitly stated otherwise. Let τ be an

endomorphism of G and involution (cf. [4]), i.e., τ(x+y) = τx+τy and τ(τx) = x

for x, y ∈ G, where τx := τ(x) for x ∈ G.

We say that a function f : D → P satisfies the functional equation

f0(x+ y) + f0(x+ τy) = 2f0(x)f0(y) (1)

on the set D provided

f(x+ y) + f(x+ τy) = 2f(x)f(y), x, y ∈ D,x+ y, x+ τy ∈ D. (2)
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Note that if G is a group, then (1) is a natural generalization of the well-known

d’Alembert (cosine) equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ G, (3)

with τx ≡ −x. Therefore, every solution to (1) can be called a generalized cosine

function. For some information and references on the d’Alembert equation (3)

and recent examples of results concerning its solutions, see [3], [9], [12], [14], [15],

[18], [21], [22], [23], [24], [25], [26], [27], [28], [29].

Solutions of (1) have been determined in [22] in the case where G is a com-

mutative group (under some additional assumptions). Later, it has been proved

in [20] that a similar result is valid also in the case where G is ‘only’ a commutative

semigroup.

In this paper we study possibilities of extensions of functions satisfying equa-

tion (1) on D to a solution g0 : G→ P of (1). It is obvious that such an extension

does not need to exist if D is ‘meagre’ (i.e., not large enough). Therefore, we

have to find an assumption on D that makes it ‘sufficiently large’ to guarantee

the above-mentioned property of extension.

Clearly, it is natural to assume that a set D ⊂ G is large provided it belongs

to some filter of subsets of G that is proper (i.e., different from 2G). So, we

assume that D ∈ L, where L is a family of subsets of G such that the following

three conditions are valid:

L 6= 2G, (4)

B ∈ L, B ∈ 2G, 2B ∩ L 6= ∅, (5)

τ(B), B − x,B + x,A ∩B ∈ L, A,B ∈ L, x ∈ G, (6)

where

T + a := {a+ x : x ∈ T}, T − a := {x ∈ G : x+ a ∈ T}

for a ∈ G and T ∈ 2G. Note that (4) and (5) imply that ∅ /∈ L.

We show that then, for each function g : D → P satisfying (2), there exists a

solution g0 : G→ P of (1) with g(x) = g0(x) for x ∈ D. This outcome corresponds

in particular to [8, Theorems 1–4], [2, Theorem 1] and to some analogous results

obtained for the equation of homomorphism in [1], [5], [6], [13], [16], [17] (see also

[10, Theorem 4.1] or [19, Theorem 1.1, Ch. XVIII, p. 468]).

Remark 1. Let I ⊂ 2G be an ideal (i.e., 2B ⊂ I and B ∪ C ∈ I for every

B,C ∈ I) and

L := {A ⊂ G : G \A ∈ I}.
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Then it is easily seen that L is a filter, i.e., (5) holds and A ∩ B ∈ L for every

A,B ∈ L. Moreover, if I has some additional suitable properties, then also

conditions (4) and (6) are valid. Below we provide natural examples of such

ideals I ⊂ 2G having those suitable properties guaranteeing (4) and (6).

(a) G is cancellative and not of finite cardinality and I = {A ⊂ G : cardA <

cardG}.

(b) d is an invariant metric in G (i.e., d(x + y, z + y) = d(x, z) for x, y, z ∈ G),

supx,y∈G d(x, y) =∞, the set τ(B) is bounded (i.e., supx,y∈τ(B) d(x, y) <∞)

for each bounded set B ∈ 2G, and I is the family of all bounded subsets

of G.

(c) G = {z ∈ C : <z > 0} (with the usual addition of complex numbers), I is

the family of all subsets A of G with supz∈A <z <∞ and τz = z for z ∈ G,

where z is the complex conjugate and <z denotes the real part of the complex

number z.

(d) G is a topological group of the second category of Baire, I is the family of all

first category subsets of G and τ is continuous (which actually means that τ

is a homeomorphism, because τ−1 = τ).

(e) G is a locally compact topological group, µ is the Haar measure in G with

µ(G) =∞, I = {A ⊂ G : µ(A) <∞} and τ is continuous.

(f) G is an abelian Polish group, I is the σ-ideal of Haar zero subsets of G

(see [7]) and τ is continuous.

(g) G is an abelian Polish group, I is the σ-ideal of Christensen zero subsets

of G (see [11]) and τ is continuous.

In this paper we also use the following notions:

T + S := {x+ y : x ∈ T, y ∈ S}, T − S := {z ∈ G : (S + z) ∩ T 6= ∅},

for S, T ⊂ G. Clearly, if G is a group, then

T − S = {x− y : x ∈ T, y ∈ S}.

We start with some auxiliary lemmas. The first one is a very simple observation.

Lemma 1. Assume that S ∈ L. Then

S − S = G. (7)
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Proof. Take y ∈ G. By (6),

S ∩ (y + S) 6= ∅.

Hence there are u, v ∈ S such that u = y + v, which means that y ∈ S − S. In

this way we have shown that G ⊂ S − S, which completes the proof of (7). �

Lemma 2. Assume that (H,+) is an abelian group, S ∈ L and h0 : S → H

satisfies

h0(x+ y) = h0(x) + h0(y), x, y ∈ S, x+ y, x+ τy ∈ S. (8)

Then there exists a unique solution h : G→ H of the equation

h(x+ y) = h(x) + h(y), x, y ∈ G (9)

such that h(x) = h0(x) for x ∈ S.

Proof. Take a, b, c, d ∈ S with a+ d = b+ c and write

S1 := (S − a) ∩ (S − τa) ∩ (S − (a+ d)) ∩ (S − (a+ τd)),

S2 := (S − τb) ∩ (S − b) ∩ (S − (b+ c))) ∩ (S − (b+ τc)).

Clearly, by (6), S1, S2 ∈ L, whence S0 := S ∩ S1 ∩ S2 6= ∅.
Let v ∈ S0. Then

v, v + a, v + τa, v + a+ d, v + a+ τd ∈ S,

v + b, v + τb, v + b+ c, v + b+ τc ∈ S.

Consequently, by (8),

h0(v) + h0(b) + h0(c) = h0(v + b) + h0(c) = h0(v + b+ c)

= h0(v + a+ d) = h0(v + a) + h0(d)

= h0(v) + h0(a) + h0(d).

Thus we have proved that

h0(a)− h0(b) = h0(c)− h0(d), a, b, c, d ∈ S, a+ d = c+ b. (10)

Note that if z ∈ G and z + b = a, z + d = c for some a, b, c, d ∈ S, then

a+ d = z + b+ d = b+ z + d = b+ c.
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Therefore, in view of (7) and (10), we may define h : G→ H by

h(z) := h0(a)− h0(b)

for every z ∈ G and a, b ∈ S such that z + b = a.

First, we show that h(z) = h0(z) for z ∈ S. To this end, take z ∈ S and

u ∈ S∩ (S− τz)∩ (S−z). Then u+z, u+ τz ∈ S and, according to the definition

of h and (8),

h(z) = h0(z + u)− h0(u) = h0(z) + h0(u)− h0(u) = h0(z).

Next, we prove that (9) holds. Let z, w ∈ G. According to (7), there exist

a, b, c, d ∈ S with z + b = a and w + d = c and, in view of the definition of h,

h(z) = h0(a)− h0(b) and h(w) = h0(c)− h0(d). Write

Sa := (S − a) ∩ (S − τa) ∩ (S − (a+ c)) ∩ (S − (a+ τc)),

Sb := (S − b) ∩ (S − τb) ∩ (S − (b+ d)) ∩ (S − (b+ τd)).

Further, there is u ∈ S ∩ Sa ∩ Sb ∈ L. Hence

h(z + w) = h0(u+ a+ c)− h0(u+ b+ d)

= h0(u+ a) + h0(c)− (h0(u+ b) + h0(d))

= h0(u) + h0(a) + h0(c)− (h0(u) + h0(b) + h0(d))

= h0(a)− h0(b) + h0(c)− h0(d) = h(z) + h(w).

It remains to show the uniqueness of h. So, let h1 : G → H be such that

h1(x) = h0(x) for x ∈ S and

h1(x+ y) = h1(x) + h1(y), x, y ∈ G.

Take z ∈ G and a, b ∈ S with z + b = a. Then

h1(z) = h1(a)− h1(b) = h0(a)− h0(b) = h(z). �

It is easily seen that Lemma 2 implies the following corollary (cf. [1], [5],

[6], [13], [16], [17]; see also [10, Theorem 4.1] or [19, Theorem 1.1, Ch. XVIII,

p. 468]).
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Corollary 1. Assume that (H,+) is an abelian group, S ∈ L and h0 : S → H

satisfies

h0(x+ y) = h0(x) + h0(y), x, y ∈ S, x+ y ∈ S.

Then there is a unique solution h : G → H of (9) such that h(x) = h0(x) for

x ∈ S.

Lemma 3. Let D ∈ L and g : D → P fulfil (2). Then there is D̂ ∈ L with

D̂ ⊂ D, τ(D̂) = D̂ and

g(τx) = g(x), x ∈ D̂. (11)

Proof. If g(x) = 0 for each x ∈ D, then it is enough to take D̂ := D∩τ(D).

So, assume now that there is y ∈ D with g(y) 6= 0. Write

Dy := (D − y) ∩D ∈ L, D̂ := Dy ∩ τ(Dy).

Clearly, τ(D̂) = D̂ and D̂ ∈ L. Take w ∈ D̂. Then τw ∈ D̂. Moreover,

w + y, τw + y ∈ D, and consequently,

2g(y)g(w) = g(y + w) + g(y + τw)

= g(y + τw) + g(y + τ(τw)) = 2g(y)g(τw),

which yields g(τw) = g(w). �

Lemma 4. Let D ∈ L, g : D → P fulfil (2) and Dg := g−1({0}) /∈ L. Then

there exist D1 ∈ L and a function m : G→ P such that D1 ⊂ D, D1 = τ(D1),

m(x+ y) = m(x)m(y), x, y ∈ G, (12)

g(x) =
m(x) +m(τx)

2
, x ∈ D1. (13)

Proof. According to Lemma 3, there is D̂ ∈ L such that (11) holds, D̂ ⊂ D
and τ(D̂) = D̂.

First, consider the case where

g(x+ y) = g(x+ τy), x, y ∈ D̂, x+ y, x+ τy ∈ D̂. (14)

Then, by (2),

g(x+ y) = g(x)g(y), x, y ∈ D̂, x+ y, x+ τy ∈ D̂.
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We show that 0 /∈ g(D̂). For the proof by contradiction suppose that there

is y ∈ D̂ with g(y) = 0. Let

Dy := D̂ ∩ (D̂ − y) ∩ (D̂ − τy) ∈ L, D0 := (Dy + y) ∩ D̂ ∈ L.

Take z ∈ D0. Then z = x+ y with some x ∈ Dy and x+ y, x+ τy ∈ D̂. Hence

g(z) = g(x+ y) = g(x)g(y) = 0.

Thus we have shown that g(D0) = {0}, which is a contradiction, because Dg /∈ L.

So, 0 /∈ g(D̂). Consequently, in view of Lemma 2, there is m : G → P such

that g(x) = m(x) for x ∈ D̂ and (12) holds. It is easily seen that, by (11),

g(x) =
1

2
(g(x) + g(τx)) =

1

2
(m(x) +m(τx)), x ∈ D̂,

which means that (13) holds with D1 = D̂.

Now, let us study the case when there exist x0, y0 ∈ D̂ such that

x0 + y0, x0 + τy0 ∈ D̂

and g(x0 + y0) 6= g(x0 + τy0). Write D2 := D̂ ∩ (D̂ − y0) ∩ (D̂ − τy0) and

f(x) := g(x+ y0)− g(x+ τy0), x ∈ D2.

It is easily seen that τ(D2) = D2 and x0 ∈ D2, whence

f(x0) 6= 0. (15)

Since D2 ⊂ D̂, (11) implies

f(τx) = g(τx+ y0)− g(τx+ τy0) = g(x+ τy0)− g(x+ y0)

= −(g(x+ y0)− g(x+ τy0)) = −f(x), x ∈ D2. (16)

Take x, y ∈ D2 with x+ y, x+ τy ∈ D2. Then

x+ y + y0, x+ y + τy0, x+ τy + y0, x+ τy + τy0 ∈ D̂,

and consequently,

f(x+ y) = g(x+ y + y0)− g(x+ y + τy0),

f(x+ τy) = g(x+ τy + y0)− g(x+ τy + τy0).
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Adding those two equalities, we get

f(x+ y) + f(x+ τy) = g(x+ y + y0) + g(x+ τy + y0)

− g(x+ y + τy0)− g(x+ τy + τy0)

= 2g(x+ y0)g(y)− 2g(x+ τy0)g(y) = 2f(x)g(y). (17)

Next, y + τx ∈ D2, and consequently, y + τx + y0, y + τx + τy0 ∈ D̂, because

τ(D2) = D2. So, analogously, we get

f(y + x) + f(y + τx) = 2f(y)g(x). (18)

Finally, conditions (16), (17) and (18) imply that

f(x+ y) = f(x)g(y) + f(y)g(x), x, y ∈ D2, x+ y, x+ τy ∈ D2. (19)

Write

D3 := D2 ∩ (D2 − x0) ∩ (D2 − τx0).

Clearly,

τ(D3) = D3. (20)

Let x, y ∈ D3 and x+ y, x+ τy ∈ D3. Then

y + x0, y + τx0, x+ y + x0, x+ y + τx0, x+ τy + τx0 ∈ D2,

and consequently, by (19),

f((x+ y) + x0) = f(x+ y)g(x0) + f(x0)g(x+ y)

= (f(x)g(y) + f(y)g(x))g(x0) + f(x0)g(x+ y),

f(x+ (y + x0)) = f(x)g(y + x0) + f(y + x0)g(x)

= f(x)g(y + x0) + (f(y)g(x0) + f(x0)g(y))g(x),

whence

(g(x+ y)− g(x)g(y))f(x0) = (g(y + x0)− g(y)g(x0))f(x),

which can be rewritten as

h(y)f(x) = g(x+ y)− g(x)g(y),
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where (see (15))

h(y) :=
g(y + x0)− g(y)g(x0)

f(x0)
.

Thus we have proved that

g(x+ y) = h(y)f(x) + g(x)g(y), x, y ∈ D3, x+ y, x+ τy ∈ D3. (21)

If f(x) = 0 for every x ∈ D3, then (21) yields

g(x+ y) = g(x)g(y), x, y ∈ D3, x+ y, x+ τy ∈ D3,

and we can argue as in the case of (14) (with D̂ = D3).

It remains to study the case where there is x1 ∈ D3 with f(x1) 6= 0. It is

easily seen that, by (20) and (21),

h(y)f(x) = g(x+ y)− g(x)g(y) = h(x)f(y)

x, y ∈ D3, x+ y, x+ τy ∈ D3. (22)

Since P is quadratically closed, there is a ∈ P such that

h(x1)

f(x1)
= a2,

and consequently,

h(y) = a2f(y), y ∈ D3, x1 + y, x1 + τy ∈ D3.

This and (20) imply that

h(y) = a2f(y), y ∈ D4,

where D4 := D3 ∩ (D3 − x1) ∩ (D3 − τx1) ∈ L. So, by (22), we can write that

g(x+ y) = g(x)g(y) + a2f(x)f(y), x, y ∈ D4, x+ y, x+ τy ∈ D4. (23)

Clearly, (19) implies that

af(x+ y) = af(x)g(y) + af(y)g(x), x, y ∈ D4, x+ y, x+ τy ∈ D4. (24)

Hence, adding (23) and (24), we obtain

g(x+ y) + af(x+ y) = g(y)(g(x) + af(x)) + af(y)(g(x) + af(x))

= (g(x) + af(x))(g(y) + af(y)) (25)



272 Anna Bahyrycz, Janusz Brzdȩk and Eliza Jab lońska

for every x, y ∈ D4 with x+ y, x+ τy ∈ D4. Define h1, h2 : D4 → P by

h1(x) := g(x) + af(x), h2(x) := g(x)− af(x), x ∈ D4.

Then, by (11), (16) and the equality τ(D4) = D4,

h2(x) = g(x)− af(x) = g(τx) + af(τx) = h1(τx), x ∈ D4,

whence

g(x) =
h1(x) + h2(x)

2
=
h2(τx) + h2(x)

2
=
h1(x) + h1(τx)

2
, x ∈ D4, (26)

and (25) implies that

h1(x+ y) = h1(x)h1(y), x, y ∈ D4, x+ y, x+ τy ∈ D4,

h2(x+ y) = h1(τ(x+ y)) = h1(τx)h1(τy) = h2(x)h2(y),

x, y ∈ D4, x+ y, x+ τy ∈ D4.

Note that h−11 ({0}) /∈ L or h−12 ({0}) /∈ L, because otherwise, by (26), we

would getDg ∈ L. So, analogously, as in the case of (14), we show that 0 /∈ h1(D4)

or 0 /∈ h2(D4). Hence, by Lemma 2, we deduce that there is m : G → P such

that (12) holds and h1(x) = m(x) for x ∈ D4 or h2(x) = m(x) for x ∈ D4. This

completes the proof (in view of (26)). �

Lemma 5. Let f, g : D → P be solutions to (2),

S := {x ∈ D : g(x) = f(x)} ∈ L

and Dg /∈ L. Then g(x) = f(x) for x ∈ D.

Proof. Fix w ∈ D. Clearly,

A := S ∩ (S − w) ∩ (S − τw) ∈ L.

Take s ∈ A \Dg. Then s+ w, s+ τw ∈ S, whence

2g(s)g(w) = g(s+ w) + g(s+ τw)

= f(s+ w) + f(s+ τw) = 2f(s)f(w) = 2g(s)f(w).

Consequently, g(w) = f(w). �
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Now we are in a position to prove the main result of this paper.

Theorem 1. Let D ∈ L, g : D → P satisfy (2) and Dg 6∈ L. Then there

exists a unique solution f : G → P of equation (1) such that g(x) = f(x) for

x ∈ D.

Proof. On account of Lemma 4, there exist a set D1 ∈ L and a function

m : G → P such that D1 ⊂ D, D1 = τ(D1), and conditions (12) and (13) are

valid. Write

f(x) :=
m(x) +m(τx)

2
, x ∈ G.

It is easy to check that f is a solution to (1) and, by (13), g(x) = f(x) for x ∈ D1.

Hence, by Lemma 5, g(x) = f(x) for x ∈ D, because Dg 6∈ L.

It remains to show the uniqueness of the function f . To this end, assume

that f0 : G → P is a solution to equation (1) with g(x) = f0(x) for x ∈ D. Let

F := {y ∈ G : f(x) = 0} and F0 := F ∩ (G \ D). Clearly, D ⊂ G \ F0, so

G \ F0 ∈ L. Suppose that F ∈ L. Then, by (6), Dg = F ∩ (G \ F0) ∈ L, which is

a contradiction.

Thus we have proved that F /∈ L. Consequently, from Lemma 5 (with D := G

and g := f) we deduce that f0 = f . �

Remark 2. There arises a natural question if the assumption that Dg 6∈ L is

really necessary in Theorem 1. In some particular cases this is not the case, e.g.,

when G is a group and τx ≡ −x. The following corollary shows this (we write
1
2T := {y ∈ G : 2y ∈ T} for T ∈ 2G).

Corollary 2. Let G be a group, D ∈ L, g : D → P fulfil (2) with τx ≡ −x
and

1

2
T ∈ L, T ∈ L. (27)

Then there exists a unique solution f : G → P of equation (1) such that g(x) =

f(x) for x ∈ D.

Proof. First we show that Dg 6∈ L or g(D) = {0}. So, suppose that Dg ∈ L
and take v ∈ D. Clearly, by (27),

Dv := D ∩ (Dg − v) ∩ 1

2
(Dg − v) ∈ L.

Take w ∈ Dv. Then 2w + v, w + v ∈ Dg, which means that

g(2w + v) = 0 = g(w + v),



274 Anna Bahyrycz, Janusz Brzdȩk and Eliza Jab lońska

whence

g(v) = g(v + w + w) + g(v + w − w) = 2g(w + v)g(w) = 0.

If Dg 6∈ L, then we use Theorem 1. If g(D) = {0}, then it is enough to take

f(x) ≡ 0.

It remains to show that f(x) ≡ 0 is the unique solution to (1) such that

f(D) = {0}. So, take a solution f1 : G → P of (1) with f1(D) = {0}. Fix

y0 ∈ G \D and

z ∈ D ∩ 1

2
(D − y0) ∈ L.

Then z, y0 + 2z ∈ D, and consequently,

f1(y0) = f1(y0 + 2z) + f1(y0 + z − z) = 2f1(y0 + z)f1(z) = 0. �
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